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Abstract—The aim of this paper is to identify the algebraic and geomet-
ric structures associated to discrete memoryless channels. The procedure
employed to achieve this goal is based on the following steps: knowing the
graph associated to discrete memoryless channel, 1) to determine the set of
surfaces in which the graph is embedded; 2) to establish the set of algebraic
structures inherited by the surfaces through the first homology group; and
3) to identify the regular tessellations which may be used in the design of
modulators and quantizers.

I. I NTRODUCTION

TWO were the facts that led us to consider in this paper the
geometric and algebraic aspects associated to the surfaces

where the discrete memoryless channels are embedded.
Fact 1. Based on the error probability criterion, the communi-
cation system using QAM constellations achieve better perfor-
mance than the communication system using PSK constellations
under the constraint that the constellations have the same aver-
age energy.
Fact 2. Based on the error probability criterion, the perfor-
mance of a binary digital communication system using soft-
decision decoding (an8-level quantizer, leading to a binary
input, 8-ary output symmetric channel denoted byC2,8 [8, 2])
achieves a coding gain of up to 2 dB when compared to the per-
formance of a binary digital communication system using hard-
decision decoding (a2-level quantizer, leading to a binary sym-
metric channel (BSC), denoted byC2,2 [2, 2]).

Although, the PSK and QAM constellations as well as the
BSC andC2,8 [8, 2] channels, certainly have geometrical (topo-
logical) differences, not known presently, and which may help
elucidating the better performance achieved in the previous two
facts. In order to support this statement and to motivate going
deeper into its fundamentals, consider the following case: it is
known that the Slepian type of constellations (where theM -
PSK is a particular case) are on the surface of ann-dimensional
sphere, and that the QAM type of constellations are on the sur-
face of a torus. Therefore, the most evident topological dif-
ference is the genus of the surface. To the best of our knowl-
edge, there is no previous work on the identification of the sur-
faces characterizing the discrete memoryless channels, or equiv-
alently, the surfaces on which theses channels may be embed-
ded.

The aim of this paper is to provide the elements to realize
the identification of the surfaces associated to DMC channels as
well as in the characterization of its algebraic structures. In this
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direction, consider the binary input channel. Assume that an8-
level quantizer is used in the demodulator´s output, leading to a
C2,8[8, 2] channel having the complete bipartite graphK2,8 as
the associated graph. TheC2,2[2, 2] channel is associated to the
graphK2,2 which is embedded on a sphere with two regions,
denoted byS(2), thus on a surface of genus zero. In Section
IV we show that theC2,8[8, 2] channel may be embedded on
the following surfaces: sphere with8 regions, denoted byS (8);
torus with6 regions, denoted byT (6); two torus with4 regions,
denoted by2T (4); and three torus with2 regions, denoted by
3T (2). Note that the graphK2,2 as well as the graphK2,8 may
be embedded on a sphere. Only this fact does not lead to a
convincing answer, since the embedding of theC2,2[2, 2] and
C2,8[8, 2] channels on a sphere are realized with two and eight
regions, respectively. On the other hand, theC2,8[8, 2] channel
is used to transmit binary digits, and so the space has to be parti-
tioned into two decision regions, that is,C2,8[8, 2] ↪→ 3T (2) is
the only embedding representing this case. Since theC2,2[2, 2]
channel is embedded onS (2), denoted byC2,2[2, 2] ↪→ S (2),
and theC2,8[8, 2] channel is embedded on3T (2), denoted by
C2,8[8, 2] ↪→ 3T (2), this leads to the conjecture that the error
probability depends on the genus of the surface. Note that this
conclusion is identical to the one achieved when considering the
signal constellations.

From the intuitive point of view it is a simple matter to con-
vince ourselves about the conjecture stated in the previous para-
graph, however a proof of this statement is beyond the scope of
this paper, see [10].

This paper is organized as follows. In Section II, we present
the definitions, concepts, and results involving embedding of a
graph on surfaces; the corresponding minimum and maximum
genus of these embedding; the corresponding homology groups
as well as the identification of the set of surfaces and the DMC
channel classes with varying degrees. In Section III, by use of a
systematic procedure we identify the topological structures of a
compact surface, by use of the concept of a2-cell embedding, of
the graph associated to the DMC channel. As a result, the first
homology group of the surface is equivalent to the symmetry
group associated to the signal constellation. Certainly, a sub-
group of it will act transitively on the signal constellation, and
also will label the signals in the signal constellation. Further-
more, the model of the2-cell embedding is a topological sur-
face covered by polygonal regions, and when these regions have
the same number of sides, results in aregular tessellationon the
surface, a necessary condition to have a geometrically uniform
signal constellation, [1]. In Section IV, we show by examples
a variety of embedding of complete bipartite graphs associated
to the corresponding DMC channels. Finally, In Section V, the
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conclusions are drawn.

II. D EFINITIONS, CONCEPTS, AND RESULTS

In this section, we present the main concepts, definitions, and
results related to the identification of the geometric and alge-
braic structures associated to a DMC channel.

We say that a graphG is embeddedon a surfaceΩ, when
its sides and vertices meet only in its sides and vertices, that is,
there is no crossing of sides.

A complete bipartite graphwith m andn vertices, denoted
by Km,n, is a graph consisting of two disjoint sets withm and
n vertices, where each vertex of a set is connected by a side to
every vertex of the other set.

Theorem II.1: [2] For m,n ≥ 3, the Euler characteristic of
the complete bipartite graphKm,n is given by

γ (Km,n) = 2{(m + n−mn/2) /2}, (1)

where{α} denotes the least integer greater than or equal to the
real numberα.

Definition II.1: [9] A graph G is called anembeddingin a
closed oriented varietyΩ, if the geometric realization ofG as a
1-complex is homeomorphic to a subspace ofΩ. The compo-
nents of the complement ofG in Ω are calledregions. A region
which is homeomorphic to an open disc is called2-cell; if the
entire region is a 2-cell, the embedding is said to be a2-cell em-
bedding. It is known that ifG is connected, then the minimum
embedding is a 2-cell embedding.

The minimum and the maximum bounds of the genus of the
surfaces associated to the embedding of the complete bipartite
graphKm,n are:
(i) the minimum genus of an oriented surface is, [7]:

gm (Km,n) = {(m− 2) (n− 2) /4}, param,n ≥ 2, (2)

where{a} denotes the least integer greater than or equal to the
real numbera.
(ii) the maximum genus of an oriented surface is, [5]:

gM (Km,n) = [(m− 1) (n− 1) /2] , param,n ≥ 1, (3)

where[a] denotes the greatest integer less than or equal to the
real numbera.
(iii) the minimum genus of a non-oriented surface is, [8]:

g (Km,n) = [(m− 2) (n− 2) /2] . (4)

Theorem II.2: [6] If a graph G has a 2-cell embedding on
surfaces of genusg1 andg2, then for every integerk, g1 ≤ k ≤
g2, G has a 2-cell embedding on a surface of genusk.

Definition II.2: [4] A bi-dimensional variety with borderis a
Hausdorff space such that each point either has an open neigh-
borhood homeomorphic to an open disc or it is homeomorphic
to a half disc. The set of points having a neighborhood homeo-
morphic to an open disc is called theinterior of the variety, and
the set of points having a neighborhood homeomorphic to a half
disc is called theborderof the variety.

Let Ωr, r ≥ 1, be a bi-dimensional compact variety withr
border components. Each border component is a 1-connected
variety, that is, a circle. We consider that all embedding are a
2-cell embedding of a complete bipartite graphKm,n.

We are concerned only with embedding of graphs onΩr

which are a 2-cell embedding and that preserve the Euler charac-
teristic ofΩr. SinceΩr is homeomorphic to a compact surface
without border withr disjoint discs being removed, so the cri-
terion to use in order to embed a graphG on Ωr is to draw the
interior ofr regions of the model of the embedding of the graph
on Ω. If the embeddingG ↪→ Ω is a 2-cell embedding, each
region is homeomorphic to an open disc, equivalently, when re-
moving the interior of a region coming from a 2-cell embedding,
topologically we are removing an open disc of the interior of the
corresponding region.

Definition II.3: [3] Let Fmn ≡ Ω(α) = ∪α
i=1R

i be the
model consisting ofα regions spanned by the embedding of the
graphKm,n on an oriented compact surfaceΩ. We call theem-
bedding withr border componentsof the graphKm,n, r ≤ α,
onΩr, an embedding obtained by eliminatingr regions ofFmn,
denoted byF r

mn = Ωr (α− r) = ∪α−r
i=1 Ri. We call the embed-

ding Km,n ↪→ Ω primary embeddingfor the embedding on a
surface with borderKm,n ↪→ Ωr.

A DMC channel is represented by an input setX, an output
setY and a set of transition probabilitiesp (y/x), y ∈ Y and
x ∈ X. This structure allows a natural representation of a DMC
channel as a graph with vertices in the setsX andY and sides
(transitions) connecting the vertices in each one of these sets.

Definition II.4: [3] Let X = {x1, · · · , xm} and Y =
{y1, · · · , yn} be two sets of vertices, withxi andyj ∈ Z. A
channel classCm,n is the set consisting of all channels withm
vertices inX andn vertices inY , satisfying the following prop-
erties:
P1) Every vertex ofX is connected to at least one vertex ofY
and vice-versa;
P2) [x, y] is a transition of theCm,n channel ifx ∈ X is con-
nected toy ∈ Y .

From Definition II.4, we see that the channel classCm,n, seen
as the corresponding graph class, contains the complete bipartite
graphKm,n. For the case in whichCm,n ≡ Km,n, we have the
following results:

Theorem II.3: [3] The first homology group of a surfaceΩ is
given by:

H1 (Ω) =





Z2m, if Ω ≡ mT
Z2m+r−1, if Ω ≡ mTr

Zr−1, if Ω ≡ Sr;
Z2 ⊕ Zm+r−1, if Ω ≡ mPr

whereZm denotes the direct sum ofm copies ofZ.
Theorem II.4: [4] If Km,n ↪→ Ω(α) is a minimum embed-

ding on an oriented surface andFmn ≡ Ω(α) then the number
of regions ofFmn is:

α =





mn/2, if m, n ≡ (0, 0) , (0, 2) , (1, 2) , (2, 0) , (2, 1) ,
(2, 2) , (2, 3) , (3, 2)mod4;
(mn/2)− 1, if m,n ≡ (0,1) , (0,3) , (1,0) , (3,0) mod4;
(mn/2)− 1/2, if m, n ≡ (1, 3) , (3, 1) mod4;
(mn/2)− 3/2, if m, n ≡ (1, 1) , (3, 3) mod4,

wherem,n ≡ (a1, b1) , · · · , (as, bs)mod4 means thatm ≡
a1mod4 and n ≡ b1mod4, · · · , or m ≡ asmod4 and n ≡
bsmod4.
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Lemma II.1: [3] If Fmn ∈ Mα is such thatFmn = ∪α
j=1Rij

then
∑α

j=1 ij = 2mn, that is,

Fmn = Ri1 ∪Ri2 · · · ∪Ri2 ⇒ i1 + i2 + · · ·+ iα = 2mn.
In order to consider the channel classCm,n with all of its

possible variations, assume thatP = {p1, · · · , pm} e Q =
{q1, · · · , qm} are the set of positive integers and thatX =
{x1, · · · , xm} andY = {y1, · · · , yn} are the sets of vertices
of the channelCm,n. We denote byval x the degreeof the
vertex x. If valxi = pi and valyj = qj , i ∈ {1, · · · ,m},
j ∈ {1, · · · , n}, then
(i) We call thechannel class with degreesP andQ, the set

Cm,n [P,Q] = Cm,n [{p1, · · · , pm}, {q1, · · · , qm}] (5)

consisting of all the channels inCm,n such that, for eachpi ∈ P
and eachqj ∈ Q there arexi ∈ X e yj ∈ Y with valxi = pi e
valyj = qj .
(ii) If the vertices ofCm,n are such thatvalx1 = · · · =
valxm = p evaly1 = · · · = valyn = q, then

Cm,n [p, q] (6)

denotes theclass of channels with degreesp andq;
(iii) If m = n andvalx1 = · · · = valxm = valy1 = · · · =
valyn = p,, thenCm [p] denotes theclass of channels with de-
greep.

Let 〈Ω(α)〉 be the set of surfaces for the embedding of the
Cm,n[P, Q] channel generated by the embedding of a surface
without borderCm,n[P, Q] ↪→ Ω(α), that is,

〈Ω(α)〉 = {Ω(α) ,Ω1 (α− 1) , · · · ,Ωα−1 (1)}. (7)

Lemma II.2: [3] Let 〈Ω(α)〉 be the set of surfaces generated
by the embeddingCm[p] ↪→ Ω(α). If Cm[p] ↪→ kT (α) and
Cm[p] ↪→ hP (β) are minimum embedding, then the set of sur-
faces for the 2-cell embedding of the channelCm[p] is

Şp
m =





{
〈(k + i)T (α− 2i)〉(α−2)/2

i=0

}
∪{

〈(h + j)P (β − j)〉β−1
j=0

}
if α is even{

〈(k + i)T (α− 2i)〉(α−1)/2
i=0

}
∪{

〈(h + j)P (β − j)〉β−1
j=0

}
if α is odd.

Proposition II.1: [3] The set of surfaces for the embedding of
the classC4 [4] is

Ş4
4 =

{
〈(1 + i)T (8− 2i)〉3i=0

}
∪

{
〈(2 + j)P (8− j)〉7j=0

}
.

III. I DENTIFICATION OF THE GEOMETRIC AND ALGEBRAIC

STRUCTURES

The necessary steps to identify the geometric and algebraic
structures of a DMC channel when considering an oriented sur-
face are described next.
P1) Identify the graph which corresponds to theCm,n [P, Q]
channel; this graph is a complete bipartite graphKm,n, when
all the transition probabilities are different from zero, otherwise
it is a subgraph of it;
P2) Determine the minimum genusgm and the maximum genus
gM of the surfaces for the embedding of the graphKm,n as-
sociated to theCm,n [P, Q] channel. From Theorem II.2, if
Km,n ↪→ Ω andΩ has genusγ, thengm ≤ γ ≤ gM ;

P3) For eachγ, use Theorem II.4, and identify the model
Fmn ↪→ Ω(α);
P4) For each model in P3 identify the set of surfaces generated
by Ω(a), 〈Ω(α)〉, apply Lemma II.2 and obtain the set of sur-
faces Şm,n for the embedding of theCm,n [P, Q] channel;
P5) Use Theorem II.3 to determine the set of algebraic struc-
tures associated to theCm,n [P,Q], channel, that is, the set
Ĥm,n of the homology groups of the surfaces of Şm,n;
P6) Use Lemma II.1 and identify in P4 the set of regular tessel-
lations withm identical regions,Ξm, with tm identical regions,
Ξtm, and use Theorem II.3 to identify the corresponding set of
algebraic structures;
Remark III.1: The set of non-oriented surfaces for the em-
bedding of the DMC channelC is determined in an analo-
gous way as for the oriented surfaces: the minimum genus
for this embedding is given by(4), and we assume that
the maximum genus of the surface for the embedding whose
model consists of only one region isgM given by (3), then
gmP (α) , (gm + 1) P (α− 1) , · · · , gMP (1) is the set of the
non-oriented compact surfaces for the embedding ofC.

IV. EXAMPLES OF EMBEDDED DISCRETEMEMORYLESS

CHANNELS

The surfaces are denoted byS (sphere),T (torus),P (projec-
tive plane) orK (Klein bottle). We use the notationkΩ to mean
a homeomorphic surface to the connected sum ofk identical sur-
faces toΩ, andkΩr to denote thatkΩ hasr border components.
In order to simplify notations, we further use:

1) kΩr (α) , model withα regions onkΩr;
2) Ri

t , i-th region witht sides of the modelFmn for the em-
bedding of the graphKm,n.

A. BSC channel

The binary symmetric channel, BSC, is the simplest and the
most employed channel in a communication systems. This
channel is used for binary transmission. This channel is a com-
plete bipartite graphK2,2 and the set of surfaces for its embed-
ding is:

Ş2,2 = {S (2) , S1 (1) , P (2) , P (1) , P1 (1)} . (8)

The embedding corresponding to the set Ş2,2 are shown in
Fig. 1.

Fig. 1. Ş2,2 channel
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Making use of Theorem II.3, the set of algebraic structures
associated to the BSC channel is

Ĥ22 = {0,Z2,Z2 ⊕ Z} .

The set Ş22 has only two regular tessellations, namely,Ξ22 =
{S [2R4] , P [2R4]}, both satisfying the characteristics for use
as modulation or for the design of hard-decision quantizers.

B. Ternary channel with degree 3

Applying the procedures as established in Section III, we de-
duce that the set of surfaces in which theC3 [3] channel may be
embedded as a 2-cell embedding is

Ş3
3 = {〈T (3)〉 , 2T (1) , 〈P (4)〉 , 〈K (3)〉 , 〈3P (2)〉 , 2K (1)} .

Some of the embedding of the set Ş3
3 are shown in Fig. 2.

Fig. 2. Ş33 channel

Consequently, the set of algebraic structures and of the regular
tessellations associated to theC3 [3] channel are, respectively,

Ĥ3,3 = {Z2,Z3,Z4,Z2,Z2 ⊕ Z,Z2 ⊕ Z2,Z2 ⊕ Z3}

and
Ξ3,3 = {T [3R6] P1 [3R4] ,K [3R6]}.

As occurred withΞ2,2, the setΞ3,3 contains only regular
tessellations for use as modulation and for the design of hard-
decision quantizers.

C. Quaternary channel with degree 4

The C4 [4] channel is represented by the complete bipartite
graphK4,4. The set of surfaces in whichC4 [4] may be embed-
ded as a 2-cell embedding is

Ş4
4 =

{
〈(1 + i)T (8− 2i)〉3i=0

}
∪

{
〈(2 + j)P (8− j)〉7j=0

}
.

The set of algebraic structures and the set of regular tessella-
tions associated to theC4 [4] channel are, respectively,

Ĥ4,4 = {Z2,Z3, · · · ,Z8,Z2 ⊕ Z,Z2 ⊕ Z2, · · · ,Z2 ⊕ Z8}

ChannelCm #Şm #Ĥm #Ξm #Ξtm N max

C4 56 15 8-3 2-1 2
C5 114 23 12-4 6-1 2
C6 261 35 20-5 13-3 3
C7 469 48 27-6 23-3 3
C8 800 63 38-7 42-6 4

TABLE I

CARDINALITIES OF THE SETS ASSOCIATED TO THECm CHANNEL

and

Ξ4,4 = {T4 [4R4] , 2T2 [4R6] , 3T [4R8] ,K4 [4R4] , 3P3 [4R4] ,

2K2 [4R6] , 5P1 [4R6] , 3K [4R8] , T [8R4]
[2]

,K [8R4]
[2]

}

Besides the typical tessellations for use as modulation, there
are two tessellations which can be used for the design of hard-
decision quantizers. In order to have a precise idea of the
number of elements related to theCm [m], channels form =
4, 5, 6, 7, 8, observe in Table I, the cardinalities of the sets asso-
ciated to these channels.

In Table I, the meaning of the notation 8-3 is that there are 8
regular tessellations associated toC4, however, only 3 are dis-
tinct, that is, they are models for the embedding ofC4 on 8 dis-
tinct surfaces of Ş4, all with 4 regions with 4, 6 or 8 sides. The
column ‘N max’ refers to the maximum number of quantizer
levels. For instance, the number 4, in the last column, means
that there exists at least one regular tessellation in Ş8 with 32
square regions; in this case there are two, namely,9T [32R4]

[4]

and9K [32R4]
[4].

D. TheC2,8 [8, 2] channel

The 8-level quantizer for the binary input channel corre-
sponds to theC2,8 [8, 2] channel. This channel and one of its
minimum embedding on the sphere are shown in Fig. 3.

Fig. 3. C2,8 [8, 2] channel, and one of its minimum embedding on the sphere

The minimum genus of the embedding on an oriented sur-
face for this channel is on the sphere with 8 square regions.
Therefore, a regular tessellation. Hence, the design of this quan-
tizer can be realized by using the model as shown in Fig. 3. In
this case, the set of oriented compact surfaces without border in
which theC2,8 [8, 2] channel is embedded as a 2-cell embedding
is

Ş2,8 (O) = {S (8) , T (6) , 2T (4) , 3T (2)} .
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V. CONCLUSIONS

In this paper the geometric and algebraic structures associated
to a discrete memoryless channel were identified. The geomet-
ric structure comes from the characterization of the genus of
the corresponding surface in which the DMC channel is embed-
ded. The algebraic structure comes from the homology group
of the corresponding surface in which the DMC channel is em-
bedded. Furthermore, the regular tessellations for the design of
modulation schemes and quantizers arise of the corresponding
embedding.

The following properties were obtained for the regular tessel-
lations associated to theCm,n[p], channel:
(i) the regular tessellations which are on oriented surfaces have
the same algebraic structures;
(ii) there exists only one regular tessellationΞp

tm on an oriented
compat surface, and its algebraic structure is different from the
one obtained in(i);
(iii) the regular tessellations which are on non-oriented sur-
faces have the same type of algebraic structure;
(iv) there exists at least one regular tessellationΞp

tm on aa non-
oriented compact surface.

We have shown that the models with two regions employed
for the embedding of theC2,2[2, 2] andC2,8[8, 2] channels on
oriented compact surfaces without border with two regions oc-
cur, respectively, onS (2) and3T (2). Consequently, the per-
formance improvement observed in Fact 1 and Fact 2, is related
to the genus of the surface where the corresponding channel is
embedded.
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