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Abstract— The aim of this paper is to establish some of the structural
properties which are common to the classes of binary translation-invariant
propelinear codes and binaryG-linear codes. In general, the codes in these
classes are nonlinear codes, however they are part of the same symmetry
group decompositionΓ

�Zn
2

�
of Zn

2 . We show that binary G-linear codes
can be seen as translation-invariant propelinear codes. Finally, we establish
a result which allows to identify when a code is aG-linear code.

I. I NTRODUCTION

IN [1], Rifa, Basart and Hughet introduced the basic concepts
of binary propelinear codes. In [2], Rifa and Pujol improved

the previous work both by characterizing the class of translation-
invariant binary propelinear codes of blocklengthn and by clas-
sifying them as a subgroup ofZk1

2 ⊕ Zk2
4 ⊕ Qk3

8 , of the type
(k1, k2, k3), wherek1 + 2k2 + 4k3 = n. These codes can also
be obtained by the action of a subgroup of the semidirect prod-
uct ofZn

2 by the symmetric groupSn of degreen, denoted by
Zn

2oSn, over the signal setZn
2 such that the Hamming distance

is invariant by this action.
From theZ4-linearity [3], it was shown the interplay between

certain classes of known binary nonlinear block codes with cer-
tain classes of linear codes overZ4. In [4], it was established the
class ofG-linear codes, whereG is a group. These codes can
be seen as a set of signals which are effectively matched to the
groupG, [4] and [5]. Since the action of a group on a set can
be interpreted as a slight generalization of the symmetry group
of the corresponding signal set, it follows that the search forG-
linear codes is such that one has to findG as a subgroup of the
symmetry groupΓ (Zn

2 ) of Zn
2 which acts sharply transitively

onZn
2 , that is, such codes belong to the class of geometrically

uniform codes, GU, [8]. On the other hand, the computational
complexity associated to the search ofG-linear codes increases
as2nn!. Although the theoretical computational complexity in
searching for propelinear codes is bounded by2nn! some of
its structural properties reduce considerably the computational
complexity. Furthermore, it is worthwhile going forward in this
direction since the GU codes have Voronoi regions which are
congruents simplifying considerably the performance analysis
of such codes. For further simplification we make use of the al-
gebraic properties of the translation-invariant propelinear codes.
We show that it is possible to classifyG-linear codes by use
of the translation-invariant propelinear codes, for further details
see [6] and [7]. Finally, we establish the condition under which
a code can be classified as aG-linear code.
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This paper aims at establishing some of the structural prop-
erties which are common to the classes of binary translation-
invariant propelinear codes and binaryG-linear codes; by show-
ing that binary G-linear codes can be seen as translation-
invariant propelinear codes; and by identifying when a code is a
G-linear code.

II. PROPELINEAR AND G-LINEAR CODES

In this section the translation-invariant propelinear codes and
theG-linear codes are defined. We describe some of their prop-
erties by emphasizing their algebraic structure. Some examples
of these codes will be presented.

Definition II.1: Let (Zn
2 , dH) be then-dimensional Ham-

ming space, andSn the symmetric group of degreen. We
say that a subsetC ⊆ Zn

2 , with 0 ∈ C is a propelinear
codewith blocklengthn, if there exists a functionπ : C →
Sn, defined asπ (v) = πv, such that its graphΩ(π) =
{(v , πv) for everyv ∈ C} is a subgroup ofZn

2oSn.
Definition II.2: Let G be a group,dG a metric inG andC

a binary code of blocklengthn in (Zn
2 , dH). We say thatC

is G-linear, if C = φ(Ĉ), for some subgroup̂C of G, where
φ : Gn → Zkn

2 , for k ≥ 2, is an isometry.
Definition II.3: Let G be a group that acts on a nonempty set

S. The orbit ofx ∈ S, underG, is a subset ofS given by

OrbG (x) = {g(x) : g ∈ G } .

We say that the groupG acts transitively onS, if for all a, b ∈ S
there existsg ∈ G such thatg (a) = b. We say thatG acts
sharply transitively onS, if there exists a uniqueg ∈ G for each
a, b ∈ S. In this case, both sets have equal cardinalities, that is,
|G| = |S|.

Under these conditions, we observe that codeC is propelin-
ear, since there is a natural identification ofC with a subgroup
(Ω (π) , ∗) of Zn

2oSn. This identification implies a sharply tran-
sitively action of(Ω (π) , ∗) onC defined by the function

f : (Ω (π) , ∗)× C → C

such that

f ((v, πv) , x) = (v, πv) ∗ x = v + πv (x) = v ∗ x,

for every(v, πv) ∈ (Ω (π) , ∗), andx ∈ C.
Therefore, for everyx ∈ C we haveOrbΩ(π) (x) = C. When

a codeC is G-linear it follows, by definition and by [5], that the
alphabetZk

2 is effectively matched to the groupG, that is,G is
isomorphic to a subgroup of the symmetry groupΓ (Zn

2 ) of Zn
2

that acts sharply transitively onZk
2 .
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Example II.1: Considerπ : Zn
2 → Sn, such that(Ω (π) , ∗)

is a subgroup ofZn
2oSn, this implies a propelinear code given

by
1. Forn = 2

v 00 11 01 10
πv id id (12) (12)

Note that(Ω (π) , ∗) is a subgroup ofZ2
2oS2

∼= D4, where
D4 denotes the dihedral group with 8 elements, generated by
(v, πv) = ((01) , (12)), that is,(Ω (π) , ∗) = 〈01, (12)〉 ∼= Z4.
SinceZ4 acts sharply transitively onZ2

2, it follows that this pro-
pelinear code is also aZ4-linear code.
2. Forn = 3

v 000 011 100 111 001 010 101 110
πv id id id id (23) (23) (23) (23)

Note that(Ω (π) , ∗) = 〈(100, id), (110, (23))〉, is isomorphic
to the direct productZ2 × Z4. Furthermore,(Ω (π) , ∗) acts
sharply transitively onZ3

2. Therefore, this propelinear code is
also aZ2 × Z4-linear code.
3. Forn = 3

v 000 011 101 110 001 010 100 111
πv id id id id (23) (23) (23) (23)

Note that(Ω (π) , ∗) = 〈(110, id), (100, (23))〉 ∼= D4. This
propelinear code is also aD4-linear code.

Definition II.4: [2] A propelinear codeC is translation-
invariant, if

dH (u, v) = dH (u ∗ x, v ∗ x) ,

for everyu, v ∈ C and for everyx ∈ Zn
2 .

Definition II.5: Let G be a group that acts on a nonempty set
X. Thestabilizerof x ∈ X is a subgroup ofG given by

StabG (x) = {g ∈ G : g (x) = x} .
Lemma II.1: [2] A propelinear codeC is translation-

invariant, if and only if,

wH (v) = dH (x, v ∗ x) ,

for everyv ∈ C, and for everyx ∈ Zn
2 .

Corollary II.1: If C is a translation-invariant propelinear
code then the stabilizer

StabC (x) = {(0 ,id)} .
Proof: By the natural identification ofC with (Ω (π) , ∗)

we have

StabΩ(π) (x) = {(v, πv) ∈ (Ω (π) , ∗) : (v, πv) (x) = v ∗ x = x}

SinceC is translation-invariant, it follows that

v ∗ x = x ⇒ 0 = dH (x, v ∗ x) = wH (v) ⇒ v = 0,

∀x ∈ Zn
2 , that is, (v, πv) = (0, id) .

Corollary II.2: [2] If C is a translation-invariant propelinear
code, then|C| = 2k, for k ≤ n.

Proof: By consideringg ∈ (Ω (π) , ∗) , we know that there
always exists a bijectionz : OrbG (x) → G/StabG (x), de-
fined byz (gx) = gStabG (x), for everyx ∈ Zn

2 . Since the
order of a subgroup divides the order of the group, it follows
that

|G| = |StabG (x)| [G : StabG (x) ]
= |StabG (x)| |OrbG (x)|
= |OrbG (x)| , ∀x ∈ Zn

2

that is, every coset has the same cardinality. Hence,|G| divides
Zn

2 . Therefore,|C| = 2k, for some k ≤ n
Theorem II.1:Let C be a translation-invariant propelinear

code of blocklengthn, with cardinality|C| = 2k, for k ≤ n,
thenC is aG-linear code.

Proof: AsC is a translation-invariant propelinear code this
implies that we can identifyC with a subgroupG = (Ω (π) , ∗)
of Zn

2oSn, it follows that we have a sharply transitively action
of G onC, that is,|G| = |C| = 2k, for some k ≤ n.

Theorem II.2:Let G be a group,dG a metric in G, and
C a binary code with blocklengthn in (Zn

2 , dH). Code
C is G-linear, if and only if the stabilizerStabG (x) =
{idG} , for every x ∈ Zn

2 .
Proof: Let C be aG-linear code, this is equivalent to

saying thatG is isomorphic to a subgroup ofΓ (Zn
2 ) such that

OrbG (x) = Zn
2 , and|G| = |Zn

2 | , for every x ∈ Zn
2 , n ≥

2. Equivalently, by|G| = |StabG (x)| |OrbG (x)| , we have
|StabG (x)| = 1, that is,StabG (x) = idG, the identity of G.

Example II.2: From Example II.1, both codesZ4-linear and
Z2 × Z4-linear are translation-invariant whereas the codeD4-
linear is not.

Example II.3: Consider the mappingπ : Zn
2 → Sn, such that

(Ω (π) , ∗) is a subgroup ofZn
2oSn. This implies a propelinear

code given by
1. Forn = 3

v 000 011 101 110 000 011 101 110
πv id id id id (12) (12) (12) (12)

We have(Ω (π) , ∗) ∼= D4 is a propelinear code, however it is
neither translation-invariant, since forx = 011 and(v, πv) =
(110, (12)) Lemma II.1 is not satisfied, nor aD4-linear code,
sinceStabD4 (100) = {(000 ,id) , (110, (12))} 6= {(0 ,id)}.
2. Forn = 4

v 0000 0001 0010 0011
πv id id id id
v 1100 1101 1110 1111
πv id id id id
v 0100 0101 0110 0111
πv (12) (12) (12) (12)
v 1000 1001 1010 1011
πv (12) (12) (12) (12)

In this case(Ω (π) , ∗) ∼= Z2
2×Z4. Therefore, the corresponding

code is translation-invariant propelinear code and also aZ2
2×Z4-

linear code.
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3. Forn = 4

v 0000 1111 0111 1000
πv id id (24) (24)
v 0110 1001 0010 1101
πv (12)(34) (12)(34) (12)(34) (12)(34)
v 0001 1110 0011 1100
πv (13) (13) (13)(24) (13)(24)
v 0100 1011 0101 1010
πv (14)(32) (14)(32) (14)(23) (14)(23)

In this case we have aQD8-linear code, that is,(Ω (π) , ∗) is
isomorphic to thequasidihedral group of order 16, denoted by
QD8. We say that this code is a propelinear code, however it
is not translation-invariant. Since forx = 0001 and(v, πv) =
(1110, (13)), Lemma II.1 is not satisfied.

4. Forn = 4

v 0000 1111 0100 1011
πv id id (34) (34)
v 0001 1110 0110 1001
πv (12) (12) (12)(34) (12)(34)
v 0000 1111 0001 1110
πv (13)(24) (13)(24) (13)(24) (13)(24)
v 0100 1011 0110 1001
πv (14)(23) (14)(23) (14)(23) (14)(23)

We have a propelinear code, with(Ω (π) , ∗) ∼= D8. How-
ever, this code is neither a translation-invariant propelinear code,
since forx = 0001 and(v, πv) = (1111, (13)(24)) Lemma II.1
is not satisfied, nor aD8-linear code, since

StabD8 (1000) = {(000 ,id) , (1001, (14) (23))} 6= {(0 ,id)} .

5. Forn = 5

v 00000 00001 00010 00011
πv id id id id
v 00100 00101 00110 00111
πv id id id id
v 11000 11001 11010 11011
πv id id id id
v 11100 11101 11110 11111
πv id id id id
v 01000 01001 01010 01011
πv (12) (12) (12) (12)
v 01100 01101 01110 01111
πv (12) (12) (12) (12)
v 10000 10001 10010 10011
πv (12) (12) (12) (12)
v 10100 10101 10110 10111
πv (12) (12) (12) (12)

We have a translation-invariant propelinear code, where
(Ω (π) , ∗) ∼= Z3

2 × Z4. Consequently, aZ3
2 × Z4-linear code.

6. Forn = 5

v 00000 00011 00100 00111
πv id id id id
v 11000 11011 11100 11111
πv id id id id
v 00001 00010 00101 00110
πv (34) (34) (34) (34)
v 11001 11010 11101 11110
πv (34) (34) (34) (34)
v 01000 01011 01100 01111
πv (12) (12) (12) (12)
v 10000 10011 10100 10111
πv (12) (12) (12) (12)
v 01001 01010 01101 01110
πv (12)(34) (12)(34) (12)(34) (12)(34)
v 10001 10010 10101 10110
πv (12)(34) (12)(34) (12)(34) (12)(34)

We have(Ω (π) , ∗) ∼= Z2 × Z2
4, which implies aZ2 × Z2

4-
linear code. This code is not a translation-invariant propelinear
code since forx = 01010 and (v, πv) = (01110, (12)(34))
Lemma II.1 is not satisfied. Observe thatStabΩ(π) (x) =
(0, id) , ∀x ∈ Zn

2 , therefore implying the assertion that it is
aZ2 × Z2

4-linear code.

III. C ONCLUSIONS

In this paper, we have established a procedure of classifying
someG-linear codes from the translation-invariant propelinear
codes. This classification includes such codes as the class of ad-
ditive translation-invariant propelinear codes, that is, subgroups
of Zk1

2 ⊕ Zk2
4 , wherek1 + 2k2 = n. We saw that the alge-

braic structure associated with these group codes is the semidi-
rect product of groups. By using this structure, we exhibited an
important result that allowed to establish when a code is aG-
linear code. Finally, some examples relating these two classes
of codes were presented.

REFERENCES
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