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Abstract— In this paper, we propose a systematic procedure for con- V, the construction of trellis codes based on cyclic block codes

structing good space-time trellis codes derived from cyclic BCH codes over gyer Galois extension of local rings is established. Finally, in
local finite commutative rings. The procedure is based on finding a primi- . . '
tive element in the group of units of the Galois extension ring. For a given Section VI the conclusions are drawn.

design distance, the polynomial generator of a BCH cyclic block code over
7 is determined. Such a generator polynomial must contain no binary [l. WIRELESSCOMMUNICATION SYSTEM

factor. Hence, the coefficients of the generator polynomial is used as the tap L id he ch i . ic flat fadi h
connections for the@-ary convolutional encoder. Some examples of these etus C9n5| erthec anne_ls a quasl-static ?‘t ading chan-
codes were tabulated. nel. The wireless communication system model is such that the
base station consists of- transmitting antennas and the mobile
I. INTRODUCTION consists ofnR receiving antennas. The information sequence to'
_ be transmitted goes through a channel encoder and then it is split
PACE -time codes were proposed by Tarakhal [2] s into n, streams which are simultaneously transmitted. Before
an efficient method for transmitting high data rate wirelegssing transmitted, these sequences go through a pulse shaper
communication over Rayleigh or Ricean fading channels. Thegyd are modulated.
retically, these codes provide the best tradeoff between diversitys previously mentioned, two design criteria for space-time
gain, transmission rate, constellation size, signals space dimggdes construction were established in [2]. Based on these cri-
sion and trellis complexity. _ _teria and a search for fixed values of the transmission rate, di-
In [2], two design criteria for space-time codes constructiaiersity gain, constellation size and trellis decoding complexity,
were established and it was shown that these codes performagme_time codes were presented in [2] and [3]. Simulations
is determined by matrices constructed from distinct codew%qalesemed in [2] and [4] show these codes achieve good perfor-

pairs. More precisely, the minimum rank of these matrices fgance under quasi-static flat fading channels.
related to the diversity gain (rank criterion) and the minimum

determinant of these matrices is related to the coding gain (d84. BCH Cobes AsCycLIC CODES OVERFINITE LOCAL
terminat criterion). RINGS

~ Space-time codes design is based on both previously meny, ihis section we describe the construction of BCH codes as
tlone(_j criteria, which were esta_bllshed by considering the ChEE”y'cIic codes over local finite commutative ringswith identity,

nel with fading. These space-time codes were found by an &fsich is similar to the construction of BCH codes over finite
haustive search where pairs of codewords have to satisfy fag4s. For more details on this subject see for instance [7], [10],
rank and the determinant criteria. Obviously, this search P11], [9], and [13].

cess is very complex. , . . ~ Recall that a cyclic code with blocklenggtover a finite com-

In this paper a systematic construction of space-time trelfig,tative ringA with identity is an ideal in the polynomial ring
codes over local rings for quasi-static flat fading channel are Pr®7z] modulo a polynomiak® — 1. The first step is to identify
posed. This c_onstruct.ion provides good space-time.trellis Co_‘iﬁﬁalgebraic structure ovef containing all the roots of* — 1.
whose free distance is lower-bounded by the maximum mifinowing the structure of the multiplicative group of the units

mum distance achieved by the BCH cyclic codes over local finigg sych a ring leads to the identification of the cyclic subgroup

commutative rings, however without having binary factors. T%nsisting of all the roots af — 1.

reason we have used BCH codes over rings rather than Reeq-gt 4 pe a local finite commutative ring with identity. The

Solomon codes over rings is that the former is cyclic wheregsyximal ideal of4 is denoted byM and its residue field by

the latter is not. Although we may use linear block codes for the _ % = GF(p™), for some integem > 1. Let Afz] be a

construction of space-time trellis codes, the complexity of SU%Iynomial ring in the variable: over the ringA. The natural

a procedure is clearly greater than that of using cyclic COdes-projection is denoted by : Afz] — K[z], with u(f(z)) =
This paper is organized as follows. In Section Il, we establisfy, + g, 2+ - -+a,2") = f(z) = ag+aiz+- - +ana™, where

the wireless communication system. In Section Ill, we presegt— ;. 4 A, i = 1,--- ,n, andf(z) = ag+a1z+- - +an,z" €

some background material on Galois extension of local rings. f};;]. Hence, the natural homomorphist— A/M = K is

Section 1V, the technique of generating convolutional codes fggmply the restriction of: to the constant polynomials.
the@-ary discrete memoryless channels is described. In Section o
Definition Ill.1. Let f(z) be a polynomial imd[z]. We say that
Raguel D. Valenga, and Reginaldo Palazzo Jr. are with the Departamesntqf () iS aunit if there exists a polynomial(x) € A[x] such
de Telenatica, Faculdade de Engenharicética e de Computédg, 13081- thata(z)f(z) = 1.
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o f(x)isregularifitis not a zero divisor inA[z].

Theorem Ill.1. [12] Let f(z) be a regular polynomial id[x].
If u(f(x))isirreducible inK[z], thenf(z) is also irreducible in
Alx].

Let f(z) be a monic polynomial of degrefe in A[z] such
that uu(f(z)) is irreducible inK[z]. It follows from Theorem

1.1 that f(z) is also irreducible inA[x]. Let <}4([;’f%> denote

the quotient ring of the residue classes of the polynomials @ders = p

The next theorem provides a method to obtain a cyclic sub-
group as stated in Theorem I11.3.

Theorem IIl.4. [13] Assume thaix generates a subgroup of
ordersin R*, wheremdc(s,p) = 1. Then the polynomiat®—1
may be factored ag® — 1 = (z — a)(z — a?) - (x — o*) if
and only ifa has ordes in Kj.

From Theorem 111.4, we denote Yy, the cyclic subgroup of
mh _ 1 of R* which has as elements all the roots of

 over A, modulo a polynomialf (x). This ring, denoted by «° — 1. Moreover, every polynomial(x) which dividesz® — 1
R = GR(]A|, ), is alocal finite commutative ring with identity may be uniquely factored ovét;. Thus, by Theorem lll.4, we
and it is calledGalois extensiomf A, whose maximal ideal is have that the factorization &f(z) overG; is also unique.

. — _ Ml _ - .
given by My = iy, whereMy = (M, f(z)) anditsresidue coqiary 1112, A polynomial h(z) which dividesz® — 1

field is given by

R

_ R Al]/(f(z)) _  Ala] (A/M)[z]
M,

M, f@)/(f@)) (M, f(@)  (u(f(@))

with p™" elements. The residue fiel®,; is denoted by
GF(p™).

An irreducible polynomialf (z) in A[z] is calledbasic irre-
ducibleif p(f(x)) is irreducible inK[z]. A polynomial f(x)

in A[z] is calledlocal if % is a local extension ofd. A
Alz]

regular polynomialf (z) in A[z] is calledseparablef o) is
a local separable extension df If f(z) is a regular polyno-
mial in A[z], then there exists a monic polynomiglz) such
that u(f(x)) = p(g(x)). Furthermore, it is clear that if(x)
is separable, thef(z)) = (g(x)), whereg(x) is monic and

Ky

w(f(z)) = u(g(z)). Hence, the separable polynomials are the

basic irreducibles. The following conditions are equivalents:
o f(x)is separable;
o f(x)is basic irreducible;
o u(f(x))isirreducible.

The next theorem and its corollary characterize the local
tensions.

Theorem 111.2. [12] A regular polynomialf (x) in A[z] is local

with coefficients inA may be factored oveG as h(r) =
(r —a®)(z —a®)---(x — ) if and only if h(x) may be
factored oveik; ash(z) = (x — @' )(x — @®?) --- (z — a®).

The next theorem is of great value in obtaining the generator
of Gs.

Theorem 111.5. Let @ be the generator of the cyclic subgroup
of orders in Kj. Thena generates a cyclic subgroup of order
sd in R*, whered is an integer greater than or equal to 1 arfd
generates a cyclic subgroap, of R*.

Lemma lll.1. Let o be an element of/; with orders. Then
the differencesi™ — o2 are units inRif 0 < 1 # 1y < s — 1.

Theorem 111.6. The minimum Hamming distance of a BCH
code satisfied > 2t + 1.

The definition of a BCH code as a cyclic cod¢n,n) is

the following: ¢ = (c1,¢2,-+-,¢,) is a codeword if and
only if 37" c;al = 0forl = 1,2,---,2t, wheren
(1,0, -+ , ) is an arbitrary ordered vector of distinct el-

eggf_?ents ofG,. A permutation applied to this vector does not
a

ect the error correction property of the code. Thus, taking
s =nandn = (Ozl,OéQ‘, -+, ap), Wherea is a primitive ele-
ment of G,, anda; = o'~ !, we have that the matri¥l defines

if and only if u(f(x)) is a power of an irreducible polynomiala BCH code having a generator polynomial. Cate, ) for

in K[z].

Corollary IIl.1.  [12]If f(«) is aregularirreducible polynomial

in Afz], then—22L

Ty s a local ring for some positive integer

whichn = p™" — 1 is calledprimitive. In this casey is unique,
but for permutation of coordinates.

Theorem 111.5 is useful in the determination of the generator
of G,,, and Corollary 111.2 is useful in the determination of the

Let us introduce some notations which will be used in thiginimal polynomials ofv'. Thus, we have that/;(x), the min-

paper. R* denotes the multiplicative group of the units Bf
andK; denote the cyclic multiplicative group 6fF'(p™") with
orderp™® — 1.

Since R* is an abelian multiplicative group, it can be ex-

imal polynomial ofa’ over R* (wherea is primitive inG.,,), has
as roots all the distinct elements of the sequence

pressed as the direct product of cyclic groups, [12]. We are

interested in the cyclic group a®*, which we denote by,
and whose elements are the roots:df- 1 for somes such that

whereq = p™. Therefore M;(x) may be constructed similarly
as the construction ofi;(z), the minimal polynomial ofy* over

GF(p™).

mdc(s,p) = 1 (this guarantees that®* — 1 does not contain . ,
repeated factors). Once this group is identified, the problem of "0M the knowledge of the cyclic group,, the construction

constructing BCH codes is reduced to the selection of cert&htn€ cyclic BCH codes over the ring reduces to the problem

elements of this group to be the input to the parity-check mat@k coosing the elements of this group to be the roots of the
of the code. generator polynomigj(x). Hence, ifa is a primitive element

of G, and if o, a2, --- ¢t are the roots of the polynomial
Theorem I11.3. [12] There is only one maximal cyclic subgroupy () over A given by
of R* whose order is relatively prime te. This subgroup has
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where M., (x) is the minimal polynomial ofa® for i = or equivalently, as
1,2,---,t, then the polynomialv(z) such thatv(z) =
c(z)g(z) mod (z" — 1), wherec(z) € Alz], defines a cyclic V(z) = U(2)G(2),
code with block lengttn over A. with G(z), the generator polynomial of ti@-ary convolutional

Definition I1.2. Let a be a primitive element ofs,,. A BCH code, defined as

code defined oved is a cyclic code with blocklength gen- Glr) = 2 m
. =go+ + .o g™,

erated by the least degree polynomidl:) whose roots are (¥) = 9o+ 912+ go Jm®

abtl abt2 ... ab+2t for someb > 0, andt > 1, thatis, where the coefficientsy, g1, ..., g, belong toR = GR(2%, h),

g(z) = mme{Mi(z), Ma(z), -+, May(x)}, whereM;(z) is  with Q = 2*.

the minimal polynomial ob*t? i = 1,2,--- ,2t, over A. Fur- In order to find good)-ary convolutional codes, some restric-
thermore,g(x) = mme{mi(z), ma(z),--- ,mo(x)} Where tions have to be placed up@#(z). One of them is related to the
m;(z) is the minimal polynomial of¥’, i = 1,---,2t, gen- fact that we have to avoid catastrophic error propagation. In
erates a BCH code ové¥F'(p™). terms of the polynomials so defined, a catastrophic error means

This BCH construction leads to cyclic codes only whereas tltwr(]aat from an |'nf|n|te Input polynom@l/(;), resullts afinite out-
construction of Reed-Solomon codes can not be derived fr(?rlﬁt polynomial, V(x). This assertion is true if the generator

. X ) polynomial does contain a binary factor. Therefore, to avoid
this construction by the fact these codes are not cyclic.

. . . catastrophic error propagati can not contain a binar
The next theorem establishes a lower bound on the minim P propagatiafi(z) y

. X : . tor.
Hamming dlstance_of the che so obtained. This lower bour_l On the other hand, ifG(x) divides («» — 1), then
also applies to cyclic codes in general. However, for the cyc\y(S

. x) mod (z™ — 1) defines a codeword of@-ary cyclic block
i%?mct?rie dsi;:]aigsgirghoazrgz%glrgﬁlif are chosen such that i \ytn parameter$:, n —m). This fact can be used to show

that there exists a relationship between cyclic block codes with
Theorem 1Il.7. Let g(x) be the generator polynomial of aa given minimum distance and convolutional codes with rate
cyclic code with blocklengthn with symbols in A, and let = 1 and a given free distance.

a® a2 ... a—* be the roots ofj(z) in G, wherea is an Following [1] the free distance is defined as
element of orden. Then the minimum Hamming distance of .

the code is greater than the maximum number of consecutive djree = V(m):‘%)g(m){w[v(f‘/’)”’
integers modula in the setE = {e1,e2, -+ ,en_k}- up=1

whereW [h(z)] denotes the number of nonzero coefficients (or
weight) of the polynomiah(x).

Finding good convolutional codes is a difficult problem t ) :
solve due to the fact that its complexity grows exponentialq-lr:)iokrig]dlev'\}v'm[]l]pgrs asrﬁ?tgrglag(f) %egf ralt;a Sg g )a(;)(/)ecgcrl:gt

e e X\  binryfactor, hes ) () genertes o
many researchers, see for instance [8] and the references theF ﬁastropth-ary convolutional encoder with rate= 1, con-
y h ’ - . Sint length’' = m + 1, and free distancéy,.. = d.

A technique proposed by Trumpis [1] for finding convolu-
tional codes over-ary discrete memoryless channels will be Theorem IV.1 provides a definite technique to construct opti-
used. These codes are call@dary convolutional codes with mum @-ary convolutional encoders with rate 1, for groups and
rater = 1 (one binary input digit to on€-ary output symbol), finite fields because the cyclic codes derived are maximum dis-
and constraint lengtf. The encoder for these codes is similaiance separable (MDS). For Galois extension rings ggeaty

to the binary input to binary output digits with rate= logl ) convplun_onal cod_es are obtained in gen_eral. _However, it may be

Let (g, w1, Uz, . - -, un_m_1) be an input sequence,zand |ePO§S|bIe in some |§olated cases to obtain optlrﬂmy convo-
us associate to it the following polynomiéil(z) = wo + w1 + Iutlonal codes derived fro_m MDS BCH cyclic codes. For more
U2 + .o Uy L details, examples and a list of such codes, see [5], and [6].

To each (n — m)-binary input sequence there exists &xample IV.1. Consider the construction df6-ary convolu-
corresponding@-ary output symbol from the encoder. Letional codes, whose output consists of quaternary two-tuples. In
(vo,v1,v9,...,v,-1) be the output sequence, where eaclke this direction, we have to determine the generator polynomial of
Zs. Let us denote the binary output sequence by the polynoméel6-ary cyclic block code.

V(z) = vo + 017 + vex® + ... + v, 12" L. The Galois ringZR (22, 2) consists of the residue classes of

From the shift-register contents and the tap connectiopslynomials inZy:[z] moduloz? + x + 1, that is,
go, 91, - , gm Of the convolutional encoder, the coefficients of T[]

22

V() are given by GR(22) = oy

IV. Q-ARY CONVOLUTIONAL CODES

={a+bx; a,b € Zy4}.

vo = Hodo, In order to find a multiplicative group in the rirgR (22,2),

U1 = Uog1 T Uigo, let o be a primitive element i67 R (22,2). Thus,« is a root of
2% + x + 1 or, in other words
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where these operations are realized.in Group elements Minimal polynomial
Hence, the elements of such a multiplicative group in 1 — (z-1)
GR(2%,2) are: 8,2, p* —  (z=pB)(x— ) (- p")
1 3°,8°% ° — (=) - -pF)
o where
a? =3+ 3a 7 2 3 4 5 6
The minimal polynomials associated to these elements are’ —1 = (z—1)(z=p)(x=p7)(x=p")(2=F") (x=5")(x =)
Elements Minimal polynomial The BCH cyclic code has blocklengih = 7 overZ,. In
L — (@=1) der for this code to have the maximum di ible, i
9 — (ta)ztad)=+at1 order for this code to have the maximum distance possible, its
whgr’ea generator polynomial is given hyx) = M, (z) with Hamming

distance at least 3. Thus, tﬁe-ary convolutional code is gen-
3 (i _ a2
z®—=1=(z—1)(z—a)lx—a). rated by

The BCH cyclic code has blocklength = 3 overZ,. The G(z) =2+ 222 + 2 + 3.

minimum distanca? of the code is defined as be_ing equal %hus, the BCH cyclic code parameters &re4, 3). The corre-
th? number of consegu'c_l\(e factorsgitz) (factors with consec- sponding convolutional encoder h&s= 4 and free distance at
utive powers of the primitive element) plissee Theorem I11.7. {

Consequently, the generator polynomial must have the grea
number of consecutive powers af however, without having
a complete minimal polynomial (binary factor). Therefore, th
possible generators of tié-ary convolutional code are: 5 Zys | 2]

1- g(x) = (z — a). For this cased = 2. The corresponding GR(2%,2) = izt D)
16-ary convolutional code has free distantg.. = 2.

2- g(z) = (x — o?). Similarly to 1-,d = 2. Again, we have to determine a multiplicative group in
GR (2,2). Thus, leta be a primitive element i7 R (23,2).
IS_o,a is aroot ofz? + z + 1 or, in other words

g%?t 3.
ase Il - The Galois ring+R (23,2) consists of the residue
(élasses of polynomials iiys [x] moduloz? + = + 1, that is,

= {a+bz; a,b € Zg}.

Example IV.2. Consider the construction @4-ary convolu-
tional codes.We have two possibilities to consider: Case
Q = 43 whose output consists of quaternary three-tuples; and, 2rtatl=0 = ao2=747Ta
Case Il -Q = 82 whose output consists of octary two-tuples. ’
Once more, we have to determine a generator polynomial ofyere these operations are o%ar.

64-ary cyclic block code. So, the multiplicative group itv R (23, 2) consists of the fol-
Case | - The Galois ring/R (22, 3) consists of the residue Jowing elements:
classes of polynomials if,: [z] modulox® + x + 1, that is, 1
Zy2[a] o
GR(22,3)%3227$:{a+ba:+c:c2; a,b,c € Z4}. o o’ =T7+7Ta _
(@ +z+1) The minimal polynomials associated to the elements of this
. new multiplicative group are:

Again, we have to determine a multiplicative group in

GR (22,3). Thus, leto be a primitive element iR (22, 3). froup elements (xM_mir)naI polynomial
So,« is aroot ofz3 + x + 1 or, in other words 5 9
a, o —  (z—a)(r—a?)
where

3 3
a+a+1=0 = a =3+3q,
3 —1=(z—1)(z—a)(z—a?).

where these operations are o¥r. ) _ The BCH cyclic code has blocklengih = 3 overZs. The
So, the multiplicative group it R (22, 3) consists of the fol- inimum distancel of the code is defined as being equal to the
lowing elements: . ) number of consecutive factors gfz) plus1. As in the previ-
1 O‘S =3+2a ous example, the possible generators obthary convolutional
e, a4 2t+a ) code are:
o o =lata , 1- g(z) = (z — ). For this cased = 2. The corresponding
o« g - 3§ ) oL ‘;’ + 3o +32‘§‘ 64-ary convolutional code has free distanteg.. = 2.
35 _ 10:; f3a2 312 1 i goj; 32 2- g(z) = (x — o?). Similarly to 1-,d = 2.
ab =14 20+ a2 al3 =3 4+ 302 Based on the previous two examples, in the next section we

Since the number of elements of the multiplicative group Rstablish a procedure to constru@tary convolutional codes
even, it follows thatz'* — 1 can not be uniquely factored. Inover local rings.
this case, we have to find another multiplicative group whose
order be odd. Defining = a2, results in a multiplicative group Y- CONSTRUCTION OFQ-ARY CONVOLUTIONAL CODES
whose order i§. Consequently, the factorization of — 1 is OVERLOCAL RINGS
unique. The following procedure allows the construction of convolu-
The minimal polynomials associated to the elements of thtisnal codes, whose codewords belong to a given localZing
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In order to obtainQ™-ary convolutional codes consisting ofbinary factor. Hence, the coefficients of the generator polyno-
Q-ary T-tuples, we have initially to determine the generatanial is used as the tap connections for §xery convolutional
polynomial of aQQ"-ary cyclic block code. The Galois ringencoder. Some examples of these codes were tabulated.

GR(2",7) consists of the residue classes of the polynomials
over Zs+~[x] modulo a primitive ideal of degree, also belong-

ing to Z»~ [z]. With the objective of determining a multiplicative[ll
group inGR (2%, 7), leta be a primitive element in the ring un-,
der consideration. Consequentty,is a root of the primitive
polynomial generating the ideal being considered. Therefore, it
is possible to express all the elements of the multiplicative gropp
ast-tuples ofa. Note that the operations are ovgs-. If the
orders of the multiplicative group is even, the termi — 1 can
not be uniquely factorable. Hence, we have to determine, in
multiplicative group, an elemert (a power ofa), whose order
6 be an odd multiplicity of the order af in the GF (27). In
this way, the term:? — 1 may now be uniquely factored. Once[5]
the minimal polynomials associated to each one of the elements
of the multiplicative group generated I we may establish a (6]
generator polynomial of the cyclic block code, not containing a
binary factor, will coincide with the generator polynomial of thé¢7]
Q-ary convolutional code ovefg. In this direction, we have

to select the greatest number of consecutive powers, @ind (g
consequently the corresponding minimal polynomials, however,
without containing any binary factor. The minimum distance

of the cyclic block code is defined as being equal to the num-
ber of consecutive powers of the primitive element plughe
Q-ary convolutional code ovef so constructed will achieve
good free distance as shown in Table I. Table Il, shows the free
distance which can be achieved if an MDS BCH cyclic code
were used. However, the corresponding BCH cyclic codes &t
not MDS. Therefore, the free distance of the convolutional code

[10]

iS dfree > d. [12]
[13]
GR(p*,r) | Alphabet| (n, k,d)
GR(4,3) Zy (7,4,3)
GR(4,4) Zs (15,5,7)
GR(8,3) Zsg (7,4,3)
TABLE |

BCH cycLiC CODES OVERG R(p”, )

dfree Generator Polynomial
4 34+ + 222 +2°
9 1+2+322 4+ 322+ 325+ 227 + 28+ 229 + 210
4 7+ 5z + 622 + 23

TABLE Il
CONVOLUTIONAL CODES

VI. CONCLUSIONS

In this paper, we have proposed a systematic procedure for
constructing goodp-ary convolutional codes over rings. The
procedure is based on finding a primitive element in the group
of units of the Galois extension ring. For a given design distance,
the polynomial generator of a BCH cyclic block code o%ey
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