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Abstract—The aim of this paper is to establish some of the structural ~ This paper aims at establishing some of the structural prop-
properties which are common to the classes of binary translation-invariant arties which are common to the classes of binary translation-
propelinear codes and binaryG-linear codes. In general, the codes in these . . . . . ; _
classes are nonlinear codes, however they are part of the same symmetry!m/an"ilnt pr'opellnee.lr codes and bindrinear codes; by ShOV\{
group decompositionI” (Z%) of ZZ. We show that binary G-linear codes INg that binary G-linear codes can be seen as translation-

can be seen as translation-invariant propelinear codes. Finally, we establish jnvariant propelinear codes; and by identifying when acode is a
a result which allows to identify when a code is aG-linear code. G-linear code

I. INTRODUCTION Il. PROPELINEAR AND G-LINEAR CODES

N [1], Rifa, Basart and Hughet introduced the basic conceptsIn this section the translation-invariant propelinear codes and

Iof binary propelinear codes. In [2], Rifa and Pujol improvethe G-linear codes are defined. We describe some of their prop-
the previous work both by characterizing the class of translatic#ities by emphasizing their algebraic structure. Some examples
invariant binary propelinear codes of blocklengthnd by clas- ©f these codes will be presented.
sifying them as a subgroup (ﬁgl &) Zi@ o) Ql§3, of the type Definition I.1: Let (Z3, dy) be then-dimensional Ham-
(1, ka2, k3), wherek; + 2k, + 4ks = n. These codes can alsoming space, and,, the symmetric group of degree. We
be obtained by the action of a subgroup of the semidirect préi®y that a subset’ C Z7, with 0 € C is a propelinear
uct of Z2 by the symmetric grouf,, of degreen, denoted by codewith blocklengthn, if there exists a functionr : C' —
73 %S, over the signal st} such that the Hamming distanceS», defined asr (v) = m,, such that its grapif2(r) =
is invariant by this action. {(v,m,) for everyv € C} is a subgroup oZ% xS,,.

From theZ,-linearity [3], it was shown the interplay between Definition I1.2: Let G be a groupdg a metric inG andC
certain classes of known binary nonlinear block codes with cé-binary code of blocklength in (Z3, dy). We say thatC
tain classes of linear codes ov&y. In [4], it was established the is G-linear, if C' = ¢(C), for some subgroug’ of G, where
class ofG-linear codes, wheré is a group. These codes canp : G" — Z5", for k > 2, is an isometry.
be seen as a set of signals which are effectively matched to th®efinition 11.3: Let G be a group that acts on a nonempty set
groupG, [4] and [5]. Since the action of a group on a set cafl. The orbit ofx € S, underG, is a subset of given by
be interpreted as a slight generalization of the symmetry group
of the corresponding signal set, it follows that the searctGfor Orbg (z) ={g9(z) g€ G}.
linear codes is such that one has to fisdis a subgroup of the - .
symmetry group” (Z3) of Z3 which acts sharply transitively We say t_hat the grou@ acts transitively org, if for all a,b € S
on Zy, that is, such codes belong to the class of geometricaﬂﬂfre eX|sth._e G SUCh. thatg (a) - b. We say thai acts
uniform codes, GU, [8]. On the other hand, the computation%ll arply transmvely orf, if there exists a unique E.G f_o_r each .
complexity associated to the searchifinear codes increases® b € S. In this case, both sets have equal cardinalities, that is,
as2™n!. Although the theoretical computational complexity iAG| = |5].

; ; ; Under these conditions, we observe that c6tlis propelin-
searching for propelinear codes is bounded2by! some of since there is a natural identification(ofvith a gubp rou
its structural properties reduce considerably the computatiofgf (’ﬂ) ) of 22 S, This identification implies asharpglly trapn-

9 2 ne

complexity. Furthermore, it is worthwhile going forward in this . ; ) .
direction since the GU codes have Voronoi regions which a§glvely action of(§2 () , +) on C' defined by the function

congruents simplifying considerably the performance analysis

of such codes. For further simplification we make use of the al-
gebraic properties of the translation-invariant propelinear codggch that
We show that it is possible to classify-linear codes by use

of the translation-invariant propelinear codes, for further details  r ((y, 7)), 2) = (v, 7m,) %2 = v+ 7, (z) = v * x,

see [6] and [7]. Finally, we establish the condition under which

a code can be classified as-dinear code. for every(v, m,) € (2 (m), ), andz € C.

_ L o - Therefore, for every € C' we haveOrbg ) () = C. When
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Example 11.1: Considerr : Z% — S, such thatQ (r) , *)

is a subgroup oZ% xS,,, this implies a propelinear code givencode, theriC| = 2*,

by
1. Forn =2

00
id

11
id

01
(12)

10
(12)

v
Ty

Note that(Q (7),*) is a subgroup ofZ3xS, =2 Dy, where

D, denotes the dihedral group with 8 elements, generated by

(v,m) = ((01) ,(12)), that is,(Q (7) ,*) = (01, (12)) = Z4.
SinceZ, acts sharply transitively of3, it follows that this pro-
pelinear code is alsoA,-linear code.

2. Forn=3

000
id

011
id

100
id

111
id

001
(23)

010
(23)

101
(23)

110
(23)

v
T

Note that(2 (7) , *) = ((100,id), (110, (23))), is isomorphic
to the direct producZ, x Z4. Furthermore, (2 (7),«) acts

Corollary I1.2: [2] If C is a translation-invariant propelinear
fork <n.

Proof: By consideringy € (2 (7) , %) , we know that there
always exists a bijectiop : Orbg (z) — G/Stabg (z), de-
fined by F (gx) = gStabg (x), for everyz € Z%. Since the
order of a subgroup divides the order of the group, it follows
that

|G| = |Stabg (z)] [G: Stabg (x)]
= |Stabg (z)| |Orbg (x)
= |Orbg (v)|, VzeZjy

that is, every coset has the same cardinality. Helt¢edivides
73. Therefore|C| = 2F, for some k < n [ ]
Theorem Il.1:Let C' be a translation-invariant propelinear
code of blocklengtm, with cardinality|C| = 2%, for k < n,
thenC'is aG-linear code.
Proof: AsC'is a translation-invariant propelinear code this
implies that we can identif¢’ with a subgroups = (Q (7) , *)

sharply transitively orZZ3. Therefore, this propelinear code iCf Z5 *Sn, it follows that we have a sharply transitively action

also aZ4y x Z4-linear code.
3. Forn=3

000
id

011
id

101
id

110
id

001
(23)

010
(23)

100
(23)

111
(23)

[

Ty

Note that(Q (7),*) = ((110,:d), (100, (23))) = Dj.
propelinear code is alsoly-linear code.

Definition I1.4: [2] A propelinear codeC is translation-
invariant, if

This

dp (u,v) =dp (uxx,v*x),

for everyu,v € C and for everyr € Z.

Definition I1.5: Let G be a group that acts on a nonempty set

X. Thestabilizerof € X is a subgroup of7 given by

Stabg () ={9€ G :g(x) =x}.
Lemmall.1:[2] A propelinear codeC is translation-
invariant, if and only if,

wy (v) =dy (z,v*x),

for everyv € C, and for everyr € Z7.

of G onC, thatis,|G| = |C| = 2%, for some k < n. [ ]

Theorem I1.2:Let G be a group,ds a metric inG, and
C' a binary code with blocklengtn in (Z%, dy). Code
C is G-linear, if and only if the stabilizerStabg ()
{id¢}, foreveryxcZ}.

Proof: Let C be aG-linear code, this is equivalent to
saying that’ is isomorphic to a subgroup @f(Z%) such that
Orbg (x) = 7%, and|G| = |Z3|, forevery =z € Z%, n >
2. Equivalently, by|G| = |Stabg (x)| |Orbe (z)|, we have
|Stabg (x)| = 1, that is,Stabg () = idg, the identity of G.

|

Example I1.2: From Example II.1, both codég,-linear and
Zo x Zg-linear are translation-invariant whereas the ctige
linear is not.
Example I1.3: Consider the mapping : Z5 — S,,, such that
(Q (), =) is a subgroup o¥.4 xS,,. This implies a propelinear
code given by
1. Forn=3

000
id

011
id

101
id

110
id

000
(12)

011
(12)

101
(12)

110
(12)

v

Ty

We have(Q2 (7),*) = D, is a propelinear code, however it is
neither translation-invariant, since fer= 011 and (v, 7,) =

Corollary I1.1: If C is a translation-invariant propelinear(1107(12)) Lemma II.1 is not satisfied, nor B,-linear code,

code then the stabilizer

Stabe (x) = {(0,id)} .
Proof: By the natural identification of’ with (€2 (7) , *)
we have
Stabox) (x) = {(v,m) € (2 (), *)

s(v,my) () =vxx =x}
Since( is translation-invariant, it follows that

vir=x=0=dy (zv,v*x2) =wy (v) = v =0,

Vo € Zy,thatis (v, m,) = (0,id) .

sinceStabp, (100) = {(000,id), (110, (12))} # {(0,id)}.
2. Forn=14

v [ 0000 | 0001 0010 0011
T, | id | id | 4d | id

v [ 1100 1101 1110 1111
T, | id | id | 4id | id

v [ 0100 | 0101 0110 0111
m | (12) | (12) | (12) | (12)
v [ 1000 | 1001 1010 1011
m | (12) | (12) | (12) | (12)

In this cas€() () , ) = Z3 x Z,. Therefore, the corresponding
code is translation-invariant propelinear code and al&®»aZ,-
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3. Forn =4 6. Forn=>5
v 0000 1111 0111 1000 Y OO.OOO 00.011 00.100 00.111
o id id eh | @ T, | i id id id
v 0110 1001 0010 1101 ; 112.200 112.211 112.200 112_211
™ | (12)(34) | (12)(34) | (12)(34) | (12)(34) » | 00001 | 00010 | 00101 | 00110
v 0001 1110 0011 1100
o (34) (34) (34) (34)
Ty (13) (13) (13)(24) | (13)(24)
v 11001 | 11010 | 11101 | 11110
v 0100 1011 0101 1010 p- @2) @32) @2) @2)
™ | (14)(32) | (14)(32) | (14)(23) | (14)(23) v | 01000 | 01011 | 01100 | 01111
m | (12) (12) (12) (12)
In this case we have @Dg-linear code, that is(€ (7) , %) is v 10000 10011 10100 10111
isomorphic to thequasidihedral group of order 1&lenoted by T (12) (12) (12) (12)
QDg. We say that this code is a propelinear code, however it v 01001 | 01010 | 01101 | 01110
is not translation-invariar_lt. Since_fa_f: 0001 and (v, m,) = T | (12)(34) | (12)(34) | (12)(34) | (12)(34)
(1110, (13)), Lemma 1.1 is not satisfied. v 10001 10010 10101 10110
4, Forn =4 T | (12)(34) | (12)(34) | (12)(34) | (12)(34)
» | 0000 1111 0100 1011 We have(Q (7),*) = Z, x Zj, which implies aZ, x Z3-
T id id (34 (34 linear code. This code is not a translation-invariant propelinear
’ 0001 1110 0110 1001 code since forr = 01010 and (v, m,) = (01110, (12)(34))
vv 0000 1111 0001 1110 (0,id), Vz € Z7, therefore implying the assertion that it is
o
T | (1324 | (13)24) | (13)24) | (13)(24) aZ, x Zy-linear code.
v 0100 1011 0110 1001 I1l. CONCLUSIONS
T, | (14)(23) | (14)(23) | (14)(23) | (14)(23) : : .
In this paper, we have established a procedure of classifying
_ _ someG-linear codes from the translation-invariant propelinear
We have a propelinear code, wit2(r),*) = Ds. How- codes. This classification includes such codes as the class of ad-

ever, this code is neither a translation-invariant propelinear cogdgive translation-invariant propelinear codes, that is, subgroups

since forx = 0001 and (v, m,) = (1111, (13)(24)) Lemma Il.1
is not satisfied, nor Bg-linear code, since

Stabp, (1000) = {(000,id) , (1001, (14) (23))} # {(0,id)}.

5. Forn =5

» | 00000 | 00001 | 00010 00011
T | id id id id

v | 00100| 00101 | 00110 00111
T | id id id id

v | 11000 11001 | 11010| 11011
To | id id id id

v | 11100 11101 11110| 11111
T | id id id id

v | 01000| 01001 | 01010 01011
m | (12) | (12) | (12) | (12)
v | 01100 01101 | 01110| 01111
m | (12) | (12) | (12) | (12)
v | 10000 | 10001 | 10010 | 10011
m | (12) | (12) | (12) | (12)
v | 10100| 10101 | 10110 10111
T | (12) | (12) | (12) | (12)

We have a translation-invariant propelinear

of Z¥' @ 7%, wherek, + 2k, = n. We saw that the alge-
braic structure associated with these group codes is the semidi-
rect product of groups. By using this structure, we exhibited an
important result that allowed to establish when a code & a
linear code. Finally, some examples relating these two classes
of codes were presented.
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