
A NEW LOGIC PROGRAM M ABLE AUDIO SW ITCHING M ATRIX

GiuseppeM agdalena Stephan1,Fábioda Silva Dutra2, Carlos Eduardo F. Savioli1,2, , M adjer de Andrade M artins1

{ 26@ cetm.mar.mil.br, fabiodut@ lpc.ufrj.br, 264@ cetm.mar.mil.br, madjer.am@ bol.com.br }

1 Centro de EletrônicadaM arinha
DivisãoTécnica

PraçaBarão de Ladário S/N, Cep 20091-000
Rio de Janeiro / RJ – BRASIL

2 Universidade Federal Do Rio De Janeiro
LPC – CT/UFRJ/PEE-COPPE – Bloco H s. 210

CP 68564, Cep 21945-970
Rio de Janeiro / RJ – BRASIL

Abstract – This article describes a logic
programmable audio switching matrix developed by
this Center to substitute the old mechanical ones in
some of the Brazilian Navy ships. W ith the purpose
to switch audio signals only, this new system allows a
fast, friendly and easy switching control by an IBM -
PC compatible computer and a specific FPGA-based
hardware.

I.INTRODUCTION

Some of the Brazilian Navy ships still use
arrays of mechanical hand-commanded switches,
which are used to connect each endpoint of
communication to a different transmitter or receiver,
as shown in Figure 1. An endpoint of communication
is any device, located anywhere inside the ship, able
to transmit and receive signals in the audio spectrum
of frequencies, like TTY (Teletype), M orse devices
and so on.

This kind of equipment is mostly used
during real exercise operations in the sea, when the
enemy team (foe) tries to listen to our radio
communications. The fast switching among the
various transmitters and receivers is a way to turn this
listening into a difficult task, because those switching
techniques not only affect the carrier frequency, but
also the type of the signal modulation, like SSB or
DSB.

The changes must be done as fast as possible
and simultaneously among all those communications
devices. In order to improve the performance of
operation performance, seriously affected by the slow
nature of the human mechanical switching, a new
approach was proposed, in which the current
mechanical system is substituted by a computer and
FPGA-based one.

II.PHYSICAL STRUCTURE

Since there is a complex wiring system
already assembled in the Brazilian Navy ships, which
would be hard to remake, the design was strongly
oriented to conserve the previous mechanical
structure.

The current structure is composed by a 4x10
matrix of identical mechanical modules, according to
Figure 1. Each module has 10 switches and each
switch has seven positions (off, receivers 1 to 5 and
extension).

Figure 1–Original M echanical Structure of the
Switching M atrix.

Therefore, the proposed solution was to
customize a printed circuit board (PCB) to execute
the function of a unique module. Care was taken in
the design of the PCB to make it fit exactly in the
mechanical console dimensions, avoiding the need
for any external modifications.

The Figure 2 shows the electronic version of
the system. Each module was substituted for a
programmable logic-based board.

Figure 2 – Electronic Version of the Switching
M atrix.

III.DEVELOPM ENT

The new system was implemented with a
mixed signal circuit, whose block diagram is shown
in the Figure 3. This block diagram represents only a
board.

Figure 3 – Block Diagram of the Board.

The function of each block is explained in
the further items:

A.AUDIO SW ITCHING

Analog multiplex devices, 4052[5], were
used to do the audio switching. These devices cause
negligible interference in the audio signal and are
controllable by digital signals. The balanced

specifications of the 4052 are critical for this
application.

The programmable logic device allows a
remote control of the switching matrix by the
computer software.

B.IDENTIFICATION CODE

The switching matrix of the ship is
composed by 40 identical boards, which must be
correctly identified. In order to avoid possible errors
in the switch selection operation, an identification
code was implemented

The identification code is a 7-bit number,
and so it is able to identify up to 128 different boards,
more than necessary.

This code could be programmed in the logic
device, but this procedure would make the device
programming and system maintenance more
complex. Then the proposed solution was to add a
dip-switch in each board assigning a unique code for
it.

The dip-switches must receive different
values permitting to use the same VHDL
programming logic in all devices.

C.COM M UNICATION PROTOCOL

A communication protocol among the
programmable device and parallel port interface was
implemented to allow the control of switching.

The signals used to implement the protocol
were:

- SB (Select Board) indicates that the 8-bit data in
parallel port is ready and represents the
identification code of board;

- ACK_B (Acknowledgment Board) indicates the
acceptance the SB signal;

- SSP (Select Switch and Position) indicates that
the 8-bit data in the parallel port is ready and
represents the selected switch and its position;

- ACK_SP (Acknowledgment Switch and
Position) indicates that the board accepted the
SSP signal;

- YACK (Yes Acknowledgment) indicates that the
software accepted both ACK_B and ACK_SP
signals;

- ERROR indicates that there was a parity error in
the communication.

Figure 4 –Communication Protocol Handshaking.

To start the handshake, the information must
be steady in the parallel port, and the software must
send a pulsed SB signal.

The board whose identification code is
coincident to the data in parallel port will accept the
communication and then send the ACK_B signal to
the computer. Note that ACK_B is negative logic.

The computer will receive the ACK_B and,
to avoid a possible deadlock, it will send YACK
signal to finish the communication.

After this identification procedure, the next
step is to select one of the 10 switches and its
position.

The information must be steady in the
parallel port again, and the software must send the
SSP signal.

The same board will accept the
communication, and then send the ACK_SP signal to
the computer. The selected switch will change to the
new position. Note that ACK_SP is also in negative
logic.

The computer will receive the ACK_SP, and
then will send YACK signal to finish the
communication. The handshake will be completed.

D.ERROR DETECTION

In order to avoid a possible error in the
communication process, a bit of parity was added in
the 8-bit data communication.

If any bit of that byte changes during the
transmission, the board is able to detect it and send
the negative logic ERROR signal, Figure 5.

After parity error detection, the protocol
must reboot due to the board return to stand-by mode.

The time diagram of Figure 5 simulates a
parity error. W hen the SB pulse is sent, the 8-bit data
on parallel port is 10001111b. This data has odd
parity, so the logic detects the problem and sends a
pulse of ERROR signal.

Figure 5 – Parity Error Detection.

E.DATA INFORM ATION

Two 8-bit data are transmitted in each
communication. The first one represents the
identification code, and its structure is shown in
Figure 6.

Figure 6 – First 8-bit Data Structure.

The second information represents the target
switch and its desired position. Its data structure is
shown in Figure 7.

Three bits are reserved to select up to eight
positions, and four bits allows selecting up to 16
switches.

Figure 7 – Second 8-bit Data Structure

F.INTERFACE W ITH NEIGHBOURS BOARDS

Each board has a buffer to drive the board it
belongs. Therefore, the 3-bit input communication
protocol (SB, SSP and YACK), 8-bit data and Reset
signals are propagated from a board to its neighbors
without loss of integrity.

The purpose of the OR gate shown in figure
3 was to process the 3-bit output communication
protocol (ACK_B, ACK_SP and ERROR), dealing
with the limitations due to the use of only one
parallel port.

G.VHDL PROGRAM M ING

A programmable logic device, M AX7000,
from Altera family [4], was used to help the
computer software to control the switching remotely.

The architecture developed was divided in two
blocks: DATA PATH and CONTROLLER, as shown
in Figure 8.

Figure 8 – Logic Block Diagram.

Both blocks were programmed in VHDL.
A finite-state machine [6] was created to

implement the CONTROLLER. The DATA PATH
was divided in four blocks, LATCH, PARITY,
DECODE and COM PARATOR.

A detailed block diagram of the
programmed logic is shown in Figure 9.

Figure 9 – Detailed Architecture of the Programmed
Logic.

The function of each block is described below:

- LATCH reads the 8-bit data and divide it
according to the data structures of Figures 6 and
7;

- PARITY verifies the parity of 8-bit data present
on parallel port interface;

- COM PARATOR compares the value of the dip
switch code and the code sent by the parallel port
to identify the correct board;

- SYNC synchronizes the external control signal;
- DECODE receives the 8-bit data code and

decodes it to select the desired switch;
- CONTROLLER controls the communication and

switch selection.

In addition, the function of the each signal is
described in the following items:

- Reset allows to reinitialize the programmable
logic;

- DIP_SW ITCH[6..0] is a 6-bit bus that defines
the identification code;

- DATA[7..0] represents the 8-bit data on parallel
port;

- SW ITCH[3..0] are the 4-bit bus that controls the
switch switching;

- PARITY internal signal, indicates a parity error;
- LATCH and DECODE internal signals, enable

the LATCH and DECODE blocks, respectively;
- EQUAL internal signal indicates that the 8-bit

data and dip-switches are identical.

The other signals are used in communication
protocol whose description is explained in section
III.c.

H.SOFTW ARE

The platform used to this first prototype was
Intel-Based running W indows 98 operating system.
The software is Object-Oriented and was developed
in Borland Delphi 5.0. Special care was taken in its
graphic interface, which must be friendly and let fast
human operation.

Figure 10 – Graphics User Interface.

For the selection of the transmitters and
receivers, a combination of comboboxes, a kind of an
object in the objected-oriented environment, were
used, as shown in Figure 10. Another important
feature of the system is possibility to program
specific configurations among endpoints and
receivers, to use them whenever necessary.

IV.RESULTS

The results of simulation are described in
this section. A prototype of the system was
implemented and an auxiliary circuitry was
developed to simulate the system on the ship

The implementation of the system was
divided in the following tasks:

A.DIGITAL SIM ULATION

Each digital block of block diagram in
Figure 9 was simulated, using the Altera’sM AXplus
II tool, to verify its working. The final simulation
results are shown in Figure 11.

Figure 11 – Simulation Results.

Observing the Figure 11, the identification
code is 00000000b (SW ITCH[6..0]). The
communication begins when the first pulse of SB
signal is sent. However, the BOARD[6..0] Bus
(00000011b) does not have the same value of
SW ITCH[6..0], what means the software wants to
communicate with another board, whose
identification code is 00000011b. Therefore, the
programmable logic sets aside the first pulse of the
SB signal.

W ith the same code in SW ITCH and
BOARD bus, the logic selects the desired switch.

B. LABORATORY TESTS

To help the tests of the assembled system, it
was developed a circuit tester based on the
microcontroller PIC 16F84, from M icrochip.

The tester creates 10 different set of pulses,
generated by the microcontroller, which simulate the
audio signals. In the panel of the tester, a 10 leds bar
blinks this pulses. The first pulse blink once, the
second twice, the third three times and so on until the
tenth, that pulses ten times.

As show in figure 12, each pulse turns its
remote audio unit led on.

Figure 12 – M icrocontroller’s Pulses.

In the panel there are three bar leds, one
denote the audio signals and the two other, the signal
switched by two modules. Each module is connected
to the tester. For instance, when channel one is
switched to the third receiver, the led one of the bar
leds will blink three times. The first five leds of audio
signal bar leds are connected at a module and the last
fiveleds, connected to the other module.

Figure 13 – Tester Front Panel

V.CONCLUSION

This new paradigm introduced with that
prototype improves the speed of switching, if
compared to the previous mechanical human
switching, and turns that kind of operation more
confident, since the operator selects exactly the
desired transmitter or receiver with a few mouse
clicks on the screen.

Besides bringing some technology
independence to the country, updating the matrix,
taking advantage of the basic previous mechanic
structure and all its related wiring, represents a great
effort in saving the financial navy resources, without
lack of performance, if compared to some
commercial switching matrices available in the
worldwide weapons industry market.

This prototype, however, should be
undoubtedly improved to comply the military
standards requirements for ship equipment. The
major changes would be in the software
communication protocol, in order to reduce the
probability of deadlocks, and in the software itself,
which must be executed in a real-time platform, more
robust than most of the commercial operating
systems.

In hardware, minor changes should be done
to improve the performance of the prototype, such as
inclusion of a power-on reset circuitry and
minimization of the physical dimensions and energy
consumption.

Acknowledgm ents

The authors would like to thank the Vice-
Adm. Pierantoni, Vice-Adm. Loesch and Capt.
Gusmão, for their financial support to this project.

References

[1] CPDET “M anual Técnico do M ódulo de

Comutação de Receptores ET/URA-15”, IM BEL,

1986.

[2] CPDET “M anual Técnico do M ódulo de

Comutação de Transmissores ET/URA-16”, IM BEL,

1986.

[3] G. M . Stephan, M . C. Kireff, “Projeto e

M ontagem de Circuito de Comutação de Sinais de

Áudio”,Pesquisa Naval, nr.14, pp. 377-384, October

2001.

[4] ALTERA “Data Book”, Altera Corporation, 1998

[5] RCA Solid State,”CM OS Integrated Circuits Data

Book”, RCA Corporation, 1983

[6] Daniel D. Gajski, “Principles of Digital Design”,

Prentice Hall, pp. 318-385, 1997;

[7] Peter J. Ashenden, “The VHDL Cookbook”, first

edition, pp. 1.1 – 2.1, July, 1990;

[8] K. Skahill, “VHDL for Programmable Logic”,

Addison-W eskley, pp. 1-17, 1996;

[9] Peter J. Ashenden, “The Designer’s Guide to

VHDL”, M organ Kaufmann Publishers, pp. 2 – 25,

1996.

