
INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM – ITS2002, NATAL, BRAZIL 1

Construction of Good Space-Time Trellis Codes
Based on Cyclic Codes over Rings

Raquel Dutra Valença, and Reginaldo Palazzo Jr.
Universidade Estadual de Campinas, Campinas SP, Brazil

Abstract— In this paper, we propose a systematic procedure for con-
structing good space-time trellis codes derived from cyclic BCH codes over
local finite commutative rings. The procedure is based on finding a primi-
tive element in the group of units of the Galois extension ring. For a given
design distance, the polynomial generator of a BCH cyclic block code over
ZQ is determined. Such a generator polynomial must contain no binary
factor. Hence, the coefficients of the generator polynomial is used as the tap
connections for theQ-ary convolutional encoder. Some examples of these
codes were tabulated.

I. I NTRODUCTION

SPACE -time codes were proposed by Tarokhet al. [2] as
an efficient method for transmitting high data rate wireless

communication over Rayleigh or Ricean fading channels. Theo-
retically, these codes provide the best tradeoff between diversity
gain, transmission rate, constellation size, signals space dimen-
sion and trellis complexity.

In [2], two design criteria for space-time codes construction
were established and it was shown that these codes performance
is determined by matrices constructed from distinct codeword
pairs. More precisely, the minimum rank of these matrices is
related to the diversity gain (rank criterion) and the minimum
determinant of these matrices is related to the coding gain (de-
terminat criterion).

Space-time codes design is based on both previously men-
tioned criteria, which were established by considering the chan-
nel with fading. These space-time codes were found by an ex-
haustive search where pairs of codewords have to satisfy the
rank and the determinant criteria. Obviously, this search pro-
cess is very complex.

In this paper a systematic construction of space-time trellis
codes over local rings for quasi-static flat fading channel are pro-
posed. This construction provides good space-time trellis codes
whose free distance is lower-bounded by the maximum mini-
mum distance achieved by the BCH cyclic codes over local finite
commutative rings, however without having binary factors. The
reason we have used BCH codes over rings rather than Reed-
Solomon codes over rings is that the former is cyclic whereas
the latter is not. Although we may use linear block codes for the
construction of space-time trellis codes, the complexity of such
a procedure is clearly greater than that of using cyclic codes.

This paper is organized as follows. In Section II, we establish
the wireless communication system. In Section III, we present
some background material on Galois extension of local rings. In
Section IV, the technique of generating convolutional codes for
theQ-ary discrete memoryless channels is described. In Section
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V, the construction of trellis codes based on cyclic block codes
over Galois extension of local rings is established. Finally, in
Section VI the conclusions are drawn.

II. W IRELESSCOMMUNICATION SYSTEM

Let us consider the channel is a quasi-static flat fading chan-
nel. The wireless communication system model is such that the
base station consists ofnT transmitting antennas and the mobile
consists ofnR receiving antennas. The information sequence to
be transmitted goes through a channel encoder and then it is split
into nT streams which are simultaneously transmitted. Before
being transmitted, these sequences go through a pulse shaper
and are modulated.

As previously mentioned, two design criteria for space-time
codes construction were established in [2]. Based on these cri-
teria and a search for fixed values of the transmission rate, di-
versity gain, constellation size and trellis decoding complexity,
space-time codes were presented in [2] and [3]. Simulations
presented in [2] and [4] show these codes achieve good perfor-
mance under quasi-static flat fading channels.

III. BCH CODES ASCYCLIC CODES OVERFINITE LOCAL

RINGS

In this section we describe the construction of BCH codes as
cyclic codes over local finite commutative ringsA with identity,
which is similar to the construction of BCH codes over finite
fields. For more details on this subject see for instance [7], [10],
[11], [9], and [13].

Recall that a cyclic code with blocklengths over a finite com-
mutative ringA with identity is an ideal in the polynomial ring
A[x] modulo a polynomialxs − 1. The first step is to identify
an algebraic structure overA containing all the roots ofxs − 1.
Knowing the structure of the multiplicative group of the units
of such a ring leads to the identification of the cyclic subgroup
consisting of all the roots ofxs − 1.

Let A be a local finite commutative ring with identity. The
maximal ideal ofA is denoted byM and its residue field by
K = A

M = GF (pm), for some integerm ≥ 1. Let A[x] be a
polynomial ring in the variablex over the ringA. The natural
projection is denoted byµ : A[x] → K[x], with µ(f(x)) =
µ(a0+a1x+· · ·+anxn) = f(x) = a0+a1x+· · ·+anxn, where
ai = ai+M, i = 1, · · · , n, andf(x) = a0+a1x+· · ·+anxn ∈
A[x]. Hence, the natural homomorphismA → A/M = K is
simply the restriction ofµ to the constant polynomials.

Definition III.1. Let f(x) be a polynomial inA[x]. We say that
• f(x) is aunit if there exists a polynomiala(x) ∈ A[x] such
thata(x)f(x) = 1.
• f(x) is azero divisorif there existsa(x) ∈ A[x], a(x) 6= 0,
such thata(x)f(x) = 0.
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• f(x) is regular if it is not a zero divisor inA[x].

Theorem III.1. [12] Let f(x) be a regular polynomial inA[x].
If µ(f(x)) is irreducible inK[x], thenf(x) is also irreducible in
A[x].

Let f(x) be a monic polynomial of degreeh in A[x] such
that µ(f(x)) is irreducible inK[x]. It follows from Theorem
III.1 that f(x) is also irreducible inA[x]. Let A[x]

〈f(x)〉 denote
the quotient ring of the residue classes of the polynomials in
x over A, modulo a polynomialf(x). This ring, denoted by
R = GR(|A|, h), is a local finite commutative ring with identity
and it is calledGalois extensionof A, whose maximal ideal is
given byM1 = M1

〈f(x)〉 , whereM1 = 〈M, f(x)〉 and its residue
field is given by

K1 =
R

M1

=
A[x]/〈f(x)〉

〈M, f(x)〉/〈f(x)〉 =
A[x]

〈M, f(x)〉 =
(A/M)[x]
〈µ(f(x))〉 ,

with pmh elements. The residue fieldK1 is denoted by
GF (pmh).

An irreducible polynomialf(x) in A[x] is calledbasic irre-
ducible if µ(f(x)) is irreducible inK[x]. A polynomial f(x)
in A[x] is called local if A[x]

〈f(x)〉 is a local extension ofA. A

regular polynomialf(x) in A[x] is calledseparableif A[x]
〈f(x)〉 is

a local separable extension ofA. If f(x) is a regular polyno-
mial in A[x], then there exists a monic polynomialg(x) such
that µ(f(x)) = µ(g(x)). Furthermore, it is clear that iff(x)
is separable, then〈f(x)〉 = 〈g(x)〉, whereg(x) is monic and
µ(f(x)) = µ(g(x)). Hence, the separable polynomials are the
basic irreducibles. The following conditions are equivalents:
• f(x) is separable;
• f(x) is basic irreducible;
• µ(f(x)) is irreducible.

The next theorem and its corollary characterize the local ex-
tensions.

Theorem III.2. [12] A regular polynomialf(x) in A[x] is local
if and only if µ(f(x)) is a power of an irreducible polynomial
in K[x].

Corollary III.1. [12] If f(x) is a regular irreducible polynomial
in A[x], then A[x]

〈f(x)n〉 is a local ring for some positive integern.

Let us introduce some notations which will be used in this
paper. R∗ denotes the multiplicative group of the units ofR,
andK∗1 denote the cyclic multiplicative group ofGF (pmh) with
orderpmh − 1.

SinceR∗ is an abelian multiplicative group, it can be ex-
pressed as the direct product of cyclic groups, [12]. We are
interested in the cyclic group ofR∗, which we denote byGs,
and whose elements are the roots ofxs − 1 for somes such that
mdc(s, p) = 1 (this guarantees thatxs − 1 does not contain
repeated factors). Once this group is identified, the problem of
constructing BCH codes is reduced to the selection of certain
elements of this group to be the input to the parity-check matrix
of the code.

Theorem III.3. [12] There is only one maximal cyclic subgroup
of R∗ whose order is relatively prime top. This subgroup has
orderpmh − 1.

The next theorem provides a method to obtain a cyclic sub-
group as stated in Theorem III.3.

Theorem III.4. [13] Assume thatα generates a subgroup of
orders in R∗, wheremdc(s, p) = 1. Then the polynomialxs−1
may be factored asxs − 1 = (x − α)(x − α2) · · · (x − αs) if
and only ifα has orders in K∗1.

From Theorem III.4, we denote byGs the cyclic subgroup of
orders = pmh − 1 of R∗ which has as elements all the roots of
xs − 1. Moreover, every polynomialh(x) which dividesxs − 1
may be uniquely factored overK∗1. Thus, by Theorem III.4, we
have that the factorization ofh(x) overGs is also unique.

Corollary III.2. A polynomial h(x) which dividesxs − 1
with coefficients inA may be factored overGs as h(x) =
(x − αe1)(x − αe2) · · · (x − αel) if and only if h(x) may be
factored overK1 ash(x) = (x− αe1)(x− αe2) · · · (x− αel).

The next theorem is of great value in obtaining the generator
of Gs.

Theorem III.5. Let α be the generator of the cyclic subgroup
of orders in K∗1. Thenα generates a cyclic subgroup of order
sd in R∗, whered is an integer greater than or equal to 1 andαd

generates a cyclic subgroupGs of R∗.

Lemma III.1. Let α be an element ofGs with orders. Then
the differencesαl1 − αl2 are units inR if 0 ≤ l1 6= l2 ≤ s− 1.

Theorem III.6. The minimum Hamming distance of a BCH
code satisfiesd ≥ 2t + 1.

The definition of a BCH code as a cyclic codeC(n, η) is
the following: c = (c1, c2, · · · , cn) is a codeword if and
only if

∑n
i=1 ciα

l
i = 0 for l = 1, 2, · · · , 2t, where η =

(α1, α2, · · · , αn) is an arbitrary ordered vector of distinct el-
ements ofGs. A permutation applied to this vector does not
affect the error correction property of the code. Thus, taking
s = n andη = (α1, α2, · · · , αn), whereα is a primitive ele-
ment ofGn andαi = αi−1, we have that the matrixH defines
a BCH code having a generator polynomial. CodeC(n, η) for
whichn = pmh− 1 is calledprimitive. In this case,η is unique,
but for permutation of coordinates.

Theorem III.5 is useful in the determination of the generator
of Gn, and Corollary III.2 is useful in the determination of the
minimal polynomials ofαi. Thus, we have thatMi(x), the min-
imal polynomial ofαi overR∗ (whereα is primitive inGn), has
as roots all the distinct elements of the sequence

αi, (αi)q, (αi)q2
, · · · , (αi)qh−1

,

whereq = pm. Therefore,Mi(x) may be constructed similarly
as the construction ofmi(x), the minimal polynomial ofαi over
GF (pm).

From the knowledge of the cyclic groupGn, the construction
of the cyclic BCH codes over the ringA reduces to the problem
of choosing the elements of this group to be the roots of the
generator polynomialg(x). Hence, ifα is a primitive element
of Gn and if αe1 , αe2 , · · · , αet are the roots of the polynomial
g(x) overA given by

g(x) = mmc{Me1(x),Me2(x), · · · ,Met(x)},
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where Mei
(x) is the minimal polynomial ofαei for i =

1, 2, · · · , t, then the polynomialv(x) such that v(x) =
c(x)g(x) mod (xn − 1), wherec(x) ∈ A[x], defines a cyclic
code with block lengthn overA.

Definition III.2. Let α be a primitive element ofGn. A BCH
code defined overA is a cyclic code with blocklengthn gen-
erated by the least degree polynomialg(x) whose roots are
αb+1, αb+2, · · · , αb+2t, for someb ≥ 0, and t ≥ 1, that is,
g(x) = mmc{M1(x),M2(x), · · · , M2t(x)}, whereMi(x) is
the minimal polynomial ofαb+i, i = 1, 2, · · · , 2t, overA. Fur-
thermore,g(x) = mmc{m1(x),m2(x), · · · ,m2t(x)} where
mi(x) is the minimal polynomial ofαi, i = 1, · · · , 2t, gen-
erates a BCH code overGF (pm).

This BCH construction leads to cyclic codes only whereas the
construction of Reed-Solomon codes can not be derived from
this construction by the fact these codes are not cyclic.

The next theorem establishes a lower bound on the minimum
Hamming distance of the code so obtained. This lower bound
also applies to cyclic codes in general. However, for the cyclic
BCH codes the generator polynomials are chosen such that the
minimum distance be guaranteed by it.

Theorem III.7. Let g(x) be the generator polynomial of a
cyclic code with blocklengthn with symbols inA, and let
αe1 , αe2 , · · · , αen−k be the roots ofg(x) in Gn, whereα is an
element of ordern. Then the minimum Hamming distance of
the code is greater than the maximum number of consecutive
integers modulon in the setE = {e1, e2, · · · , en−k}.

IV. Q-ARY CONVOLUTIONAL CODES

Finding good convolutional codes is a difficult problem to
solve due to the fact that its complexity grows exponentially
with the input blocklength and memory size. In general, exhaus-
tive search is used in the process despite the efforts devised by
many researchers, see for instance [8] and the references therein.

A technique proposed by Trumpis [1] for finding convolu-
tional codes overQ-ary discrete memoryless channels will be
used. These codes are calledQ-ary convolutional codes with
rater = 1 (one binary input digit to oneQ-ary output symbol),
and constraint lengthK. The encoder for these codes is similar
to the binary input to binary output digits with rater = 1

log2 Q .

Let (u0, u1, u2, . . . , un−m−1) be an input sequence, and let
us associate to it the following polynomialU(x) = u0 + u1x +
u2x

2 + . . . + un−m−1x
n−m−1.

To each (n − m)-binary input sequence there exists a
correspondingQ-ary output symbol from the encoder. Let
(v0, v1, v2, . . . , vn−1) be the output sequence, where eachvi ∈
Z2. Let us denote the binary output sequence by the polynomial
V (x) = v0 + v1x + v2x

2 + . . . + vn−1x
n−1.

From the shift-register contents and the tap connections
g0, g1, · · · , gm of the convolutional encoder, the coefficients of
V (x) are given by

v0 = u0g0,

v1 = u0g1 + u1g0,

...

vk = uk−mgm + uk−m+1gm−1 + . . . + ukg0,

or equivalently, as

V (x) = U(x)G(x),

with G(x), the generator polynomial of theQ-ary convolutional
code, defined as

G(x) = g0 + g1x + g2x
2 + . . . + gmxm,

where the coefficientsg0, g1, ..., gm belong toR = GR(2k, h),
with Q = 2k.

In order to find goodQ-ary convolutional codes, some restric-
tions have to be placed uponG(x). One of them is related to the
fact that we have to avoid catastrophic error propagation. In
terms of the polynomials so defined, a catastrophic error means
that from an infinite input polynomial,U(x), results a finite out-
put polynomial,V (x). This assertion is true if the generator
polynomial does contain a binary factor. Therefore, to avoid
catastrophic error propagationG(x) can not contain a binary
factor.

On the other hand, ifG(x) divides (xn − 1), then
V (x) mod (xn− 1) defines a codeword of aQ-ary cyclic block
code with parameters(n, n−m). This fact can be used to show
that there exists a relationship between cyclic block codes with
a given minimum distance and convolutional codes with rate
r = 1 and a given free distance.

Following [1] the free distance is defined as

dfree = min
V (x)=U(x)G(x)

u0=1

{W [V (x)]},

whereW [h(x)] denotes the number of nonzero coefficients (or
weight) of the polynomialh(x).

Theorem IV.1. [1] Assume thatg(x) generates aQ-ary cyclic
block code with parameters(n, n − m, d). If g(x) does not
contain a binary factor, thenG(x) = g(x) generates a non-
catastrophicQ-ary convolutional encoder with rater = 1, con-
straint lengthK = m + 1, and free distancedfree = d.

Theorem IV.1 provides a definite technique to construct opti-
mumQ-ary convolutional encoders with rate 1, for groups and
finite fields because the cyclic codes derived are maximum dis-
tance separable (MDS). For Galois extension rings goodQ-ary
convolutional codes are obtained in general. However, it may be
possible in some isolated cases to obtain optimumQ-ary convo-
lutional codes derived from MDS BCH cyclic codes. For more
details, examples and a list of such codes, see [5], and [6].

Example IV.1. Consider the construction of16-ary convolu-
tional codes, whose output consists of quaternary two-tuples. In
this direction, we have to determine the generator polynomial of
a16-ary cyclic block code.

The Galois ringGR
(
22, 2

)
consists of the residue classes of

polynomials inZ22 [x] modulox2 + x + 1, that is,

GR
(
22, 2

) ∼= Z22 [x]
〈x2 + x + 1〉 = {a + bx; a, b ∈ Z4}.

In order to find a multiplicative group in the ringGR
(
22, 2

)
,

let α be a primitive element inGR
(
22, 2

)
. Thus,α is a root of

x2 + x + 1 or, in other words

α2 + α + 1 = 0 ⇒ α2 = 3 + 3α,
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where these operations are realized inZ4.
Hence, the elements of such a multiplicative group in

GR
(
22, 2

)
are:

1
α
α2 = 3 + 3α

The minimal polynomials associated to these elements are:
Elements Minimal polynomial
1 ←→ (x− 1)
α, α2 ←→ (x + α)(x + α2) = x2 + x + 1

where
x3 − 1 = (x− 1)(x− α)(x− α2).

The BCH cyclic code has blocklengthn = 3 overZ4. The
minimum distanced of the code is defined as being equal to
the number of consecutive factors ofg(x) (factors with consec-
utive powers of the primitive element) plus1, see Theorem III.7.
Consequently, the generator polynomial must have the greatest
number of consecutive powers ofα, however, without having
a complete minimal polynomial (binary factor). Therefore, the
possible generators of the16-ary convolutional code are:
1- g(x) = (x − α). For this case,d = 2. The corresponding
16-ary convolutional code has free distancedfree = 2.
2- g(x) = (x− α2). Similarly to 1-,d = 2.

Example IV.2. Consider the construction of64-ary convolu-
tional codes.We have two possibilities to consider: Case I -
Q = 43 whose output consists of quaternary three-tuples; and,
Case II -Q = 82 whose output consists of octary two-tuples.
Once more, we have to determine a generator polynomial of a
64-ary cyclic block code.

Case I - The Galois ringGR
(
22, 3

)
consists of the residue

classes of polynomials inZ22 [x] modulox3 + x + 1, that is,

GR
(
22, 3

) ∼= Z22 [x]
〈x3 + x + 1〉 = {a + bx + cx2; a, b, c ∈ Z4}.

Again, we have to determine a multiplicative group in
GR

(
22, 3

)
. Thus, letα be a primitive element inGR

(
22, 3

)
.

So,α is a root ofx3 + x + 1 or, in other words

α3 + α + 1 = 0 ⇒ α3 = 3 + 3α,

where these operations are overZ4.
So, the multiplicative group inGR

(
22, 3

)
consists of the fol-

lowing elements:
1 α7 = 3 + 2α2

α α8 = 2 + α
α2 α9 = 2α + α2

α3 = 3 + 3α α10 = 3 + 3α + 2α2

α4 = 3α + 3α2 α11 = 2 + α + 3α2

α5 = 1 + α + 3α2 α12 = 1 + 3α + α2

α6 = 1 + 2α + α2 α13 = 3 + 3α2

Since the number of elements of the multiplicative group is
even, it follows thatx14 − 1 can not be uniquely factored. In
this case, we have to find another multiplicative group whose
order be odd. Definingβ = α2, results in a multiplicative group
whose order is7. Consequently, the factorization ofx7 − 1 is
unique.

The minimal polynomials associated to the elements of this
new multiplicative group are:

Group elements Minimal polynomial
1 ←→ (x− 1)
β, β2, β4 ←→ (x− β)(x− β2)(x− β4)
β3, β6, β5 ←→ (x− β3)(x− β6)(x− β5)

where

x7−1 = (x−1)(x−β)(x−β2)(x−β3)(x−β4)(x−β5)(x−β6).

The BCH cyclic code has blocklengthn = 7 over Z4. In
order for this code to have the maximum distance possible, its
generator polynomial is given byg(x) = M1(x) with Hamming
distance at least 3. Thus, the64-ary convolutional code is gen-
erated by

G(x) = x3 + 2x2 + x + 3.

Thus, the BCH cyclic code parameters are(7, 4, 3). The corre-
sponding convolutional encoder hasK = 4 and free distance at
least 3.

Case II - The Galois ringGR
(
23, 2

)
consists of the residue

classes of polynomials inZ23 [x] modulox2 + x + 1, that is,

GR
(
23, 2

) ∼= Z23 [x]
〈x2 + x + 1〉 = {a + bx; a, b ∈ Z8}.

Again, we have to determine a multiplicative group in
GR

(
23, 2

)
. Thus, letα be a primitive element inGR

(
23, 2

)
.

So,α is a root ofx2 + x + 1 or, in other words

α2 + α + 1 = 0 ⇒ α2 = 7 + 7α,

where these operations are overZ8.
So, the multiplicative group inGR

(
23, 2

)
consists of the fol-

lowing elements:
1
α
α2 = 7 + 7α

The minimal polynomials associated to the elements of this
new multiplicative group are:

Group elements Minimal polynomial
1 ←→ (x− 1)
α, α2 ←→ (x− α)(x− α2)

where
x3 − 1 = (x− 1)(x− α)(x− α2).

The BCH cyclic code has blocklengthn = 3 overZ8. The
minimum distanced of the code is defined as being equal to the
number of consecutive factors ofg(x) plus1. As in the previ-
ous example, the possible generators of the64-ary convolutional
code are:
1- g(x) = (x − α). For this case,d = 2. The corresponding
64-ary convolutional code has free distancedfree = 2.
2- g(x) = (x− α2). Similarly to 1-,d = 2.

Based on the previous two examples, in the next section we
establish a procedure to constructQ-ary convolutional codes
over local rings.

V. CONSTRUCTION OFQ-ARY CONVOLUTIONAL CODES

OVER LOCAL RINGS

The following procedure allows the construction of convolu-
tional codes, whose codewords belong to a given local ringZQ,
whereQ = 2κ.
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In order to obtainQτ -ary convolutional codes consisting of
Q-ary τ -tuples, we have initially to determine the generator
polynomial of aQτ -ary cyclic block code. The Galois ring
GR (2κ, τ) consists of the residue classes of the polynomials
overZ2κ [x] modulo a primitive ideal of degreeτ , also belong-
ing toZ2κ [x]. With the objective of determining a multiplicative
group inGR (2κ, τ), letα be a primitive element in the ring un-
der consideration. Consequently,α is a root of the primitive
polynomial generating the ideal being considered. Therefore, it
is possible to express all the elements of the multiplicative group
asτ -tuples ofα. Note that the operations are overZ2κ . If the
orderδ of the multiplicative group is even, the termxδ − 1 can
not be uniquely factorable. Hence, we have to determine, in the
multiplicative group, an elementβ (a power ofα), whose order
θ be an odd multiplicity of the order ofα in the GF (2τ ). In
this way, the termxθ − 1 may now be uniquely factored. Once
the minimal polynomials associated to each one of the elements
of the multiplicative group generated byβ, we may establish a
generator polynomial of the cyclic block code, not containing a
binary factor, will coincide with the generator polynomial of the
Q-ary convolutional code overZQ. In this direction, we have
to select the greatest number of consecutive powers ofβ, and
consequently the corresponding minimal polynomials, however,
without containing any binary factor. The minimum distanced
of the cyclic block code is defined as being equal to the num-
ber of consecutive powers of the primitive element plus1. The
Q-ary convolutional code overZQ so constructed will achieve
good free distance as shown in Table I. Table II, shows the free
distance which can be achieved if an MDS BCH cyclic code
were used. However, the corresponding BCH cyclic codes are
not MDS. Therefore, the free distance of the convolutional code
is dfree ≥ d.

GR(pk, r) Alphabet (n, k, d)
GR(4, 3) Z4 (7,4,3)
GR(4, 4) Z4 (15,5,7)
GR(8, 3) Z8 (7,4,3)

TABLE I

BCH CYCLIC CODES OVERGR(pk, r)

dfree Generator Polynomial
4 3 + x + 2x2 + x3

9 1 + x + 3x2 + 3x4 + 3x5 + 2x7 + x8 + 2x9 + x10

4 7 + 5x + 6x2 + x3

TABLE II

CONVOLUTIONAL CODES

VI. CONCLUSIONS

In this paper, we have proposed a systematic procedure for
constructing goodQ-ary convolutional codes over rings. The
procedure is based on finding a primitive element in the group
of units of the Galois extension ring. For a given design distance,
the polynomial generator of a BCH cyclic block code overZQ

is determined. Such a generator polynomial must contain no

binary factor. Hence, the coefficients of the generator polyno-
mial is used as the tap connections for theQ-ary convolutional
encoder. Some examples of these codes were tabulated.
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