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Abstract— We provide a new method to evaluate the center density of tively, the canonical homomorphismo : K — R™ isthe group
ideals in the ring of algebraic integers of subfields of)(¢ ), where p and homomorphism given by
g are distinct prime numbers. This method allows us to reproduce ro-
tated versions of known dense lattices in some dimensions. For example,
we obtain lattice g from several fieldsQ(¢,, ). Because of their high di-
versity, signal constellations constructed from these dense lattices perform R .
well on both Gaussian and Rayleigh fading channels. One application of (071472 (2)), S(07, 4 (2))) -
these constellations is in mobile communications, where one single modula-
tion/demodulation device can be used to communicate over both terrestrial
and satellite links.
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o(z) = (o1(2); -, 00, (2), R(0r,41(2)), S(0r, +1(2)), - -,

Let Ok bethering of algebraicintegersof K, andlet M bea
submodule of Ok of index ¢. The set o(M) isarank-m lattice

lattices, signal sets, Gaussian and fading channels, diversity.

|. INTRODUCTION

The theory of algebraic lattices has shown to be extremely
useful in Information Theory. Signal sets from dense lattices
performwell over an additive white Gaussian channel (AWGN).
In fact, Conway and Sloane [4] have shown that lattices satis-
fying the Minkowski bound are equivalent to codes which at-
tain channel capacity. This establishes a link between sphere-
packing and Information Theory.

In[7], Giraud and Belfiori proposed atechniquefor construct-
ing signal sets suitable for the Rayleigh fading channel. The
basic idea was to use lattice rotations to increase diversity, that
is, the number of different valuesin the components of any two
distinct points of the constellation. In [3], Boutros et al. con-
structed rotated versions of lattices D4, K12, and Ag viaideas
of Q(¢n), for n = 8,21 and 40, respectively. The principal
purpose of the work was to obtain constellations having good
performancein both AWGN and Rayleigh fading channels.

In this paper, starting from suitable ideals in subfields of
Q(Cpq ), We construct new rotated versions of dense lattices, for
example, Aoy, Ko, and Eg. We conjecture the existence of a
lattice in dimension 28 with center density equal to 1. Asin
[3], the lattices presented here perform well over Gaussian and
fading channels. This is particularly useful when transmitting
information over terrestrial and satellite links. The same mod-
ulation/demodulation device can be used to communicate over
them both.

Il. PRELIMINARIES

Let K be anumber field of degreem, andlet o4, ...,0,, be
the @-monomorphisms of K into C, ordered in such away that
o;isrea for1 < i < r; and o4, IS the complex conjugate
of gj forry +1 < j < 7 + ro. Denoting by $(z) and S(z),
the real and imaginary part of the complex number z, respec-

in R™ whose volumeis
v(o(M)) =1t-27"|Ak|"?, (1)

where A i is the discriminant of K. Lattice o(M) is the geo-
metrical representation of M. Given x € M, we can compute
distancesin o (M) C R™ by

lo(2)* = exTrgjq(a7), e

where cx = 1if K istotaly rea, cxk = 1/2 if K is totally
complex, and T is the complex conjugate of x. The parameter
p = tmin{|o(z)| ; € M, = # 0} isthe packing radius of
o(M).
Anideal a # {0} of Ok is asubmodule of Ok of index
N(a) = card(Og/a), the norm of a. Thus, the center density
of o(a) isgiven by
2r2pn
50 @) = XN ®

I11. THE QUADRATIC FORM

For each positive integer n, let @,, be the the quadratic form
given by

Qn(X1,.., Xp) =D X2+ > (X - X))~
i=1

1<i<j<n

@, isthe quadratic form associated to (¢, ) wherep isaprime.
This can be seen asfollows: Givenan element x = ag + a1(, +
-+ a, 2(P? € L[], we can write

p—2
T = Ag + Z Ay,
i=1
where a; = ¢+ ¢% i = 1,...,p — 2, and4; =
P27 giai15, § = 0,...,p — 2. The minimal polyno-
mial of ¢, over Q is XP~' + XP=2 + ... + X + 1. Hence,



Tro(c,)/0(G) = —1andfori > 0, Trg,) () = —2.
Therefore,

p—2

Tra(,)/(e) = Trg(,)/o(do + Y Aiai) =
i=1

p—2

p—2
(p—1)A0 + Z AiTrg(c,) /o) = (p— 1) Ao — 2 Z A =
i=1

i=1

- a;)".

>, (@

p—2

Z a? +
i=0 0<i<j<p—2
By identifying the element x with the corresponding (p — 1)-
tuplez = (ao, ..., ap_2), Weget

Tro(¢,) /(%) = Qp-1(2).

Let K C L be number fieldswith¢ = [L : K] and ok
and o1, the canonical homomorphismsof K and L, respectively.
Further, let z € K and cx and ¢, be quantities taking valuesin
the set {1/2, 1}, asthe field under question is real or complex.
Then

lor(2)]> = erTrp jo(aT) = tep Tri g (aT),
which implies
o (@) = 2= | ou(a) |
ter,

Let K be a subfield of Q(¢,) of index ¢ and H, the group
of the K -automorphisms of Q(¢,). Then K = Q(«), where
o = ZO’GH U(Cp)'

If weletu = (p — 1)/t, then from the symmetry of @ it
follows that

C
0w (2)[? = ex Trig o (2F) = TKTrL Jo(2T) =

CK

TQP—171(GO7"‘ ,au,...,au),

,ag, - - -

where each a; appears repeated ¢ times. Hence,

Z (a;

0<i<j<u—1

lok ()] = ck(ag+ - +ap  +t- —a;)’) =

Qu,t(ao, e ,aufl)-

Let K; CQ(G), K2 CQ(¢), u=[K1:Q,v=[K2:Q],
t1 =(p—1)/u,andts = (¢ — 1)/v. Further, let {a,...,a,}
and {f1,...,0,} beintegral bases for Ok, and Ok, respec-
tively, and

v u v
Tr = ZZaija,ﬂj = Zl‘jﬂj € KlKQ,
j=1i=1 j=1

wherez; = "1 | a;;a;. Then the quadratic form associated to
K, K5 can be written as:

Tri, k. /0(TT) = Qut2(Qu,t1 (1), Qut1 (T2), -+ -, Qu,t1 (T4))-

IV. DECOMPOSITION IN @(Cpq)

Let L = Q(¢pq) and q beaprimeidea of Oy, above¢Z. As
we saw in Section 111, its decomposition group depends only on
g. Inthisway, given a subfield K of L, we denote the decom-
position group of aprimeideal of Oy, over q by Dk (q).

When complex conjugation does not belong to the decompo-
sition group Dy, (q), there exists an ideal J of O, such that the
factorization of O, inideas have the form

qOr = (jj)q_l.

Such property has consequences which will be described
shortly. However, first we need the following two results:

Theorem 1: If 4 isthe complex conjugation, then 8 € D, (q)
if andonly if 6 € Dk (q).

Proof: Let o € Dk (q) be defined by o5((,) = (. For each
0s € Dk (q), thereare ¢ — 1 extensions o ; of Dr,(¢). Each
0s,; 1S defined by its value in (,, . Let » and v be such that
1 = pu + qv. Hence,

05,i(Cpq) = 05,i(Gpy ™) = 054(Gy) - 05,i(Gg) =

Us,i(C;) . Us,i(C;,]) — C;“ . C;v — ngi+qsv-
Then § € Dyr(q) if and only if there exist ¢ and s such that
pui + gsv = —1 (mod pq), which is equivalent to

(mod p)

put + gsv = —1
(mod q).

pui + qsv = —1

The second condition always holds true since i can assume
any nonzero value modulo ¢q. The first one is equivalent to
0 € Dk (p), which concludes the proof. O

Corollary1: 6 € Dr(q) if and only if Ord,(¢) = 0
(mod 2), where Ord,,,(n) is the order of n modulo m, when
(m,n) =1.

Proof: Recall that card(Dx (q)) = Ordy(q). Thenif § €
Dk (q).

2 | card(Dk (q)) = Ord,(q).

For the converse, suppose Ord,(¢) = 0 (mod 2). Since Dk (q)
is cyclic of an even order, it follows that {—1, 1} is the only
subgroup of order 2 of these groups. O

When p and ¢ satisfy the condition Ord,(¢) = Ord,(p) =1
(mod 2), the following decompositionsin primeideas

pOL = (p1...pPr..pr)" " and

qOr = (q1 ... qs01 - G5) " 4
holdtruein Z[(,,]. Wewill be particularly interested in the ideal

j:pl---prql---qs- (5)
V. ALGEBRAIC CONSTRUCTIONS
A. Construction A - Dimension 24

Here we present a technique to obtain lattice A»4 which is
simpler than the one presented in [5]. In Z[(39], there are four
primeideals above 3 and two prime ideals above 13, and there-
fore the decompositionsin primeideals are

3Z[(s0] = (p1p2P1P2)” and 13Z[(30] = (q)°.



Proposition 1: Considering the decompositionabove, let 7 =
p1p2q beanideal in Z[{39]. Then

Tr(@(ggg)/@(wf) >4x39, Ve € 7.

Proof: Let z € J and zg,z1 € Z[(13] be such that z =
zo + z1¢3. We know that for Vo € J, Tro(c,y)/0(2T) is even
and amultiple of 39. Thevalue 2 x 39 isnot attained. This can
be seen asfollows:

Tr(¢s)/0(2T) = Tr(cis) /0(20T0)+

Tro(cis)/0(2171) + Trg(es)/0((20 — 21) (zo — 21)).
To attain the value 2 x 39, the only possibilities are, up to order,

Tr@(glg)/(Q(wa_O) =12, TrQ(CIS)/Q(xlw_l) =30 and

Tro(¢.s)/0((To — 21) (20 — 1)) = 36.

The possible values for 7o are £({3, io = 0,...,12, and for
1 they are £(¢f + (3 C{%), where the i, are distinct. Let
o = —(1% andxl = C + (13 + (7% If wesuppose ig # i,
k = 1,2, 3, then Tr@(ﬁg)/@((xo — 1'1)(1'0 — 1'1)) = 36. If
z € 7, then

Tro(can) /Q(¢1s) (TF) =
3(1‘01'_0 + 1'11‘_1) — (l‘o + 1‘1)(1‘0 + 1'1) S 3Z[C13],

and therefore,

(xo +1)(xo +21) =0 (mod Z[(13]).

Let v : Z[¢13] — Z be the ring homomorphism defined by
Y(Citoaills) = Yilgai Since (zo + z1)(wo +11) €
3Z[Ci3], then y((zo + 1) (20 + 1)) = 0 (mod 3). Rewrit-
ing, we get
(xo +x1)(x0 + 1) =
(=% + Cis + ¢ + CI3) (=G + G + (3™ + Gi3°) =
4—A+B=0 (mod 3Z[C13]),
where

3

Z(Go zs_'_Czsfm and B = Z zrfzs_

s=1 r,s=1

Let n 4 (respectively, ng) the number of exponents such that
ig —is = —loriz —ip = —1 (respectively, i, — iy = —1). The
possible values for n 4 are 0 and 1 since the ¢; are distinct. On
the other hand, n g can assume thevalues0, 1, or 2.

Note that v((r3') = 7(=1— Gi3 — -~ = (l3) = =12 =0
(mod 3). Hence,

v(4) =6 —n4gandvy(B) =6 —npg,
which implies
Y((@o + z1)(wo + 71)) =

4—(6—-—na)+(6—ng)=1l4+ng—np=0 (mod 3).

Therefore, the only possible solutions are (n4,ng) = (0,1)
and (na,ng) = (1,2). Supposens = 0 andng = 1. By

hypothesis, given that 0 < a < 11, the coefficient of ({5 isa
multiple of 3. We have

P=iv X
r,s=1

ip—isF#—1

If there are » and s such that i, — i, = a, then the coeffi-
cient of ({, in the equation above will vanish, since (3" =
—1—C(i3—---— (14 Inthisway, ¢{, will also appear with azero
coefficient in the expansion of A in the Z-basis {1,...,({1}.
If there are no r and s such that i, — i, = a, ({5 will
again appear with a zero coefficient in the decomposition of
(zo + z1)(zo + z1). Therefore, the only possibility isa = 0
and (.CL‘O + l‘l)({L'O + l‘l) = 3. Then,

Tr@((w)/@((m)(wf) = 3(55055_0 + 37135_1) - (.To + 561)(560 + .7;1),

and in this case, Trg(c,,)/0(zZ) = 90, which contradicts the
hypothesison z. Thecaseny = 1 and np = 2 is handled
similarly. O

B. Construction B - Dimension 12

Using computational methods, K1, was obtained in [3] via
the geometrical representation of aprimeideal in O i above 7,
where K = Q({21). Here, instead, we give a formal proof,
based on amore general result:

Theorem2: Let p and ¢ be primes such that Ord,(¢) = 1
(mod 2) and ¢ > 2p — 3. Furthermore, suppose

qZ[Cpq) = (Nj)
is the decomposition of ¢ in Q[(,,]. Then,

Trr/o(xZ) > (p—1)-2q, Vx € 7.
Proof Let zo,...,zp—2 € Z[(] be such that z =
S PS¢l € 3. After doing alittle algebra,

ZQp 1 wz +ZQ1) 1

i<j

TI'K/Q CU.T

If 29 = -+ = xp_a, thenz = zo(1 + (, +
thereforexz, € 3N Z[¢,] . Hence,

+ ¢2~?), and

Tro(c,)/0(xiTi) 2 2¢, i =0,...,p—2,

which implies that

ZQI) 1 370

Trg q(2T) —1)2q.
O
If there are at least two distinct values for the = ;, and since
Qp 1(z;) > p — 1, the number of nonzero z; — z; is at least
—2,and s0

z(-2)p-1).



Hence,
Trr/o(2®) > (2p—3)(¢ — 1).
Beingthat ¢ > 2p — 3,

Trg/q(2Z) > (p — 2)2q.

Since the quadratic form is even and a multiple of ¢,
Trg/o(zT) > (p — 1)2¢. The norm of J is equal to ¢™/2.
m|

Ad hoc calculations show that the center density of o(J) is

- ((p—1)-2q)mm/2 _
6(0(3) > pr2(ni—1)/2  gni(na—1)/2gn1/2 . gnina —

(%)n1n2/2
Pl ©
In particular, for p = 3, the smallest prime satisfying the condi-
tionsq > 2p—3and Ord,(q) =1 (mod 2) isq = 7. For these
primes, we have a lattice o(J) in dimension 12 whose center

density isd = 3% which is exactly the center density of Kqs.

C. Construction C - Dimension 8

Lemma 1. Let L beanumber field and K asubfield of L such
that [L : K] = h isodd. Futhermore, let ¢ be a prime number
and suppose the decomposition of ¢O 1, in Oy, has theform

0L = q1 ... 45201 - - - As/2,

for some s € N. Then the decomposition of ¢O g in prime
idealsis
Ok =41 ... qe/291 - - - qe/2,

for somet € N.

Proof: Let us consider aprimeideal q in O dividing ¢Ok.
Let qOr, = by ...b, wheret divides h, that is, ¢ is odd. On the
other hand, supposeq = q. Thenby...b; = by ... by, andfor
eachidea b;,i = 1,...,t, thereexists j # i suchthat b; = b;.
This meansthat the ideals above q appear in pairs, contradicting
the hypothesis on the parity of . Hence, g # q, and therefore
the stated result holds. a.

Let p and ¢ be primes satisfying the conditions Ord,(q) =
Ordy(p) =1 (mod 2), and Ky C Q(¢p) and K> C Q(¢,) be
such that h, = [Q(¢p) : K1] and h, = [Q((,) : K] are odd.
Further, let ny = [K1 : Q] and Nog = [K2 : @]

) Q(Cpq)
Q(¢p) | Q(¢q)
| K1 K> |
/ \
K1 K2
\ /
Q

Thefield K = K K> hasdegreenin.. Since Ky and K> are
linearly digoint fields, that is, they have coprime discriminants

and satisfy K1 N Ky = Q, then the discriminant of K is given
by

2(n1—1) ni(n2—1)

q" :

In K, let r, and r, be the number of primes above p and ¢,
respectively. Since h, and h, are odd, the following decompo-
sitions hold true:

Ag =p"

pPOx = (P1---Pr, /2 P1---Pr,/2)" and

qOr = (q1 -+ Qry2*q1 -y 2)""
LetT =pi...p,, /2 d1---qr,/2- ItSNOrMIisS

N(3) = (phv)e/?(ghe)ra/? = pra/2qm /2,

andforxz € 7,

_ 1 _
TI‘K/Q(I'{L') = h h TI‘Q(CPQ)/@(I'I').
p'hq
Since h,, and h, are odd and the quadratic formisevenin Z[( ],
Trg/q(2T) > 2pq. Theexpression for the center density isthen

(2pg)™ /2 1
pnz(nlfl)/Z . qnl(n271)/2pn2/2qn1/2 . 9Qninz = 2n1n2/2 .
(7

For nins = 4, § = 1/4, which is exactly the center density
of D4. Analogously, for nins = 8, the center density will be
d = 1/8, the center density of Es.

By the same method, to obtain a lattice with the same center
density as Fyg's, we need to take suitable p, ¢, n1 and ny. We
see that, in principle, there are infinitely many possibilities of
construction.

Below is alist of the pairs (p, q) in the interval p < 50 and
q < 350, for which we constructed lattice Eg from a subfield of

Q(¢pg):

5=

((oXe))
(11,157
(19,149)
(23,29)
(23,269)
(31,149)
(43,229)

(p.9)
(7,109)
(19,101)
(19,227)
(23,197
(31,101)
(43,181)

((Xe))
(7,37)
(11,317)
(19,157)
(23,173
(23,317)
(31,317)
(43317) | (47,53) | (47,61)
(47,157) | (47,173) | (47,269)

Example 1: In particular, the conditions abovefor nn, = 8
are satisfied in the following cases:
|) p=3,q=13, K, = Q(Cg), and K5 the subfield of Q(<13)
of degree4;
i)yp=17q =29 K, = Q4/—7) the quadratic extension
contained in Q(¢7), and K, the subfield of Q((29 ) Of degree4.
In both cases, the field K = K K> has degree 8 and satisfies
the conditions above.

Example2: Letp = 5, ¢ = 31, K1 = Q((), and K, the
subfield of Q((31) of degree6. If every x € TN K1 K> satisfies

Trg, k,/0(xT) > 4pq,

then we have arotated version of Ao4. Another possibility isto
set K> as the quadratic extension contained in Q({s1). Again,
thisisthe same asin Example 1.
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