
International Telecommunications Symposium – ITS2002, Natal, Brazil

JINI Service Replication in Telecommunications
Niall Gallagher, Seamus O’Shea

University of Limerick, Limerick, Ireland

Abstract—In this paper the emerging roleof Java in Telecommunications
is surveyed. In particular, attention is drawn to the advantagesand disad-
vantagesof the languagefor application and servicedevelopment.The JINI
framework for the construction of robust and self-configuring distributed
systemsis briefly described. Replication (of processes/data)is a desirable
featureof anydistributed system,wherebyoverloadedserversmay berepli-
catedelsewhere in the distributed systemin order to maintain a given qual-
ity of service to clients. Several possibleoptions for a JINI replication ser-
vice are explored. A replication framework for JINI is described,and the
contribution of sucha replication service in a telecommunicationsenviron-
ment is highlighted.

I. INTRODUCTION

In its short history, Java has made a great impact in many
application areas. Its platform independence, its downloadabil-
ity, (e.g for protocol support) and its object oriented nature are
very appealing characteristics. Platform independence means
that software can be written once, and through the use of a Vir-
tual Machine (VM) can be run on any target system. Already,
Java has made an impact in end-user application software, in call
control applications, in Intelligent Network (IN) services, and
in Network Management. Today, there is a pronounced trend
towards packet-based technology in telecommunications. This
requires interworking between the older circuit switched and the
newer packet switched networks. Java based component soft-
ware can offer the platform independent support necessary.

The overriding advantage of Java is its platform indepen-
dence. There is hardly any other area where this is more impor-
tant than in telecommunications. There is a vast array of tech-
nologies and equipment, both wireline and wireless in existence
in today’s networks. Integration of technologies is a very press-
ing objective. The overriding objective of Java’s use in Telecom-
munications is to provide a service environment which is inde-
pendent of the underlying network technology. By separating
the service logic and its access from the technology dependent
networks, an open interface can be created for the development
of services. For example, the underlying network may be a cel-
lular mobile network, or a packet, or circuit based network. The
aim is to provide a service environment (A Java API) which pro-
vides a standardized access to the available services. In this way
the market for telecommunication services is shifted from the
many proprietary systems in current use to a single, open, dis-
tributed environment, somewhat akin to today’s Internet, where
myriads of new application can flourish in this open environ-
ment. This also creates opportunities for independent software
suppliers, service providers, protocol stack suppliers, and car-
riers in the provision of standardized interfaces to their prod-
ucts. Heterogeneity will always exist at the network level. The
existing investment by network carriers and service providers
must be preserved. The Java approach is to provide a standard-

Niall Gallagher and Seamus O’Shea are with the Department of Computer
Science, University of Limerick, Limerick, Ireland. Phone: +353 61 21 3549
E-mails:

�
niall.gallagher, seamus.oshea � @ul.ie

ized set of integrated APIs which provide access to the existing
PSTN, ATM, IP, wireless etc networks of today. Already ser-
vice provider APIs have been developed for call control, service
creation and service execution environments. At the protocol
level, standardized protocol interfaces are being produced to al-
low the interchange of applications and protocol stacks (SS7,
INAP, GSM, SIP etc) [1]. Another area where Java has tremen-
dous advantage is in Network management. The typical network
today will consist of equipment from several vendors, together
with proprietary O&M systems. The demands of the market-
place is for reliable, scalable, and distributed management solu-
tion which is independent of platform, supplier, operating sys-
tem, and able to accommodate ever-changing network technol-
ogy. Existing Network incompatible management protocols in-
clude the Common Management Information Protocol (CMIP),
and SNMP, plus XML over HTTP via browsers. Again it is ac-
cepted that any solution must accommodate heterogeneity, Java
has a very definite advantage in providing a common standard-
ized interface for the Telecommunication Management Network
(TMN).

Of course, Java has disadvantages. Because Java software is
first compiled into intermediate architecture-independent byte-
code, where at run time the bytecode is interpreted by a
platform-specific Java Virtual Machine (JVM), there is naturally
a performance penalty. However, with faster and faster hard-
ware today, this penalty is far outweighed by the advantages in
most application areas. In any case, this performance penalty
has been addressed by the provision of the real time specifi-
cation for Java, (part of the Java Community Process), which
allows optimized bytecode execution, faster memory allocation
and garbage collection.

Associated with Java is JINI, a specification of an architecture
for the construction of distributed applications. In the context
of a service environment, JINI is about how clients make con-
tact with servers (who offer services) under dynamic network
operating conditions, where servers fail, are shutdown, are over-
loaded etc. JINI is based on a ’discover and join’ mechanism,
where servers have to register their existence with a service reg-
istrar, and where they are granted a lease, which they have to
renew, in order to confirm to JINI that they are still active and
providing service. Clients who require service first make con-
tact with the look up service, and from which a service API
is downloaded. This enables the client to access the relevant
server. There may be multiple servers providing an identical ser-
vice (reliability). JINI is intended to cater for situations where
services come and go, to reflect network events, it provides ro-
bustness, and adjusts to changing network conditions via leasing
and re-registrations. Network Management is a distributed ap-
plication. The Managment Information Base (MIB) is a set of
distributed managed objects. Similarly, call control, and service
execution take place in a distributed environment where clients
and servers interact. The conclusion is that JINI is a distributed



International Telecommunications Symposium – ITS2002, Natal, Brazil

system technology which has the capacity to confers many ben-
efits to telecommunication applications.

In a distributed environment, servers will become overloaded
from time to time. Response times will suffer, and client perfor-
mance will be unsatisfactory. For example, in INAP, a Service
Control Point (SCP) can be overloaded, in GSM a Home Loca-
tion Register (HLR), or a Visitor Location Register (VLR) can
become overloaded. Those are nodes which have real time con-
straints. One solution to server overloading is to provide service
replication over one or more additional nodes. This replication
facility should be a platform function, not a service requirement.
By providing a replication service in JINI, servers that experi-
ence congestion can now spread the client request load over sev-
eral nodes, thereby alleviating the congestion, and maintaining
the client’s quality of service.

The remainder of this paper will describe approaches to how
a replication capability may be added to the JINI specification.
Several options will be described.

II. REPLICATION MODELS

Replication is the distribution of service objects with the goal
of achieving fault tolerant highly available services. It provides
a pool of objects from which to process requests. It can be cate-
gorized as either stateful or stateless. Both have distinct require-
ments and functions. Stateless replication provides services that
are highly available without maintaining state with peer service
replicas. Stateful replication requires state to be maintained be-
tween services and is thus more difficult to achieve. Stateful
replication requires state to be consistent with all available repli-
cas. This is so that when a replica fails the client can be directed
to another available replica, transparently. Achieving distributed
concurrency between stateful replicas requires management of
resources so that objects remain strongly consistent. The solu-
tion described presents a replication system that provides trans-
parent fault tolerance, replication management and distributed
concurrency for both stateless and stateful services. The frame-
work implements two traditional replication models active and
passive.

A. Active Replication

Active replication is a replication model that involves a feder-
ation of active services. Active in the sense that each service is
active and processing requests while maintaining strong consis-
tency. With stateless objects active replication is merely a matter
of communicating with one service until it fails then seamlessly
redirecting to another available service. Active replication how-
ever is more difficult to achieve with stateful services. There
are two primary mechanisms that can be used to achieve active
replication. The first technique involves asynchronous message
passing between replicas using distributed locking and leasing.
Another established technique is achieved using a method called
Virtual Synchrony [5]. Virtual Synchrony is where each client
multiplexes requests to each active service in the federation of
replicas, thus if the services are similar they should process the
requests in the same manner and thus naturally maintain state.
If a replica fails in the Virtual Synchrony technique this is not a
problem. Virtual Synchrony employs the principal write-many-
read-one. This technique is cumbersome as each service must

respond to ensure that the federation maintains replica consis-
tency. A bounded response time is needed so that if a service
fails to respond it is eliminated from the federation.

B. Passive Replication

Passive replication is where the federation of replicas main-
tains a set of dormant services and one active primary. The pri-
mary processes every request from the consumers, however each
replica can either be updated as state changes as in warm pas-
sive replication or on failure of the primary as in cold passive
replication. Passive replication is convenient as it requires little
management until the failure of a primary occurs.

III. REPLICATION IN JAVA

The Java RMI API provides techniques which enable the de-
velopment of distributed objects. It provides a naming and reg-
istry service which enable objects to export there interfaces to
other perhaps remote JVMs. The API provides two abstrac-
tions which enable the development of remote objects. These
abstractions are the UnicastRemoteObject and Acti-
vatable objects. Both abstractions provide an exportO-
bject() method which exports the object to the RMI runtime
and thus makes it available for remote invocations.

Much like CORBA IDL, Java RMI provides a service con-
tract in the shape of a remote interface. This interface enables
clients to invoke methods on the remote server object. A Re-
moteStub object implements this service contract to enable
method invocations to be marshaled and transported (via TCP)
to the remote RMI runtime where it is unmarshaled and dis-
patched to the correct local object. The RemoteStub meth-
ods are invoked in much the same way as a local Java ob-
ject. The actual mechanism of marshaling and communicat-
ing the information over TCP is handled by a RemoteRef
and is abstracted from the consumer. There is however a cer-
tain lack of transparency. The service interface must extend the
java.rmi.Remote interface and each method must throw a
java.rmi.RemoteException. Java RMI parlance is thus

try{
service.someMethod(argument);

}catch(RemoteException e){
/* invocation failed */

}

Once the consumer of a service receives and unmarshals the
RemoteStub it creates a TCP connection to the remote ser-
vice and translates method invocations on the stub object into
Java Remote Method Protocol messages (or some proprietary
protocol) which marshals the method invocation and sends it
and its arguments to the remote server object. The RMI run-
time unmarshalls the JRMP stream and extracts an ObjID [8]
which is used to locate the live Java object using an object ta-
ble. Thus a method of communication between remote objects
is achieved providing an architecture which enables objects to
communicate in much the same was as local objects by simply
invoking methods.

JINI is a distributed object system built on the Java RMI archi-
tecture described. It provides a framework of services which en-
able the construction of reliable distributed systems using leases
to recover from service failures [10]. It enables discovery of



International Telecommunications Symposium – ITS2002, Natal, Brazil

services and federation of service registrars using a multicast
mechanism. This enables service objects to publish service in-
terfaces with the JINI service registrar, which provides all dis-
covery and management of published interfaces. The RMI ar-
chitecture coupled with JINI provides an attractive platform for
development of a replication system. It enables the development
of services that can be discovered and deployed in an ad hoc net-
work environment. Although there are several implementations
for fault tolerance in the CORBA community mainly through
the FT-CORBA specification [6],[4],[3] these are often heavy,
complex, and lack transparency. Replication with a pure Java
implementation and with no modification to the existing RMI
architecture or tools [7] is a more desirable technique as it offers
transparency, simplicity, and portability.

A. Interception

Interception is a technique that has been used in other repli-
cation systems such as [6]. The Interception strategy in RMI in-
volves the use of a custom socket factories [8] which can be used
to intercept and modify JRMP messages in such a way that the
JRMP stream can be used with an arbitrary remote server object.
The custom socket factories can be given to the remote object
through the exportObject() method of the various remote
object abstractions discussed previously. This exposes an oppor-
tunity to intercept the JRMP messages from the RemoteRef
object as they are marshalled, and modify them in such a way
that they can be multiplexed or multicast to service replicas in a
transparent manner.

Interception and modification of JRMP messages can be done
by subclassing the java.net.Socket object returned from
the client socket factory. The subclass must provide a decoding
mechanism which can translate the JRMP messages in such a
way that it can be presented seamlessly to another remote ob-
ject. This is necessary as the JRMP stream encodes various in-
formation which is otherwise not made available by the RMI
API. When a remote object is exported it registers a unique ob-
ject identifier with an object table which is used by the RMI
runtime to identify the object. This object table is consulted
when a JRMP stream is opened to the remote JVM. The stream
encodes an EndpointIdentifier[8] and a ObjID which are used
to identify the JVM location within the Internet and the object
within the JVM. A method invocation will not be accepted if it
does not contain the correct EndpointIdentifier and ObjID. An
interception strategy can thus be developed by publishing a ser-
vice interface object with its ObjID and EndpointIdentifier so
that the JRMP stream can be modified for each service object.

There is however several problems with the interception tech-
nique using custom socket factories. Problems arise when mask-
ing of failures is required, this is necessary so that the client
remains unaware that there has been a failure. It is simply redi-
rected to another replica as in passive replication or the response
from an active replica that succeeded with the request is returned
and the failed service is rejected from further communications.
This involves the requirement of caching each method invoca-
tion that the is made so that if the network or service fails during
the processing of a request the message can be resent to another
replicated service. There is also a significant performance hit as
the JRMP stream is marshalled and unmarshalled for each in-
tercepted communication and also by the RemoteRef object.

The technique is bound to a specific protocol JRMP and so does
not work for RemoteStub objects generated to handle IIOP,
SOAP, or other proprietary protocols.

B. Custom proxies

A custom proxy implementation involves the development of
a proxy object that wraps several stub objects or perhaps wraps
an interface to an object group where stubs are registered. The
custom proxy object involves implementing an object wrapper
that implements the desired interface, and so is transparent. It
should capture failed RMI invocations and redirect the request
to another active replica by querying the object group for an ac-
tive replica. This however is an unattractive mechanism as it
involves the implementation of the server, the remote service in-
terface, and the proxy functions for redirection and Virtual Syn-
chrony. Although this could be alleviated by a set of abstract
base classes for the proxy object it requires much investment.

C. Reflection

The reflection mechanism combines transparency and sim-
plicity, it involves the interception of the method invoca-
tion at the object level which avoids the problems of in-
terception of JRMP or IIOP protocols. The Java Reflec-
tion mechanism java.lang.reflect provides a unique
way to develop RMI proxies. These proxies remain as
transparent as any conventional RMI proxy (in fact even
more so) and also mask server failures to provide a trans-
parent simple replication proxy mechanism. Java intro-
duced the java.lang.reflect.Proxy object and the
java.lang.reflect.InvocationHandler in the 1.3
release of the Standard Development Kit. These provide a fa-
cility that enables a handler to receive a callback from an in-
terface implementation. This is not unusual for an object ori-
ented language. However, this interface implementation is gen-
erated at runtime. So with an interface and no correspond-
ing implementation an instance of that interface can be gener-
ated that delegates the processing of the invoked method to the
InvocationHandler. This allows an extremely dynamic
mechanism for developing transparent method handlers.

This mechanism as it turns out pairs quite well with the RMI
stub mechanism. This enables the InvocationHandler to
receive callbacks from the interface instance with a description
of the method invoked and also the arguments to that method.
Using this mechanism, the InvocationHandler now be-
comes the ideal location to introduce the functions required for
transparent replication of remote objects, with undetectable fail-
ures. Translating the the local object invocations to RMI invo-
cations is simply a matter of generating a method hash [8] and
invoking the RemoteRef with a selected RemoteStub ob-
ject. This enables both IIOP and JRMP protocols to be used as
well as any proprietary protocols. A replication framework can
now implement a set of InvocationHandler objects which
can be used to implement the functions required for passive and
active replication. These handlers can be created using an ob-
ject registry so that invocations are directed to objects that are
members of a particular federation.

Distributed objects can now be developed using the tradi-
tional RMI architecture with no modification or extension to
the framework or to the tools. Both Activatable and



International Telecommunications Symposium – ITS2002, Natal, Brazil

UnicastRemoteObject implementations can be developed
as usual. All that is needed is an object registry which can be
used by the InvocationHandler to acquire live replicas.
This technique can actually be used to replace remote service
objects that have been deployed without fault tolerant replica-
tion, at runtime, unknown to the remote service object or the
consumer of that service. The consumer of the service only
needs to be given an interface object that is generated by the
java.lang.reflect.Proxy mechanism, and method in-
vocations can proceed as usual. The JINI service registrar pro-
vides an opportunity for these service interface objects to be
published so that the consumers of services can be assured a
fault tolerant highly available service in an ad hoc network en-
vironment.

IV. REPLICATION MANAGEMENT

It has been clearly observed that Java has a unique ability to
implement transparent proxy objects that mask failures in an
RMI environment. It is also clear that Java presents itself as
a uniquely capable platform from which to build fault tolerant
highly available replication services using the RMI architecture
and JINI. What is needed however is a replication management
system that enables the transparent replication of services across
the system. This is needed so that the services can dynamically
deploy themselves across the system without the need for inter-
vention. This enables the system to dynamically configure itself
to manage load and recover from failures. A replication man-
agement system needs to be able to retrieve service replicas dy-
namically without ever having known about them, transfer state
from live replicas, and begin processing requests.

There is also a need to enable such a system to detect failures
and overloading. This will provide a stimulus for the system
to replicate services. In general it is desirable to have a system
that does not depend on hierarchies and that can be deployed
in a JINI ad hoc network environment, This enables services to
manage their own replication by posting requests to replication
management service allowing the system to balance and control
movement of services. The framework described provides a set
of replication management services that control the replication
of services in times of overloading and when failures occur.

A. Open Framework

The replication services described in this section define a
set of abstractions that can be extended by the developer
to produce fault tolerant services. The framework defines
a set of features that enable both passive and active repli-
cation models to be applied to distributed objects. Tradi-
tional RMI distributed objects can be given fault tolerant se-
mantics without any modifications. The replication model
takes advantage of the JavaSpace service provided by
JINI and achieves transparent fault tolerance with the use of
java.lang.reflect.InvocationHandler objects.

A.1 Transparent Proxies

Developing transparent proxy objects which can be used to
publish service interfaces is achieved by providing a set of
InvocationHandler objects. The framework includes a
PassiveHandler and an ActiveHandler. These both

provide functions that enable the client to invoke methods of
the service interface proxy transparently. The handlers use a
Federation to group replicas with the same identity. So
when a client invokes the service proxy the method invoca-
tion is delegated to the InvocationHandler objects. De-
pending on the replication model used, the Federation is
used to retrieve a set of active replicas. The handler can now
either iteratively invoke the methods of the RemoteRef ob-
jects for active replication or choose one and invoke its methods
for passive replication. The client thinks that it is communi-
cating on a one-to-one basis with a traditional RMI distributed
object, it is completly transparent. The service interface prox-
ies are created using the java.lang.reflect.Proxy ob-
ject. This generates a implementation of the service interface
that delegates the client invocations of the service interface to
the InvocationHandler. This now enables failures to be
masked so that redundant replica objects can register themselves
with a Federation and become a part of the replication sys-
tem.

Federating the replica services provides an opportunity for
load balance amongst the replicas. The use of the invoca-
tion handler objects means that invocation of a particular ser-
vice is dependent on the functions that the handler provides.
This enables the InvocationHandler to measure the in-
vocation times of particular methods and provide feedback to
the Federation service. Distributed concurrency later men-
tions how replicas that maintain state using an active replica-
tion model can use one-to-one method invocations to achieve
parallelism between the replicated services while still maintain-
ing state with peer replicas. Using the notion of service mon-
itoring based on response times provides the federation with a
unique ability to configure service interface proxies that use the
InvocationHandler to direct requests at the quickest re-
sponding services based on the feedback of the handlers. This
does not restrict the services to achieve balance based on re-
sponse times, as network latency can play a large role in the
response times of a service. It is left to the service developer
to subclass the InvocationHandler objects provided to in-
clude other measurement functions if required. The implemen-
tation of the handlers is such that the developer is unaware of
the balancing functions unless a specialization is needed.

A.2 Replication Servers

The traditional RMI distributed objects are Serializable,
this means that their state can be persisted. However a remote
object can be persisted only before it is exported to the RMI
runtime by explicit use of the exportObject() method or
by subclassing either of the abstractions provided by the API. In
order to achieve replication the service must be able to persist
state. This enables the service to be transported to a remote lo-
cation. The serialization of the remote object will transfer the
state of the live object as it is. This will enable stateful objects
to be replicated (or at least aid the process). This is fine for
simple service objects, however if the service needs strong con-
sistency a set of interfaces needs to be implemented to simplify
the process and provide the developer with more control over
the service implementation. Serialization will enable the state
of the object to be transferred but non-volatile data also needs
to remain consistent. Replication servers are provided to enable



International Telecommunications Symposium – ITS2002, Natal, Brazil

the objects to be transferred to remote locations. They export a
service interface that allows the service state to be transferred.

The replication server is a Remote object that resides on a
node within a connected network. This server makes use of the
JINI framework to publish its service interface. The JINI envi-
ronment also provides a services which enable a balanced dis-
tribution of replicas within the network, the JavaSpace [2].
The purpose of the replication server is to download, initialize,
and start replica services. It publishes a service interface that
enables the transfer of both functionality and state of arbitrary
service objects. This is achieved using a Driver object which
abstracts the technique used to transfer the service to the repli-
cation server, so serialization using the Java Serialization API
is optional. Once the service has been transferred state is syn-
chronized using an init method which takes a Context. The
Context provides the replica with a view of the host and en-
ables the replica to transfer non-volatile state from a live replica.

Balance is an important feature in this system. If a service re-
quires replication it could contact the JINI service registrar and
download a suitable interface for the replication server. How-
ever this would impose an unfair balance of load on a particular
replication server and as is discussed later reduces the ability
of replica movement. A technique which balances and coordi-
nates replicas involves posting the request for replication using
a JavaSpace. The service acquires the space from the JINI
service registrar and posts its request for replication along with
some meta data which describes the location it would like to
be replicated and the identity of the replica. Each replication
server has access to the JavaSpace and reads the posted re-
quests. If a replication server decides that it is suitable based on
perhaps security policies or location it will take() the request
from the JavaSpace and initiate transfer of service and state.
This enables replicas to move towards areas of high request. If
replication servers are deployed throughout a network moving
service replicas towards a node that is close to areas of high re-
quest is only a matter of maintaining a journal that documents
the origins of requests. When it wants to replicate it includes an
origin of high request.

Removing the JavaSpace as a single point of failure is
simply a matter of implementing a passively replicated tran-
sient JavaSpace such as the TransientSpace from the
com.sun.jini.outrigger package and using small lease
times which can detect failures quickly. Deploying a set of dor-
mant spaces throughout the system is only a matter of providing
a Driver implementation that wraps a method of starting a
JavaSpace. Any service can use this implementation. The
service interface for the replication manager is

interface Replicator extends Remote {

public Object replicate(Driver driver)
throws RemoteException;

}

This service interface provides a method that enables a
Driver object to be used by the replication manager to down-
load the service and initiate it. The method returns an Object
which is the service interface of the newly replicated service. To
replicate a required service such as a space the service contacts a
replication manager and invokes the replicatemethod using

the Driver implementation for the transient space. Once the
replication is complete it casts the returned object to the service
interface and uses the replicated service as desired. Each service
must implement a service interface in order to be replicated, this
interface is

interface Replica extends Serializable{

public void init(Context context)
throws RemoteException;

public void start()
throws RemoteException;

public void stop()
throws RemoteException;

}

Once the replica has been transferred the replication manager
invokes the init, start, and stop methods in sequence. For
a passive model the start method may not be invoked until it
is elected the primary. The replica is terminated and removed
from the Federation when the stop method is invoked.

A.3 Replication

The replication of a service is achieved using the service in-
terface described above. However there are two proxy interfaces
needed, one that interfaces directly with the replication server
and one that can post requests into the JavaSpace. The use
of a second proxy also enables security to be used in the sys-
tem, it abstracts the details of contacting the service registrar
and provides a simpler interface to the system. The replication
of a service can thus be achieved by the following sequence of
events
Contact JINI registrar Once the service notices that it is over-
loaded, or when the Federation notices that there are replica
failures, services need to be replicated. To achieve this the
JINI service registrar is contacted and a proxy for the replicated
JavaSpace is acquired.
Post request The Replicator proxy uses the JavaSpace
to post the request for replication. Each of the replication man-
agers has access to the space and receives notification of the new
posting. If the replication manager feels that the request is suit-
able it handles the request.
Handle request A replication manager will take the entry from
the JavaSpace. The request in thus removed completely from
the JavaSpace. This entry object is then used to contact the
service to initiate replication.
Service download The Java Serialization API enables the Java
objects to be streamed over an OutputStream to the repli-
cation manager. The replication manager will however use a
Driver object which manages the downloading of the service.
Initialization Once the service object has been downloaded by
the replication server it is given a Context object using the
init method which enables it to copy state from another live
replica. This however may not be needed in the case of state-
less objects or if the Driver object is implemented so as to
download all the live service data.
Execution Once the state of the service has been assured the
service is started, or in the case of passive replication is dormant



International Telecommunications Symposium – ITS2002, Natal, Brazil

until elected as the primary.

A.4 Distributed Concurrency

The previous description of a replication management system
described a dynamic federation of replication servers that are
used to enable replicas to be transported in a dynamic manner
across the system. However as well as fault tolerance require-
ments there are also performance requirements. The described
system is capable of distributed concurrency in many areas. The
use of the java.lang.reflect.InvocationHandler
provides a mechanism for increasing the security and concur-
rency of the fault tolerance federation.

The use of security and distributed concurrency seem distinct
but combined can produce seamless parallelism between peer
service replicas. The use of the Virtual Synchrony model of
maintaining state between replicas is a slow and cumbersome
one. However a method of concurrency can be achieved by the
use of the write-many-read-oneVirtual Synchrony model and the
write-one-read-one passive replication model. The use of the
java.lang.reflect facilities enables the dynamic config-
uration of proxy objects. Proxy objects can be transported with
Virtual Synchrony functionality or in a manner that simply redi-
rects to another replica to mask failures. These can be used in
a manner that involves authentication. Only certain principals
in the system can issue state changing invocations. So when a
consumer of a particular service requests a service proxy it must
precede authorization. A one-to-one proxy is given to princi-
pals with read only permission and a Virtual Synchrony proxy is
given to principals with write permission. Thus state is main-
tained and distributed concurrency is also achieved in a fault
tolerant way to provide a highly available high performance fed-
eration of replicas.

V. CONCLUSION

A useful replication framework should provide features that
do not rely on hierarchies and that perform transparent replica
management. It should be simple and should require little in-
tervention from the service developer. However it should en-
able the developer of the services to exercise as much control
over the federation as required. It should contain a set of simple
core features that are required for replication and a set of con-
venience features that should be separate from the core facilities
to reduce the complexity of the framework. It should also fea-
ture a set of interfaces which must be implemented to provide
strong consistency, replica deployment, and expose the devel-
oper to the semantics of the replication system. This enables the
developer to process requests in a manner that is consistent with
peer replicas so that for example transaction � executed with
replica � produces the same results as transaction � executed
with replica � . The java.lang.reflect package provides
unique tools that enable RMI to be used for the development of
distributed replication without any alteration to the RMI proto-
cols or to the RMI architecture, coupled with JINI the services
can be deployed in an ad hoc network environment.

REFERENCES

[1] Thomas C. Jepsen, Farooq Anjum, Ravi Raj Bhat, and Douglas Tait,
JavaTM in Telecommunications:Solutionsfor Next Generation Networks,
John Wiley and Sons, 2001.

[2] Eric Freeman, Susanne Hupfer, Ken Arnold, JavaSpacesTMPrinciples,Pat-
terns,andPracticeAddison-Wesley, 1999.

[3] Carla Marchetti, Massimo Mecella, Antonio Virgillito, and Roberto Bal-
doni, AnInteroperableReplicationLogic for CORBA Systems, DOA 2000.

[4] Balachandran Natarajan Aniruddha Gokhale, Shalini Yajnikm, and Dogulas
C. Schmidt, DOORS:Twards High-PerformanceFault Tolerant CORBA,
DOA 2000.

[5] Silvano Maffeis and Douglas C. Schmidt, Constructing Reliable Distributed
Communications Systems with CORBA, IEEE Communications Magazine,
1997.

[6] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, V. Kalogeraki, and L.
Tewksbury, TheEternal System, Department of Electrical and Computer
Engineering, University of California.

[7] Arash Baratloo, P. Emerald Chung, Yennun Huang, Sampath Rangarajan,
and Shalini Yajnik, Filterfresh: Hot Replicationof Java RMI ServerOb-
jects, COOTS 1998.

[8] Sun Microsystems Inc, JavaTMRemoteMethodInvocationSpecification,
2002.

[9] Sun Microsystems Inc, JavaSpaceTMServiceSpecification, 2001.
[10] Sun Microsystems Inc, JINITMTechnology Core Platform Specification,

2001.


