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Abstract—The aim of this paper is to identify the algebraic and geomet- direction, consider the binary input channel. Assume that-an
ric structures associated to discrete memoryless channels. The procedure|ayg| quantizer is used in the demodulator’'s output Ieading toa
employed to achieve this goal is based on the following steps: knowing the . . . '
graph associated to discrete memoryless channel, 1) to determine the set otcls[& 2] (_:hannel havmg the complete b'Pa”'te gl‘.aﬁbyg as
surfaces in which the graph is embedded; 2) to establish the set of algebraic the associated graph. Tlig »[2, 2] channel is associated to the
structures inherited by the surfaces through the first homology group; and graph K5 o which is embedded on a sphere with two regions,
3) to identify the regular tessellations which may be used in the design of denoted 7b 5(2) thus on a surface of genus zero. In Section
modulators and quantizers. b ’ ’
IV we show that theC; g[8, 2] channel may be embedded on
the following surfaces: sphere wiffregions, denoted by (8);
|. INTRODUCTION torus with6 regions, denoted by (6); two torus with4 regions,

TWO were the facts that led us to consider in this paper tﬁgnoted by2T'(4); and three torus with regions, denoted by
geometric and algebraic aspects associated to the surf §2). Note that the grapli's » as well as the grapht; s may

where the discrete memoryless channels are embedded. € emb_edded on a sphere. Only thisf fact does not lead to a
convincing answer, since the embedding of &g;[2,2] and

Fact 1. Based on the error probability criterion, the communlcm[& 2] channels on a sphere are realized with two and eight

cation system using QAM constellations achieve better perf%%ions, respectively. On the other hand, €8, 2] channel

mance than the cqmmunlcauon system.usmg PSK constellatl?g sed to transmit binary digits, and so the space has to be parti-
under the constraint that the constellations have the same ayehad into two decision regions, that &, g[8, 2] — 3T (2) is

age energy. the only embedding representing this case. Sincethg2, 2

Fact 2. Based on the error probability criterion, the perfor'hannel is embedded ah(2), denoted byCs 5[2, 2] — S (2)
mance of a binary digital communication system using so{i—nd theC, s[8, 2] channel is'embedded (jﬁ;@)’ denoted b’y
decision decoding (a®-level quantizer, leading to a binary o '

input, 8-ary output symmetric channel denoted y.s [8, 2]) C35[8,2] — 3T (2), this leads to the conjecture that the error

achieves a coding gain of up to 2 dB when compared to the pg@obablllty depends on the genus of the surface. Note that this

) . o ) nclusion is identical to the one achieved when considering the
formance of a binary digital communication system using har
decision decoding (2-level quantizer, leading to a binary sym-

ignal constellations.
metric channel (BSC), denoted b - [2, 2]). From the intuitive point of view it is a simple matter to con-
Although, the PSK and QAM c;)nstellations as well as th\é’nce ourselves about the conjecture stated in the previous para-

BSC andC s [8, 2] channels, certainly have geometrical (topograph, however a proof of this statement is beyond the scope of

logical) differences, not known presently, and which may helf'S Paper, see [10].
elucidating the better performance achieved in the previous twoT his paper is organized as follows. In Section Il, we present
facts. In order to support this statement and to motivate goittge definitions, concepts, and results involving embedding of a
deeper into its fundamentals, consider the following case: itgsaph on surfaces; the corresponding minimum and maximum
known that the Slepian type of constellations (where ilie genus of these embedding; the corresponding homology groups
PSK is a particular case) are on the surface of-atimensional as well as the identification of the set of surfaces and the DMC
sphere, and that the QAM type of constellations are on the sahannel classes with varying degrees. In Section I, by use of a
face of a torus. Therefore, the most evident topological difystematic procedure we identify the topological structures of a
ference is the genus of the surface. To the best of our knowbmpact surface, by use of the concept df@ell embedding, of
edge, there is no previous work on the identification of the suhe graph associated to the DMC channel. As a result, the first
faces characterizing the discrete memoryless channels, or eghivnology group of the surface is equivalent to the symmetry
alently, the surfaces on which theses channels may be embgrdup associated to the signal constellation. Certainly, a sub-
ded. group of it will act transitively on the signal constellation, and

The aim of this paper is to provide the elements to realizgso will label the signals in the signal constellation. Further-
the identification of the surfaces associated to DMC channelsragre, the model of th@-cell embedding is a topological sur-
well as in the characterization of its algebraic structures. In tifgce covered by polygonal regions, and when these regions have

the same number of sides, results iegular tessellatioron the
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conclusions are drawn. We are concerned only with embedding of graphs{gn
which are a 2-cell embedding and that preserve the Euler charac-
Il. DEFINITIONS, CONCEPTS AND RESULTS teristic of2,.. Since(?,. is homeomorphic to a compact surface

In this section, we present the main concepts, definitions, afiihout border withr disjoint discs being removed, so the cri-
results related to the identification of the geometric and alg€rion to use in order to embed a gra@hon 2, is to draw the
braic structures associated to a DMC channel. interior of r regions of the model of the embedding of the graph

We say that a grapli’ is embeddedn a surface?, when on . If the embeddingz — ) is a 2-cell embedding, each
its sides and vertices meet only in its sides and vertices, that'ggion is homeomorphic to an open disc, equivalently, when re-
there is no crossing of sides. moving the interior of a region coming from a 2-cell embedding,

A complete bipartite graplwith m andn vertices, denoted topologically we are removing an open disc of the interior of the
by K,..n, is a graph consisting of two disjoint sets withand corresponding region.

n vertices, where each vertex of a set is connected by a side t®efinition 11.3: [3] Let F,,, = Q(a) = UXL, R’ be the

every vertex of the other set. model consisting ofv regions spanned by the embedding of the
Theorem I1.1:[2] For m,n > 3, the Euler characteristic of graphk,, ,, on an oriented compact surfafe We call theem-
the complete bipartite grapi,, ,, is given by bedding withr border componentsf the graphi,, ,,, r < «,
on{2,., an embedding obtained by eliminatingegions off;,,,,,
Y (Kmn) = 2{(m +n—mn/2) /2}, (1) denoted by, = Q, (a —r) = U2 R'. We call the embed-

ing K, ,, — 2 primary embeddindgor the embedding on a
face with bordef<,,, , — Q..
A DMC channel is represented by an input 3&tan output
setY and a set of transition probabilities(y/x), y € Y and
x € X. This structure allows a natural representation of a DMC
channel as a graph with vertices in the s¥teindY and sides
(transitions) connecting the vertices in each one of these sets.

where{a} denotes the least integer greater than or equal to
real number.

Definition I.1: [9] A graph G is called anembeddingn a
closed oriented varietf, if the geometric realization aff as a
1-complex is homeomorphic to a subspaceofThe compo-
nents of the complement @éf in 2 are calledegions A region
which is homeomorphic to an open disc is calledell, if the - .
entire region is a 2-cell, the embedding is said to Becall em- Definition Il.4: [3] Let X = {zy,- .z} andV =

bedding It is known that ifG' is connected, then the minimum{YL " »¥n} D€ WO Sets of vertices, with; andy; € Z. A
L . channel clasg”,, ,, is the set consisting of all channels with
embedding is a 2-cell embedding.

The minimum and the maximum bounds of the genus of thgrtmes InX andn vertices inl’, satisfying the following prop-

surfaces associated to the embedding of the complete blpar?l te)es
graphk,,, ,, are: PT) Every vertex ofX is connected to at least one vertexiof

(7) the minimum genus of an oriented surface is, [7]: and vice- vgrsa i ) .
P2) [z,y] is a transition of the&”,,, ,, channel ifz € X is con-
Im (Km.n) = {(m —2) (n —2) /4}, param,n >2, (2) nectedtoy €Y.
From Definition I1.4, we see that the channel cl&$s ., seen
where{a} denotes the least integer greater than or equal to tithe corresponding graph class, contains the complete bipartite

real number.. . _ graphK,, .. For the case in whictt,,, ,, = K,, ., we have the
(74) the maximum genus of an oriented surface is, [5]: following results:
gt (Kwn) = [(m — 1) (n — 1) /2], param,n>1, (3) _Theorgm 11.3:[3] The first homology group of a surfageis
’ given by:
where[a] denotes the greatest integer less than or equal to the 9m o
real numbet. %2 et !1; g = m;
e .. . . . m-+7r— , | =m -
(#4¢) the minimum genus of a non-oriented surface is, [8]: H (Q) = 71, if Q= S,
g (Kmn) =[(m—2)(n—2)/2]. (4) Zyo ", i Q=mP,
Theorem 11.2:[6] If a graph G has a 2-cell embedding onwhereZ™ denotes the direct sum of copies ofZ.
surfaces of genug, andg, then for every integek, g; < k < Theorem 11.4:[4] If K, ,, — ©Q(«) is @ minimum embed-
g2, G has a 2-cell embedding on a surface of gelus ding on an oriented surface arfd,,,, = 2 («) then the number

Definition 11.2: [4] A bi-dimensional variety with bordgs a  of regions ofF,,,,, is:
Hausdorff space such that each point either has an open neigh-
borhood homeomorphic to an open disc or it is homeomorphic mn/2, if m,n=(0,0),(0,2),(1,2),(2,0),(2,1),

to a half disc. The set of points having a neighborhood homeo- (2,2), (2, ) (3,2) mod4,;
morphic to an open disc is called therior of the variety, and o = (mn/?) ,ifm,n=(0,1),(0,3),(1,0),(3,0) mod4;
the set of points having a neighborhood homeomorphic to a half (mn/2) — 1/2 if m,n= (1, 3),(3,1) mod4;
disc is called théorder of the variety. (mn/2) —3/2, if myn=(1,1),(3,3) mod4,
Let Q,., » > 1, be a bi-dimensional compact variety with
border components. Each border component is a 1-conneatdtere m, n (a1,b1),- - (ag,b )mod4 means thatn

variety, that is, a circle. We consider that all embedding arenamod4 andn = bymod4, ---, or m = a.mod4d andn
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Lemma ll.1: [3] If F,,, € M, is such that,,,, = U Ry, P3) For eachv, use Theorem 1.4, and identify the model
thend>7_, i; = 2mn, thats, Frn — Q(a);
P4) For each model in P3 identify the set of surfaces generated
Fon = Riy U Ry - U Ry =y +ig + - o = 2m0. by (a), (Q (), apply Lemma 11.2 and obtain the set of sur-
In order to consider the channel claSs, ,, with all of its  f5ceg S... for the embedding of the,, ,, [P, Q] channel;
possible variations, assume that = {p:,---,pm} € @ = p5) Use Theorem I1.3 to determine the set of algebraic struc-
{q1,--- ,gm} are the set of positive integers and thét = yres associated to the,, , [P, Q], channel, that is, the set
{21, 2w} andY = {yi,---,y,} are the sets of verUcesFImm of the homology groups of the surfaces ¢f $;
of the channelC;., .. We denote byvalz the degreeof the P6) Use Lemma II.1 and identify in P4 the set of regular tessel-
vertexz. If vale; = p; andvaly; = ¢j, @ € {1, .M}, |ations withm identical regionsz,,,, with tm identical regions,
N {1,---,n}, then . Z¢m,» and use Theorem I1.3 to identify the corresponding set of
(i) We call thechannel class with degred3andQ, the set algebraic structures;
Coniin [P,Q] = Crnm [{p1,- s om ) {a1, - sam}]  (5) Rem:_;lrklll.l: The set of non—or_iented su_rface_s for the em-
bedding of the DMC channel’ is determined in an analo-
consisting of all the channels @, ,, such that, for each, € P gous way as for the oriented surfaces: the minimum genus
and eachy; € @ there arer; € X ey; € Y withvalz; = p; € for this embedding is given by4), and we assume that

valy; = g;. the maximum genus of the surface for the embedding whose
(#3) If the vertices ofC,,, are such thatalri = --- = model consists of only one region is; given by (3), then
valz, = pevaly, = --- = valy, = g, then gmP (&), (gm + 1) P(a—1),--- ,gp P (1) is the set of the
non-oriented compact surfaces for the embedding.of

Crmn [P, 4] (6)
denotes thelass of channels with degregsindg; IV. EXAMPLES OF EMBEDDED DISCRETEMEMORYLESS
(73t) If m = nandvalzy = -+ = valz, =valy; = -+ = CHANNELS
valy, = p,, thenC,, [p] denotes thelass of channels with de-

greep. The surfaces are denoted Bysphere){ (torus), P (projec-

Let (2 (a)) be the set of surfaces for the embedding of tHive plane) orK (Klein bottle). We use the notatidf2 to mean

Cyun[P. Q] channel generated by the embedding of a surfagdomeomorphic surface to the connected suknidéntical sur-
Witﬁout’border(}m 2[P,Q] = Q(a), thatis faces tof2, andk(2,. to denote that(2 hasr border components.

In order to simplify notations, we further use:
Q@) ={2(@) n(a=1),-- Qa1 (D} () 1) kQ, (a) 2 model witha regions onk, ;
é) R! £ 4-th region witht sides of the modeF,,,, for the em-

Lemma ll.2:[3] Let (Q be the set of surfaces generate
[3] (§2(c)) g edding of the grapl’,,, .

by the embedding”,,,[p] — (). If C,,[p] — kT () and
Cmlp] — hP (3) are minimum embedding, then the set of sur-
faces for the 2-cell embedding of the chanfigl[p] is A. BSC channel

The binary symmetric channel, BSC, is the simplest and the

- 9 (a—2)/2
(kDT (@ =200 } Y most employed channel in a communication systems. This
((h+4)P(B— j)>f;01} if o is even channel is used for binary transmission. This channel is a com-
m = . A\ (a— lete bipartite graptis » and the set of surfaces for its embed-
(k+9)T (o — 2z)>§:01)/2} u ging is:p grapii; o
(h+ ) P (8= )= } if ais odd.

Proposition 11.1: [3] The set of surfaces for the embedding of $2=1{5(2),51),P(2),P(1), (1)} 8
the class’y [4] is
The embedding corresponding to the seb $ire shown in

si={(@+DTE-20),fu{{e+HPE-]}. Fig L

IIl. | DENTIFICATION OF THE GEOMETRIC AND ALGEBRAIC
STRUCTURES

The necessary steps to identify the geometric and algebt
structures of a DMC channel when considering an oriented s
face are described next.

P1) Identify the graph which corresponds to thg, ,, [P, Q]
channel; this graph is a complete bipartite graph ,,, when
all the transition probabilities are different from zero, otherwis
it is a subgraph of it;

P2) Determine the minimum genys, and the maximum genus
gu of the surfaces for the embedding of the gragh, ,, as-
sociated to the”,, ., [P, Q] channel. From Theorem I1.2, if
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Making use of Theorem I1.3, the set of algebraic structures| Channel’,, || #S. | #H,, | #=,. | #51n | Nmax |

associated to the BSC channel is C, 56 15 83 | 2-1 2
N Cs 114 23 12-4 | 6-1 2

Hyy ={0,22, L2 & L} . Co 261 | 35 | 205| 133 | 3

. _ Cy 469 48 | 27-6 | 23-3 3

The set §; has only two regular tessellations, namé&ly, = s 800 63 1 387 426 )

{S[2R4], P [2R4]}, both satisfying the characteristics for use

as modulation or for the design of hard-decision quantizers. TABLE |
CARDINALITIES OF THE SETS ASSOCIATED TO THEC),;, CHANNEL

B. Ternary channel with degree 3

Applying the procedures as established in Section Ill, we de-
duce that the set of surfaces in which thg[3] channel may be gng
embedded as a 2-cell embedding is

=TT, (WK PR 2K ON e up) sp g i irg TR, K 5

Some of the embedding of the selt&e shown in Fig. 2. Besides the typical tessellations for use as modulation, there
are two tessellations which can be used for the design of hard-
decision quantizers. In order to have a precise idea of the
number of elements related to thg, [m], channels form =
4,5,6,7,8, observe in Table I, the cardinalities of the sets asso-
ciated to these channels.

In Table I, the meaning of the notation 8-3 is that there are 8
regular tessellations associatedg, however, only 3 are dis-
tinct, that is, they are models for the embeddinggfon 8 dis-
tinct surfaces of g all with 4 regions with 4, 6 or 8 sides. The
column ‘N max’ refers to the maximum number of quantizer
levels. For instance, the number 4, in the last column, means
that there exists at least one regular tessellationginvigh 32
square regions; in this case there are two, nan@&f}{BZR4][4]

and9K [32R,)1.

E44 = {Tu[4R4],2T5 [ARs],3T [4Rs] , K4 [AR4], 3P [AR,],

T{2)=R#R,, FA)=3R+R,

D. TheCs s [8, 2] channel

Fig. 2. ¢ channel The 8-level quantizer for the binary input channel corre-
sponds to thes 5 [8,2] channel. This channel and one of its
Consequently, the set of algebraic structures and of the regutdnimum embedding on the sphere are shown in Fig. 3.
tessellations associated to thg[3] channel are, respectively,

Hss = {72737 0y, 00 ® 1,79 ® 72, Ly & L3}

and
Es3 ={T[3Rs] P [3R4], K [3R¢]}.

As occurred with=s 5, the set=3 3 contains only regular
tessellations for use as modulation and for the design of hard-
decision quantizers.

C. Quaternary channel with degree 4

The C4 [4] channel is represented by the complete bipartite
grath474_ The set of surfaces in whiaf, [4] may be embed- Fig. 3. C3 3 [8, 2] channel, and one of its minimum embedding on the sphere

ded as a 2-cell embedding is
The minimum genus of the embedding on an oriented sur-

L+ -2 Yulie+npi -7 L. face for this channel is on the sphere with 8 square regions.
5 {<( DT Z»‘_O} {<( P ‘7)>]_0} Therefore, a regular tessellation. Hence, the design of this quan-
e st of gt sucues and h st of eqular e % S 100 e T e ot e
[ [ 4] ch I ivel . : : ,
tions associated to tr@, [4] channel are, respectively, which theC; g [8, 2] channel is embedded as a 2-cell embedding
is
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V. CONCLUSIONS

In this paper the geometric and algebraic structures associated
to a discrete memoryless channel were identified. The geomet-
ric structure comes from the characterization of the genus of
the corresponding surface in which the DMC channel is embed-
ded. The algebraic structure comes from the homology group
of the corresponding surface in which the DMC channel is em-
bedded. Furthermore, the regular tessellations for the design of
modulation schemes and quantizers arise of the corresponding
embedding.

The following properties were obtained for the regular tessel-
lations associated to th@&,, ,,[p], channel:

(i) the regular tessellations which are on oriented surfaces have
the same algebraic structures;

(i) there exists only one regular tessellatigjf), on an oriented
compat surface, and its algebraic structure is different from the
one obtained irfi);

(iii) the regular tessellations which are on non-oriented sur-
faces have the same type of algebraic structure;

(iv) there exists at least one regular tessella&i{in on aa non-
oriented compact surface.

We have shown that the models with two regions employed
for the embedding of thé€’; »[2,2] and Cy g[8, 2] channels on
oriented compact surfaces without border with two regions oc-
cur, respectively, orb (2) and37 (2). Consequently, the per-
formance improvement observed in Fact 1 and Fact 2, is related
to the genus of the surface where the corresponding channel is
embedded.

REFERENCES

[1] G.D.Forney, "Geometrically uniform code$ZEE Trans. Inform. Theory
v. 37, pp.1241-1260, Sept. 1991.

[2] D. Konig, Theirue der Endlichen und Unendlichen Graphéripzig,
1936, reprinted, Chelsea, New York, 1950.

[3] J.D.Lima,ldentification and Algebraic Structure of the Compact Surfaces
with and without border Derived from Embedding of Discrete Memoryless
Channels PhD Dissertation, DT-FEEC-UNICAMP, Campinas-SP, 2002,
(in Portuguese).

[4] W.S. MasseyAlgebraic Topology: An Introductigrbth ed. Springer Ver-
lag, New York, 1977.

[5] R.D. Ringeisen, "Determining all compact orientable 2-manifolds upon
which K, .» has 2-cell embeddingsjournal Combinatorial Theoryol.

12 (1972), pp.101-104.

[6] R.D. Ringeisen, "Survey of results on the maximum genus of a graph,”
Journal of Graph Theoryvol. 3 (1979), pp.1-13.

[7]1 G. Ringel, "Das Geschlecht des vo#isdigen paaren Graphen&bh.
Math. Sem. Univ. Hambuygol. 28 (1965), pp. 139-150.

[8] G. Ringel, "Der volistandige paare Graph auf Nichotorientierbaren
Flachen,”J. Reine Angew. Math220, pp.88-93.

[9] A.T. White, "Orientable embeddings of Cayley grapt&il. Amer. Math.
Soc, 69, pp.272-275.

[10] R.G. CavalcantePerformance Analysis of Signal Constellations in Rie-
mannian Varieties MS Thesis, DT-FEEC-UNICAMP, 2002, (in Por-
tuguese).



