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Abstract- Based on the spectral overlapping of two conventional
m-QAM modulations, an {m-QAM}2 modulation technique is
performed. This architecture has shown to have better bit error
performance than its equivalent M-QAM modulation. The object of
this paper is to present a multilevel coding method based on a ring
of integer modulo-q over an expanded trellis coded {2m-QAM}2

modulation, to collect associated gain in terms of Eb/N0.
Performance curves obtained by computer simulation with spectral
efficiency for coded and uncoded schemes of 5 and 6 information
bit/s/Hz for three codes combination are shown.

1 - INTRODUCTION

The multilevel convolutional coding method based on rings
of integers modulo-q (q generally a nonprime integer) which
is suitable for coded q-PSK modulation scheme is as well
valid for convolutional codes by making a simple adaptation
[1][2]. Another paper was developed using trellis coded
modulation over rings of integers modulo-4 by QAM
constellations [3].

A modulation architecture called {m-QAM}2 is based on
the partial spectral overlapping of two m-QAM schemes
[4][5]. At the receiver, the two m-QAM signals are detached
by means of a suitable hardware which may produce gains, in
terms of Eb/N0[dB] (bit energy to spectral noise density ratio),
over an equivalent QAM modulation, looking for the same
spectral efficiency and bit error rate. By doubling the number
of symbols of each m-QAM and by using a trellis encoder for
each modulation set [6][7][8], it is possible to built a
{2m-QAM}2 trellis encoder which sums the gain of the
{m-QAM}2 modulation scheme to the gain produced by the
trellis encoding process [9].

This paper presents a coded modulation method based on a
multilevel codes over finite ring of integer modulo-q on an
expanded trellis coded {2m-QAM}2 modulation. Tables of
systematic convolutional codes and performance curves
obtained by computer simulation are also shown.

2 - TCM OVER RINGS OF INTEGERS

The conception of the schemes that utilize coded
modulation is to transmit k information bits per channel
symbol by using a modulator with q = 2k+1 waveform and
then exploit the redundancy produced by using a suitable set
of channel symbols. Ungerboeck [6][7][8] showed how it is
possible to relate monotonically the Hamming distance
involved in the binary convolutional coding with the
Euclidean distance between channel symbols, by the named
“mapping by set partitioning”. Fig. 1 shows one alternative

coding method, based on ring of integers modulo-q which is
suitable for coded modulation schemes.
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Fig.1 Encoder structure.

The u+1 parallel information bits ( b1, b2, ...., bu+1 ) from
the binary source are mapped (Gray mapping was used) into
one of      q = 2u+1 channel symbols ai belonging to the
expanded modulation signal set Zq . The set Zq = { 0, 1, 2, ....,
q-1 } is defined as a ring of integer modulo-q. The input of
the multilevel encoder is an information source a = ( a1, a2,
...., ak ) with elements belonging to the ring ZQ. The
multilevel convolutional encoder then sends to the channel a
coded sequence x = ( x1, x2, ...., xk+1 ) the elements of which
belong to the same ring ZQ.  The rate Rc = k/k+1 multilevel
convolucional codes can be represented by the generator
matrix G(D), where D is a delay element (memory) and the
entries of the matrix are polynomials with coefficients
belonging to the ring of integer modulo-q. The codes are
assumed to be systematic to avoid catastrophicity and reduce
the set of possible candidate codes which makes computer
search algorithms less time consuming. Therefore, G(D) can
be expressed by
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where Ik is a k by k identity matrix and
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s ++++=  (with S=D+1) are the
polynomials responsible for the feed-forward and feed-back
connections, respectively, as shown in Fig. 2.
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Fig.2. General structure of the encoder.

Notice that the problem is to find the matrix G(D) which
maximizes the minimum free Euclidean distance dfree
between all pairs of codewords. The main advantage of the
alternative scheme proposed over Ungerboeck’s scheme is
the possibility to transmit fraction bits per modulation
interval without the need to use constellations with more than
two dimensions.

The most suitable modulation constellations for multilevel
coding of sequences with elements belonging to the ring of
integer modulo-q are those which have their modulation
symbols distributed on a circumference, like q-PSK
modulation. This distribution does not happen in m-QAM
constellations with m > 4. Therefore, partitions to group the
modulation symbols are needed, in order to allocate them
over a circumference. For the 32-QAM constellation, using a
partition of the signal space similar to that developed by
Ungerboeck together with codes over Z2 and Z4 , it is possible
to obtain significant asymptotic coding gains over uncoded
16-QAM.

Fig. 3 shows the signal space partition for 32-QAM. Each
point of the signal space of 32-QAM is assigned by three
symbols, one in Z2(binary) and the others in Z4(quaternary).
The binary symbol selects one of the two subsets 16-QAM
(protected by the code A). One quaternary symbol selects one
of the four subsets 4-QAM produced by the partition
(protected by the code B) and the other quaternary symbol
selects a symbol in a subset (protected by the code C).
Therefore it is possible to use three codes with different error
correction capabilities, where A is the most powerful code in
order to protect the nearest signal space, and code C, the
least. Notice that both codes B and C over Z4 protect symbols
distributed on circumferences.

3 - THE 32-QAM SYSTEM

The spectral efficiency of the 16-QAM system is R = 4
bit/s/Hz. When coded modulation is applied over this system,
its constellation is doubled and one code with rate RC = 4/5 is
inserted to keep the same spectral efficiency, therefore  R =
RC log2(2m). Then the trellis coded modulation over rings of
integer modulo-q means doing q = 2m = 32.

As one encoder over Z32 will be tricky, we use the signal
space 32-QAM partition to reduce the constellation and
therefore the encoder´s complexity.
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Fig. 3 shows this mechanism. One possible encoder used in
this work is shown in Fig. 4, with rate
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Notice that for this encoder, code C does not exists.
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4 - THE {m-QAM}2 SYSTEM

A modulated wave {m-QAM}2 can be represented as a
narrowband signal, which is the summation of two m-QAM
modulated waves separated in frequency by 
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where Ai , fi and θi are the amplitude of the carrier, the carrier
frequency and the phase of each m-QAM signal si . Either of
the m-QAM modulation occupies a bandwidth equal to rs ,
where rs = rb/2 log2m [symbol/s] is the transmitted symbol
rate of each m-QAM with rb the bit information rate. Then the
total bandwidth of the signal s(t) is )f/r(1rrfW sss ∆+=+∆=
[Hz], and therefore the spectral efficiency R of the {m-
QAM}2 system is given by
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The AWGN noise, at the receptor, is considered
narrowband over the signal s(t), and can be represented in the
form,

t)fsen(2(t)nt)fcos(2(t)nn(t) 0Q0I π+π= (5)

where nI(t) and nQ(t) are the in-phase and quadrature noise
components, respectively. Each noise component occupies a
bandwidth of W [Hz]. The average power of each component
is N0 W, where N0 [Watt/Hz] is the noise spectral density.
The frequency f0 is the mean between the two carrier
frequencies f1 and f2.

The authors have shown [4][5] that the effect of the noise
in the input of each decision/decoding device can be
considered independent from each other. Taking this
consideration into account, for high values of Eb/N0 , the BER
(bit error rate) for the {m-QAM}2 system can be evaluated by
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where ( )sf/r∆δ  is a real valued function of 
sf/r∆ . The function

( )sf/r∆δ  depends on the structure of the receiver, i. e., it
depends on the correlators and linear transformation used to
separate the information signals at the receiver [4][5]. Table 1
shows some values of ( )sf/r∆δ  for given values of 

sf/r∆ .

TABLE 1:

VALUES OF ( )sf/r∆δ  AS FUNCTION OF 
sf/r∆

sf/r∆ 1 5/7 3/5 1/2 1/3 1/5 1/7
( )sf/r∆δ 0.43 0.48 0.53 0.63 1.02 2.19 3.85

The {m-QAM}2 scheme is compared with an equivalent
M-QAM system, taking into account the same spectral
efficiency. Them m and M are related by

i2=M  ; 1m2,,m=i −!! (7)

and associated with ∆f/rs , by
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For instance, the {4-QAM}2 may be compared by 4 and
8-QAM, once the {16-QAM}2 will be with the traditional 16,
32, 64 and 128-QAM.

5 - THE RTCM{2m-QAM}2 SYSTEM

The RTCM{2m-QAM}2 scheme was built by trellis coded
modulation over the {m-QAM}2 scheme in a context of
coding from rings of integers modulo-q. Fig. 5 presents, in
block diagram, the proposed system where rb = rb1 + rb2  is the
total bit rate.

The system of interest is RTCM{32-QAM}2 , where 2m =
32, that results in an spectral efficiency of

sf/r1
8]R[bit/s/Hz
∆+

= (9)

In this work, we will compare the RTCM{32-QAM}2

system with a scheme 32-QAM ( for R = 5 bit/s/Hz , ∆f/rs =
3/5) and with a scheme 64-QAM (for R = 6 bit/s/Hz , ∆f/rs =
1/3).

Table 2 shows codes over Z2 and Z4 used in the RTCM{32-
QAM}2 system, that were found by computational search. It
shows the polynomials g1(D), g2(D) and f(D) in hexadecimal
notation for codes in Z2 and Z4 , E represents the number of
states of the convolutional code, d2

free/e2 is the rate of the
minimum square free Euclidean distance of the code and the
square distance of the constellation 16-QAM ( 4-QAM for
the code in Z4), tp informs the amount of parallel transitions
in the trellis of these codes and τ as the number of windows
considered in the trellis.
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Fig. 5. Block diagram of the RTCM{2m-QAM}2 system.

For the system’s simulation, the Monte Carlo technique
was used, based on the C language.

Figures 6 and 7 show performances in terms of BER versus
Eb/N0[dB] for the RTCM{32-QAM}2, {16-QAM}2 and QAM
schemes, with the same spectral efficiency for all of them and
using code B in combination with three different codes. In the
simulations it was set for their constellations with equal mean
power.
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So, the 32-QAM system is allocated at the rightmost side
of the set of curves, then the {16-QAM}2 scheme with ∆f/rs=
3/5 shows better performance than the 32-QAM. Now, for
approximately BER > 10-2 the RTCM{32-QAM}2 do not
have advantages in terms of performance towards 32-QAM
and {16-QAM}2 systems. But for BER < 10-4 the RTCM{32-
QAM}2 with ∆f/rs= 3/5 needs less Eb/N0 than the other
systems to reach the same BER. Note when the combination
of codes Ai (i = 1, 2, 3) and B is better in terms of free
distance, the performance of the RTCM{32-QAM}2 is better
too.

Is good to remark that the spectral efficiency of coded and
uncoded schemes is 5 information bit/s/Hz.

The total asymptotic coding gain is the asymptotic gain
produced by the uncoded {16-QAM}2 with ∆f/rs=3/5 over the
conventional uncoded 32-QAM plus the asymptotic coding
gain of the RTC{32-QAM}2 with ∆f/rs=3/5 over the uncoded
{16-QAM}2.

Similar results are obtained for the RTCM{32-QAM}2

with a superposition degree of the 32-QAM constellations by
∆f/rs= 1/3, as shown in Fig.7 but now for spectral efficiency
of 6 bit/s/Hz.

TABLE II
CODES OVER  Z2  AND  Z4  FOR THE RTCM{32-QAM}2 SYSTEM

Codes
Z2

g1(D)/g2(D)/f(D) D E d2
free/e2 tp ττττ

A1 11/13/15 3 8 16 1 15
A2 45/36/57 5 32 20 1 25
A3 161/045/147 6 64 24 1 30

Codes
Z4

g1(D)/g2(D)/f(D) D E d2
free/e2 tp ττττ

B 23/12/31 1 4 8 4 5

6 - SUMMARY

A multilevel coding method based on a ring of integer
modulo-q over an expanded trellis coded {2m-QAM}2

modulation was presented.

Figures show performance curves obtained by computer
simulation with spectral efficiency for coded and uncoded
schemes of  5 and 6  information bit/s/Hz , using code B in
combination with three different codes.

The RTCM{32-QAM}2 scheme responds with a similar
form to the binary systems and in terms of BER versus Eb/N0
it shows abrupt falls more than those systems working over
the binary algebra.

Other constellation, as the binary PSK, was researched
using spectral superposition and submit to SBrT’01 [10].
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