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Abstract - After the initial interest caused by the appearance of turbo 
codes in 1993, special attention on the implementation has led to their 
adoption in some of the most important 3G standards. However, 
future broadband systems (with data rates up to 155 Mb/s) still 
require a better speed/latency/power performance than those found in 
current implementations. This paper discusses several design aspects 
of a broadband, low-power turbo codec owing features that enable its 
application in the incoming decade systems. The presented ideas were 
applied to an 80 Mb/s, 2 nJ/bit turbo codec core with latency smaller 
than 10µµµµs. This flexible architecture allows re-scaling towards faster 
low power implementations (beyond 1 Gb/s). 

I. INTRODUCTION 

Berrou, Glavieux and Thitmajshima showed in 1993 [1] for 
the first time a feasible channel coding scheme that 
managed to get within 1 dB from the channel capacity. The 
so-called turbo codes resulted from the combination of 
ideas already known by the coding community: 
convolutional codes, interleaving, and concatenation. 
These were combined using soft-input and soft-output 
iterative decoding in order to achieve the highest coding 
gains ever seen. However, turbo codes Bit-Error-Rate 
(BER) performance was shadowed by the high complexity 
of the decoding algorithm, allied to its low throughput and 
high latency. Several steps towards an efficient 
implementation have resulted in turbo decoding 
architectures that reach 10 Mb/s with reasonable power and 
latency [2][3]. The possibility of using turbo codes in real 
systems has triggered the interest of standardization bodies. 
A major landmark was the adoption of turbo codes as one 
of the IMT-2000 channel coding standards for the third 
generation (3G) of mobile communications systems, 
known as UMTS in Europe [4]. It was followed by the 
approval of turbo codes as the major coding scheme in the 
interactive channel for European digital video broadcasting 
(DVB-RCS) [5][6] and in the CCSDS standard for 
telemetry in space research missions [7].  However, 
broadband applications like the Wireless Local Area 
Networks (WLANs) defined in the IEEE 802.11 and 
Hiperlan2 [8][9] standards, with data rates up to 54 Mb/s 

and low latency did not adopt turbo coding. WLANs rely 
on high-order mapping constellations (16-QAM and 64-
QAM) to achieve the desired data rate when the channel 
conditions allow it. Our research on turbo coding was 
driven by the belief that using a more powerful coding 
scheme would enable 64-QAM transmission most of the 
time, thus increasing the overall transmission efficiency. 
We aimed at optimizing turbo coding implementations as 
defined in 3G standards towards specifications that met 
broadband wireless communications. The main goal was to 
implement a turbo coding demonstrator on silicon that 
could be used in future 4G standards. Although some of the 
parameters (e.g. block size) were defined based on the 
Hiperlan2 standard, the final architecture showed to be 
very flexible and easily adapted to other specifications.  
Starting with a thorough algorithm exploration that defined 
the best turbo coding scheme combined with the best set of 
parameters, we carried on with architecture exploration and 
optimization based on a systematic data transfer and 
storage exploration [10]. The result was a high-speed, low-
power, easily reconfigurable VLSI architecture for turbo 
encoding and decoding that was mapped into a 0.18µm 
turbo codec ASIC. This paper presents an overview of the 
turbo decoder architecture and a detailed insight into some 
of the design issues that had to be tackled in order to meet 
the requirements described above.                    
Section 2 introduces the adopted turbo coding scheme and 
highlights the major design issues to be considered. Section 

Figure 2.1 Turbo coding scheme. 



3 presents the design methodology and final architecture. 
Section 4 details our solution regarding two major design 
issues: interleaving and termination. Section 5 presents 
results regarding speed, area and power of the implemented 
architecture, plus an implementation loss analysis. Section 
6 presents our conclusions. 

II. ADOPTED TURBO CODING SCHEME 

Turbo coding as presented in [1] is the short name for 
parallel concatenated convolutional coding (PCCC). Its 
encoding stage consists of two constituent convolutional 
encoders operating in parallel, C1 and C2 as shown in 
figure 2.1. C1 encodes a direct version of the information, 
whilst C2 encodes a permuted version, which is obtained 
through an interleaver π. In our implementation, we used 
the same encoders as defined in the UMTS standard [5]. 
Encoded bit streams c1 and c2 are transmitted through the 
channel together with a copy of the original information s 
(systematic information). Therefore the overall code rate is 
k/n = 1/3, and the encoder outputs should normally be 
punctured when higher rates are necessary. 
In the receiver side, probabilities for systematic 
information ys and coded information y1p are fed into 
decoder D1, which provides extrinsic information (a 
refinement of ys) to decoder D2 (first half-iteration). D2 
uses this extrinsic information, the probabilities for coded 
information y2p and an interleaved version of ys in order to 
provide extrinsic information for D1 (second half-
iteration). A deinterleaver π-1 between D1 and D2 returns 
the sequences to their orginal order. We adopted the SISO 
(soft-input, soft-output) max-log MAP algorithm [11][12]. 
It produces extrinsic information based on state metrics α 
and β that are calculated in forward and backward 
recursions over the received block using branch metrics 
based on the channel values. Throughout successive 

iterations, the received information is continuously refined 
towards a final solution.  
In order to achieve throughputs of hundreds of Mb/s, the 
decoding modules D1 and D2 should be paralleled, what 
was done in our case using a windowed approach 
[13][14][15]. However, breaking the speed bottleneck 
inside the decoding modules had to be combined with 
designing a special interleaver that took into account 
maximizing the bandwidth between the decoder and the 
storage elements. This interleaver will be detailed in 
section 4.  
 
III.  DESIGN METHODOLOGY AND ARCHITECTURE 

DEFINITION 
The first step of the design was the high-level definition of 
the main algorithmic parameters. BER performance 
simulations were done using a model developed in C and 
Matlab

�
. Random bit generation, channel simulator, 

mapping and demapping were implemented using Matlab
�

 
functions, while modules to be implemented in VLSI were 
modeled using C. The interface was implemented using the 
Mathwork's MEX

�
 compiler. Such a simulator proved to 

be a fast way to simulate BERs down to 10-8 (with a 
throughput of 4 Kb/s on a PentiumIII/Linux machine). At 
this stage, serially concatenated block turbo codes (SCBC) 
[18][19] were also considered as a possible scheme to be 
implemented in VLSI. Previous analysis as described in 
[20] indicated PCCCs as the best coding scheme to be 
further optimized and transferred into silicon due to its 
more regular decoding algorithm and larger flexibility.  
Consequently convolutional turbo codes were adopted. 
Based on simulations and architecture complexity 
estimations [21], we chose block sizes ranging from 32 to 
432 with code rates 1/3,1/2,2/3 and 3/4 (corresponding to 2 
OFDM symbols in the Hiperlan2 standard) obtained via 
puncturing. 
The second step was to optimize the C description of the 
SISO decoder using an IMEC in-house systematic data 
transfer and storage exploration (DTSE) methodology [21]. 
It consists first of global data-flow transformations, where 
data transfer operations are highlighted and ordered. Then 
global loop transformations are applied, where the inherent 
recursion of the MAP algorithm was broken and paralleled. 
This included the definition of the windows architecture 
and of parameters as window size and optimal number of 
windows according to block size [20][22]. After the 
definition of the windows scheme, a 2-level memory 
hierarchy was introduced. It contains one intrinsic/extrinsic 
static RAM memory (corresponding to the interleaver 
storage modules A, B, C and D to be described in the next 
section), 2 branch metrics memories (to store systematic Figure 3.1 MAP decoder architecture: memory 

hierarchy level and data path. 



 

and coded information coming from the channel) and a 2-
level register file for the storage of state and branch metrics 
α, β and γ [11].  The first level stores metrics that have to 
be kept throughout the whole recursion, while the second 
level stores metrics to be used in the immediate next step of 
the recursion. 
The output of DTSE is a lower-level C description that 
reflects all elements that will actually be in the architecture 
(figure 3.1). We used this description and the OCAPI 
library [23], which makes possible to emulate fixed-point 
data-flow behavior at C level, to do implementation loss 
analysis and to generate data for VHDL testbenches. The 
last step of the design was to build the RTL-VHDL 
description for the turbo codec. Testing this VHDL was 
made easier by the exact correspondence between the RTL 
model and the data-flow OCAPI model. A more detailed 
description of the turbo codec architecture can be found in 
[24].   
 

IV.   INTERLEAVER DESIGN AND TRELLIS 

TERMINATION 

The BER performance of turbo coding depends greatly on 
the choice of the interleaver. Interleaving introduces the 
random component necessary for good coding schemes, as 
stated by the principles of information theory. Although a 
lot of research has been carried out regarding design of 
good interleavers, the problem of integrating them into the 
decoding system is not normally considered because it does 
not represent a special problem for non-parallel decoders. 
However, in the specific case of paralleled MAP decoders, 
some regularity in the interleaver is necessary in order to 
avoid conflicts when accessing the storage elements 
between two decoding half-iterations. Considering single-
port memories, that consume less power and are smaller 
than multi-port memories, maximum throughput is 
achieved when there are as many storage elements as 
parallel processors. In order to reach this maximum, we 
also have to guarantee that every storage element is being 
accessed just once every cycle. This is illustrated in figure 
4.1. At time instant t = 0, four parallel windows W0, W1, 
W2 and W3 get values from the extrinsic/intrinsic 
memories A, B, C and D. After one decoding pass, at time t 
= T (where T is the time necessary to produce the first 
extrinsic information), W0, W1, W2 and W3 have to store 
four extrinsic  values in A, B, C and D again. Where these 
values will be stored depends on the permutation 
introduced by the interleaver. In a random pattern, it is 
possible that two or more extrinsic values have to be stored 
into the same storage module at time T (in the example, 
windows W0 and W1 try to store their extrinsic output in 
C). Whenever such a collision occurs, the corresponding 

windows have to wait at least one cycle more before being 
able to store the information.  
It becomes clear from the previous explanation that some 
regularity should be introduced in the interleaving pattern 
in order to avoid collisions.  
We developed a systematic way to generate collision-free 
interleavers [16] that still keep good BER performance. An 
example is shown in figure 4.2 for N = 16 and W = 4 
(where N is the interleaver size and M is the window size). 
The first step consists in writing the elements of a liner 
table row by row in a 2-dimensional matrix M, with 
dimensions (N/W) x W. Because the row size is the same as 
the window size, when reading these elements column by 
column as in a basic block interleaver the result will be a 
collision-full interleaver. It means that all extrinsic 
information produced by the MAP windows at a certain 
time t is stored in the same memory element. Such 
regularity can be exploited in order to get a collision-free 
pattern if progressive cyclic shifts are applied to every 
column in M (right part of figure 4.2): 0 positions for the 
first column, one position for the second column and so on, 

Figure 4.2 Collision-free interleaver generation. 

Figure 4.1 A collision when accessing extrinsic 
memory modules. 



until (N/W)-1 positions in the last column.  
Such a regular pattern has a poor BER performance, and 
figure 4.2 shows that the first position is even not 
permuted. Nevertheless, all elements in each row in matrix 
M belong to the same window, so that the collision-free 
property is not lost if any intra-row permutation is applied. 
Moreover, the order in which cyclic shifts are applied in 
every column is not important, provided that two different 
rows are shifted by a different number of positions. This 
implies that the collision-free property is not lost if any 
inter-row permutation is applied. Such freedom can be 
exploited in order to design interleavers that have good 
spreading properties and also can mask the expected loss 
when using non-terminated encoders by avoiding edge 
effects [17]. In our implementation, we applied the same 
inter-row permutation as in the UMTS interleaver and a 
random-like intra-row permutation that mapped the last 
elements in the permutation table as far as possible to the 
last positions. The result was a collision-free interleaver 
with BER performance roughly the same as the UMTS 
interleaver. On top of that, the effect of using no 
termination was overcome. Collision-free interleavers as 
such can be easily generated with on-the-fly address 
generators based on additions and modulo operations. 
The UMTS standard adopted a rather complicated double-
termination scheme that results in 6 tail positions appended 
to the information block to be encoded. In the SNR 
calculation for the simulation comparing the double 
terminated and the non-terminated scheme (figure 4.3), a 
correction factor was applied in order to take into account 
the effect of introducing tail bits into the information to be 
transmitted. 

Both effects (special interleaver design and correction 
factor) shrank the difference between the three curves (a 
single termination simulation was also added for 
comparison) in figure 4.3 and thus justified the adoption of 
no termination in our demonstrator. 

5 - PARALLEL TURBO DECODING SCHEDULE 

In the previous section, we discussed about the collision 
problem when interleaving output data from the MAP 
windows. However, in a general turbo decoding scheme as 
the one depicted in the top part of figure 5.1, avoiding 
collisions in the interleaving step π does not guarantee a 
collision-free behavior in the deinterleaving step π-1. In the 
showed example, a dotted line indicates a data transfer 
occurring at time instant t = 0; a dashed line indicates a 
data transfer occurring at time t = 1; a full line indicates a 
data transfer occurring at time t = 2. Whenever there are 
two arrows of the same kind arriving at the same storage 
element (A, B, C or D) there is a collision when writing 
data. Whenever there are two arrows of the same kind 
leaving the same storage element there is a collision when 
reading. In the parallel decoding schedule shown above, 
interleaving and deinterleaving operations are done when 
writing into the storage elements. In this scheme, an 
extrinsic value will not necessarily be stored in the same 

Figure 4.3 Comparison between no termination, single 
and double termination for N=432, k/n=1/3, BPSK. 

Figure 5.2 Typical and optimized parallel turbo decoding 
schedule. 



position from where its correspondent intrinsic value was 
read after one decoding step. The consequence of this fact 
is that, although being π collision-free, there are 2 
collisions in π-1 (in memory elements B and D). 
We propose a novel decoding schedule in which a 
collision-free interleaving results in a collision-free 
deinterleaving (bottom part of figure 5.1). In the first half-
iteration intrinsic values are read linearly from the storage 
elements and the correspondent extrinsic values are stored 
linearly in the correspondent position. In the second half-
iteration intrinsic values are read in interleaved order and 
extrinsic values are stored in deinterleaved order. This 
implicates in storing extrinsic values in the same position 
as their correspondent intrinsic values, thus guaranteeing 
collision-free deinterleaving if the interleaving is collision-
free. 

VI. RESULTS 

The BER performance of the described architecture is 
shown in figure 6.1 (based on the OCAPI C++ 
description), together with the results obtained with the 
theoretical turbo codec (based on the C/Matlab

�
 

environment already mentioned). The implementation loss 
shown is currently being tested by running simulations 
with the ASIC testing board. Table 1 shows general 
features of the implemented 0.18µm turbo codec core 
(figure 6.2).  

TABLE I 
CORE MAIN CHARACTERISTICS 

Max. clock frequency 170.9 MHz 

Max. throughput 80.7 Mbit/s 

Latency < 10 µs 

Number of gates 373 K 

Active area  7.16 mm2 

Total die size 14.7 mm2 

SRAM size 66 two-port (36 Kbit) 

VII. CONCLUSIONS AND FUTURE  WORK 

This paper aimed mainly at describing some solutions that 
can be adopted in turbo decoders in order to make them 
suitable for future 4G systems, namely a parallel 
interleaver, an optimized parallel decoder schedule and no 
termination. These solutions combined with a systematic 
data transfer and storage exploration made possible 
designing a high throughput, low power architecture 
mapped into a turbo codec ASIC as described in [24].  The 
resulting architecture based on parallel windows can be 
easily tuned to different applications. The presented turbo 
codec proves that it is possible to have turbo coding with 
low latency, low power and high-speed. Its BER 
performance is going to be further evaluated in an IMEC 
wireless demonstrator consisting of OFDM baseband 
processing and integrated RF front-end. This set up will 
also allow power measurements. 

Figure 6.2 Turbo codec ASIC layout. 
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