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Abstract— In this paper we investigate adaptive multiuser
receivers for DS-CDMA systems using recurrent neural net-
works (RNN). A comparative analysis of multiuser detec-
tion (MUD) schemes employing linear and non-linear struc-
tures is carried out. Adaptive minimum mean squared error
(MMSE) linear MUD receivers are examined with the LMS
algorithm and compared with MMSE neural MUD receivers
operating with the real time recurrent learning (RTRL) al-
gorithm. Computer simulation experiments including dif-
ferent communication channels and a varying number of
users show that the neural MUD receiver operating with
the RTRL algorithm outperforms linear MUD receivers with
the LMS and the conventional single user detector (SUD).

I. INTRODUCTION

Neural networks have recently been used in the design
of DS-CDMA multiuser receivers [1-3]. Neural receivers
employing the minimum mean squared error (MMSE) [1-
3] criterion usually show good performance and have sim-
ple adaptive implementation, at the expense of a higher
computational complexity. The deployment of non-linear
structures, such as neural networks, can mitigate more ef-
fectively intersymbol interference (ISI), caused by the mul-
tipath effect of radio signals, and multiple access interfer-
ence(MAT), which arise due to the non-orthogonality be-
tween user signals. In the last few years, different artifi-
cial neural networks structures have been used in the de-
sign of multiuser detectors (MUDs): multilayer perceptrons
(MLP) [1], radial-basis functions (RBF) [2], and recurrent
neural networks (RNN) [3]. These neural systems make
use of non-linear functions to create decision boundaries
to detect transmitted symbols, whilst conventional MUDs
employ linear functions to form such decision regions. In
this work, we investigate adaptive multiuser receivers us-
ing dynamically driven recurrent neural networks, which
are different from those employed in [3] and to the best
knowledge of the authors have not been examined in mul-
tiuser receivers so far. Adaptive MMSE linear MUD re-
ceivers are examined with the LMS algorithm and com-
pared to MMSE neural MUD receivers operating with the
real time recurrent learning (RTRL) algorithm. Computer
simulation experiments including AWGN, time-invariant
frequency selective, flat fast Rayleigh fading, frequency se-
lective slow Rayleigh fading communication channels and
a varying number of users show that the neural MUD re-
ceiver operating with the RTRL algorithm outperforms lin-
ear MUD receivers with the LMS and the conventional sin-
gle user detector (SUD).

This paper is organised as follows. Section II briefly
describes the DS-CDMA system model and the adaptive
MMSE linear multiuser receiver. The RNN receiver struc-

ture and the RTRL adaptive algorithm are detailed in Sec-
tion III. Section IV presents and discusses the simulation
results and Section V gives the concluding remarks of this
work.

II. SYsTEM MODEL
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Fig. 1. Model of synchronous DS-CDMA system.

A synchronous DS-CDMA system with N users and PG
chips per bit is depicted in Fig. 1, where b;(k) € {£1}
denotes the k — th bit of user 7, the signature sequence for
user i ¢; = [¢;1...¢;pg]! is normalized to have a unit
length, and the channel impulse response is given by

(1)

where the operator z~! introduces a delay of one chip time
in the transmitted signal.

The received signal after filtering by a chip-pulse
matched filter and sampled at chip rate is described by
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where the Gaussian noise vector n(k) = [ny(k) ...
with E[n(k)nT (k)] = 021, the user bit vector is given

npa (k)"



by b(k) = [bl(k) by (k)]T, the user signature se-
quence matrix is described by C = [c1 cn], the
diagonal user signal amplitude matrix is represented by

A = diag{A: ... An}, and the PG x (L x PG) matrix
H is expressed by
ho hy . hn,—1
ho hl “ee hnhfl
H= . : : 3)
ho hl P hnh71

The multiple access interference (MAI) is originated
from the non-orthogonality between the user signature se-
quences. The intersymbol interference (ISI) span L de-
pends on the length of the channel response and the length
of the chip sequence. For n, = 1, L = 1 (no ISI), for
1 <ny, <PG,L=2, for PG <np <2PGE,L =3 and so
on.

Consider a one shot linear MUD (the receiver observes
and detects only one symbol at each time instant), whose
observation vector u(k), where u(k) = C7r(k), is formed
from the outputs of a bank of matched filters and is repre-
sented by:

u(k) = [ug ...un]T (4)

The detected symbols for this one shot multiuser receiver
are given by the following expression:

bi(k) = sgn(w] (k)u(k)) ()

where w;(k) = [wy...wn]|T is the receiver weight vector
for user i for the k — th bit in a system with IV users.

The minimum mean squared error solution for this mul-
tiuser receiver can be obtained via the LMS algorithm [4],
which uses the error signal e;(k) = b;(k) — w! (k)u(k), and
is described by:

wi(k +1) = wi(k) + pei(k)u(k) (6)

where b; (k) is the desired signal for the i-th user taken from
the training sequence, u(k) is the observation vector for the
linear MUD and p is the algorithm step size.

III. RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNN) have one or more feed-
back connections, where each artificial neuron is connected
to the others, as shown in Fig. 2. RNN structures are suit-
able to channel equalisation and multiuser detection appli-
cations, since they are able to cope with channel transfer
functions that exhibit deep spectral nulls, forming optimal
decision boundaries and are less computationally demand-
ing than MLP networks [5]. To describe RNN systems we
use a state-space approach, where the N x 1 vector x;(k)
corresponds to the N states of the artificial neural network
for user 4, the N x 1 vector u(k) to the channel ¥ user sym-
bols output observation vector and the output of the neural
multiuser receiver b;(k) is given by:

&i(k) = [xI (k= 1) uT(k)]" (7)

x;(k) = tanh(w'] (k)& (k) ®)
bi(k) = sgn(Dx;(k)) (9)

where the 28 x ¥ matrix w';(k) contains the coefficients of
the RNN receiver for user i, D = [1 0 ... 0] is the 1 x N
matrix that defines the number of outputs of the network.
Note that, in this work, we have only one output b;(k) per
observation vector u(k), which corresponds to the one shot
approach.

Bii)

Fig. 2. Adaptive multiuser receiver structure based on a recurrent
neural network.

To train the neural multiuser receiver parameters, we
employ a stochastic gradient based adaptive technique
called real time recurrent learning (RTRL) [2,5] algorithm.
The RTRL algorithm employs the minimum mean squared
error criterion (MMSE) formed by instantaneous values of
the error e;(k) = d;(k) — Dx;(k) and is expressed by:

®;(k) = diag(sech®(wl ()& (k) (10)

Uy;(k) = [0} & (k) 0] ] (11)

Aij(k+1) = ®(k)[wp';(k)A; ;(k) + Ui ; (k)] (12)
Aw, (k) = pA];(k)D"e; (k) (13)
wi(k+1)=w (k) + Aw,(k) (14)

where the index j varies from 1 to n, the state dimension-
ality of the neural structure and the index ¢ corresponds
to the desired user. The matrices ®;(k), U, ;(k), A, ;(k),
wp';(k) (a partition of w';(k) defined in [2]) and Aw',; ; (k)
have dimensions N x N, N x 2N , N x 2N, N x N and 2N x 1,
respectively. Note that 0, and 0; are zero valued matrices
with variable size that depend on j and whose dimensions
are (j—1) x 2N and (N - j) x 2N, respectively [2].



IV. SIMULATION EXPERIMENTS

In this section, we conduct simulation experiments to
assess and compare the BER performance of MUD linear
receivers operating with the LMS, MUD neural receivers
operating with the RTRL algorithm, the single user con-
ventional detector (SUD) and the single user bound (SU-
Bound), which corresponds to the SUD in a system with
a single user and no MAI. We consider non-orthogonal
random generated spreading sequences, processing gain
PG = 8, a step size u = 0.01 for the adaptive algorithms
and assume perfect power control in the DS-CDMA system
in all simulations. The algorithms are adjusted with 200
training data symbols during the training period and no
adaptation occurs in data mode in all experiments. Note
that the BER performance shown in the results refers to
the average BER amongst the N users.

A. AWGN channel performance

To analyse the BER performance of the adaptive re-
ceivers in an AWGN channel, we have conducted simu-
lations where the receivers process 10* data symbols, av-
eraged over 100 independent experiments. The BER per-
formance versus Ej/Ny for N = 3 users is shown in Fig.
3.
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Fig. 3. BER performance of the receivers in AWGN channel with
N = 3 users.

The curves plotted in Fig. 3 show that the MMSE neural
receiver is superior to the MMSE linear MUD, saving up
to 0.4 dB for the same BER performance.

In another situation, the same receivers were evaluated
at Ey /Ny = 6dB with a different number of users, as de-
picted in Fig. 4. The MMSE neural MUD achieves the
best BER performance with a varying number of users,
outperforming the MMSE linear receiver and the SUD. The
results show that the use of neural receivers can increase
the capacity of DS-CDMA systems in comparison with the
MMSE linear receiver and the SUD.
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Fig. 4. BER performance of the receivers versus number of users in
AWGN channel at Ey/No = 6dB .

B. Time-invariant frequency selective channel performance

To evaluate the BER performance of the adaptive re-
ceivers in a time-invariant frequency selective channel with
AWGN, we have selected a channel with transfer function
H(z) =1-0.252"" + 0.4272. We carried out simulations
where the receivers processed 10* data symbols, averaged
over 100 independent experiments. The BER performance
versus Ej /Ny for N = 3 users is shown in Fig. 5.
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Fig. 5. BER performance of the receivers in a time invariant fre-

quency selective channel with transfer function H(z) = 1 —

025271 4+ 0.42=2 and AWGN with N = 3 users.

The curves plotted in Fig. 5 show that the MMSE neural
receiver is superior to the MMSE linear MUD, saving up
to 1.5 dB for the same BER performance.

In another situation, the same receivers were evaluated
at Ey /Ny = 8dB and the number of users was varied, as
depicted in Fig. 6. The MMSE neural MUD achieves the



best BER performance with a varying number of users,
outperforming the MMSE linear receiver and the SUD. The
results indicate that the MMSE neural MUD can support
more users than the MMSE linear receiver and the SUD in
a DS-CDMA system.
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Fig. 6. BER performance of the receivers versus number of users in a
time invariant frequency selective channel with transfer function
H(z) =1-0.252"1 +0.4272 and AWGN at E,/No = 8dB .

C. Flat fast Rayleigh fading channel performance

This time, the BER performance of the receivers was
evaluated in a flat fast Rayleigh fading channel with
AWGN;, that changes its characteristic at each transmit-
ted symbol. All the receivers process 10° data symbols,
averaged over 100 independent experiments. The BER per-
formance versus Ej /Ny for 3 users is shown in Fig. 7.
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Fig. 7. BER performance of the receivers in a flat fast Rayleigh
fading channel with AWGN for 3 users.

The curves plotted in Fig. 7 indicate that the MMSE

neural receiver is superior to the MMSE linear receiver and
the SUD. The neural receiver can save up to 0.4 dB, for
the same BER performance, when compared to the linear
MUD.

In a situation with a varying number of users, the re-
ceivers were evaluated at E, /Ny = 10dB, as depicted in
Fig. 8. The results show that the MMSE neural MUD
achieves the best BER performance, outperforming the
MMSE linear receiver and the SUD. In fact, the neural
receiver can increase the capacity of the system in compar-
ison with the MMSE linear receiver and the SUD.
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Fig. 8. BER performance of the receivers versus number of users in a
flat fast Rayleigh fading channel with AWGN at E;/Ng = 10dB.

D. Frequency selective slow Rayleigh fading channel per-
formance

In this experiment, the BER performance of the receivers
has been assessed in a frequency selective slow Rayleigh
fading channel with AWGN. The channel is modeled as a
three-path slow Rayleigh fading one with a discrete power
delay profile, whose taps are modeled as independent, zero-
mean and complex random variables. The envelope of this
channel input response has a Rayleigh probability distri-
bution. The channel is composed of 3 paths, spaced by
the chip period, with a multipath intensity profile given
by [0.5 0.3 0.2]. The receivers process 10° data symbols,
for 100 different channel realisations, averaged over 10 inde-
pendent experiments. The BER performance versus E;/Ng
for 3 users is shown in Fig. 9.

The results shown in Fig. 9 for a three-path slow
Rayleigh fading channel with AWGN indicate that the neu-
ral MUD is superior to the linear MUD, saving up to 0.5
dB, for the same BER performance.

In another situation, the receivers were evaluated at
Ey/No = 10dB with a varying number of users, as de-
picted in Fig. 10. Again, the MMSE neural MUD has out-
performed the MMSE linear receiver and the SUD. Indeed,
the MMSE neural receiver can accomodate more users in
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Fig. 9. BER performance of the receivers in a frequency selective

slow Rayleigh fading channel with AWGN for 3 users.

a DS-CDMA system than the MMSE linear and the SUD
receivers.
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Fig. 10. BER performance of the receivers versus number of users in
a frequency selective slow Rayleigh fading channel with AWGN
at E,/No = 10dB.

V. CONCLUDING REMARKS

In this paper we investigated adaptive multiuser receivers
for DS-CDMA systems using recurrent neural networks. A
comparative analysis of multiuser detection schemes em-
ploying linear and non-linear structures has been carried
out. Adaptive MMSE linear MUD receivers have been ex-
amined with the LMS algorithm and compared with adap-
tive MMSE neural MUD receivers operating with the real
time recurrent learning algorithm. Computer simulation
experiments were carried out for AWGN, time-invariant
frequency selective, flat fast Rayleigh fading, frequency se-

lective slow Rayleigh fading communication channels and
a varying number of users. The BER performance results
have shown that the neural MUD receiver operating with
the RTRL algorithm outperforms linear MUD receivers
with the LMS algorithm and the SUD.

REFERENCES

[1]  B. Aazhang, B. P. Paris and G. C. Orsak,“Neural Networks for
Multiuser Detection in Code-Division-Multiple-Access Commu-
nications,” IEEFE Transactions on Communications, vol. 40,
No. 7, July 1992.

[2] U. Mitra and H. V. Poor, “Neural Network Techniques for
Adaptive Multi-user Demodulation,” IEEFE Journal on Selected
Areas of Communications, Vol. 12, No. 9, December 1994.

[3] W. G. Teich, M. Seidl and M. Nold,“ Multiuser Detection
for DS-CDMA Communication Systems based on Recurrent
Neural Networks Structures”, Proc. IEEE ISSSTA “98, 02-04
September, Sun City, South Africa, pp. 863-867, 1998.

[4] S. Haykin, Adaptive Filter Theory, 3rd edition, Prentice-Hall,
Englewood Cliffs, NJ, 1996.

[5] S. Haykin, Neural Networks: A Comprehensive Foundation,
2nd Edition, Prentice-Hall, 1999.



