
 Turbo Coding for 4G Systems: Design
Issues and Solutions

 Alexandre Giulietti12, Marius Strum1, Bruno Bougard2, Liesbet van der Perre2

1University of São Paulo (USP), Brazil
2Interuniversitary Microelectronics Center (IMEC), Belgium

Abstract - After the initial interest caused by the appearance of turbo
codes in 1993, special attention on the implementation has led to their
adoption in some of the most important 3G standards. However,
future broadband systems (with data rates up to 155 Mb/s) still
require a better speed/latency/power performance than those found in
current implementations. This paper discusses several design aspects
of a broadband, low-power turbo codec owing features that enable its
application in the incoming decade systems. The presented ideas were
applied to an 80 Mb/s, 2 nJ/bit turbo codec core with latency smaller
than 10µµµµs. This flexible architecture allows re-scaling towards faster
low power implementations (beyond 1 Gb/s).

I. INTRODUCTION

Berrou, Glavieux and Thitmajshima showed in 1993 [1] for
the first time a feasible channel coding scheme that
managed to get within 1 dB from the channel capacity. The
so-called turbo codes resulted from the combination of
ideas already known by the coding community:
convolutional codes, interleaving, and concatenation.
These were combined using soft-input and soft-output
iterative decoding in order to achieve the highest coding
gains ever seen. However, turbo codes Bit-Error-Rate
(BER) performance was shadowed by the high complexity
of the decoding algorithm, allied to its low throughput and
high latency. Several steps towards an efficient
implementation have resulted in turbo decoding
architectures that reach 10 Mb/s with reasonable power and
latency [2][3]. The possibility of using turbo codes in real
systems has triggered the interest of standardization bodies.
A major landmark was the adoption of turbo codes as one
of the IMT-2000 channel coding standards for the third
generation (3G) of mobile communications systems,
known as UMTS in Europe [4]. It was followed by the
approval of turbo codes as the major coding scheme in the
interactive channel for European digital video broadcasting
(DVB-RCS) [5][6] and in the CCSDS standard for
telemetry in space research missions [7]. However,
broadband applications like the Wireless Local Area
Networks (WLANs) defined in the IEEE 802.11 and
Hiperlan2 [8][9] standards, with data rates up to 54 Mb/s

and low latency did not adopt turbo coding. WLANs rely
on high-order mapping constellations (16-QAM and 64-
QAM) to achieve the desired data rate when the channel
conditions allow it. Our research on turbo coding was
driven by the belief that using a more powerful coding
scheme would enable 64-QAM transmission most of the
time, thus increasing the overall transmission efficiency.
We aimed at optimizing turbo coding implementations as
defined in 3G standards towards specifications that met
broadband wireless communications. The main goal was to
implement a turbo coding demonstrator on silicon that
could be used in future 4G standards. Although some of the
parameters (e.g. block size) were defined based on the
Hiperlan2 standard, the final architecture showed to be
very flexible and easily adapted to other specifications.
Starting with a thorough algorithm exploration that defined
the best turbo coding scheme combined with the best set of
parameters, we carried on with architecture exploration and
optimization based on a systematic data transfer and
storage exploration [10]. The result was a high-speed, low-
power, easily reconfigurable VLSI architecture for turbo
encoding and decoding that was mapped into a 0.18µm
turbo codec ASIC. This paper presents an overview of the
turbo decoder architecture and a detailed insight into some
of the design issues that had to be tackled in order to meet
the requirements described above.
Section 2 introduces the adopted turbo coding scheme and
highlights the major design issues to be considered. Section

Figure 2.1 Turbo coding scheme.

3 presents the design methodology and final architecture.
Section 4 details our solution regarding two major design
issues: interleaving and termination. Section 5 presents
results regarding speed, area and power of the implemented
architecture, plus an implementation loss analysis. Section
6 presents our conclusions.

II. ADOPTED TURBO CODING SCHEME

Turbo coding as presented in [1] is the short name for
parallel concatenated convolutional coding (PCCC). Its
encoding stage consists of two constituent convolutional
encoders operating in parallel, C1 and C2 as shown in
figure 2.1. C1 encodes a direct version of the information,
whilst C2 encodes a permuted version, which is obtained
through an interleaver π. In our implementation, we used
the same encoders as defined in the UMTS standard [5].
Encoded bit streams c1 and c2 are transmitted through the
channel together with a copy of the original information s
(systematic information). Therefore the overall code rate is
k/n = 1/3, and the encoder outputs should normally be
punctured when higher rates are necessary.
In the receiver side, probabilities for systematic
information ys and coded information y1p are fed into
decoder D1, which provides extrinsic information (a
refinement of ys) to decoder D2 (first half-iteration). D2
uses this extrinsic information, the probabilities for coded
information y2p and an interleaved version of ys in order to
provide extrinsic information for D1 (second half-
iteration). A deinterleaver π-1 between D1 and D2 returns
the sequences to their orginal order. We adopted the SISO
(soft-input, soft-output) max-log MAP algorithm [11][12].
It produces extrinsic information based on state metrics α
and β that are calculated in forward and backward
recursions over the received block using branch metrics
based on the channel values. Throughout successive

iterations, the received information is continuously refined
towards a final solution.
In order to achieve throughputs of hundreds of Mb/s, the
decoding modules D1 and D2 should be paralleled, what
was done in our case using a windowed approach
[13][14][15]. However, breaking the speed bottleneck
inside the decoding modules had to be combined with
designing a special interleaver that took into account
maximizing the bandwidth between the decoder and the
storage elements. This interleaver will be detailed in
section 4.

III. DESIGN METHODOLOGY AND ARCHITECTURE

DEFINITION
The first step of the design was the high-level definition of
the main algorithmic parameters. BER performance
simulations were done using a model developed in C and
Matlab

�
. Random bit generation, channel simulator,

mapping and demapping were implemented using Matlab
�

functions, while modules to be implemented in VLSI were
modeled using C. The interface was implemented using the
Mathwork's MEX

�
 compiler. Such a simulator proved to

be a fast way to simulate BERs down to 10-8 (with a
throughput of 4 Kb/s on a PentiumIII/Linux machine). At
this stage, serially concatenated block turbo codes (SCBC)
[18][19] were also considered as a possible scheme to be
implemented in VLSI. Previous analysis as described in
[20] indicated PCCCs as the best coding scheme to be
further optimized and transferred into silicon due to its
more regular decoding algorithm and larger flexibility.
Consequently convolutional turbo codes were adopted.
Based on simulations and architecture complexity
estimations [21], we chose block sizes ranging from 32 to
432 with code rates 1/3,1/2,2/3 and 3/4 (corresponding to 2
OFDM symbols in the Hiperlan2 standard) obtained via
puncturing.
The second step was to optimize the C description of the
SISO decoder using an IMEC in-house systematic data
transfer and storage exploration (DTSE) methodology [21].
It consists first of global data-flow transformations, where
data transfer operations are highlighted and ordered. Then
global loop transformations are applied, where the inherent
recursion of the MAP algorithm was broken and paralleled.
This included the definition of the windows architecture
and of parameters as window size and optimal number of
windows according to block size [20][22]. After the
definition of the windows scheme, a 2-level memory
hierarchy was introduced. It contains one intrinsic/extrinsic
static RAM memory (corresponding to the interleaver
storage modules A, B, C and D to be described in the next
section), 2 branch metrics memories (to store systematic Figure 3.1 MAP decoder architecture: memory

hierarchy level and data path.

and coded information coming from the channel) and a 2-
level register file for the storage of state and branch metrics
α, β and γ [11]. The first level stores metrics that have to
be kept throughout the whole recursion, while the second
level stores metrics to be used in the immediate next step of
the recursion.
The output of DTSE is a lower-level C description that
reflects all elements that will actually be in the architecture
(figure 3.1). We used this description and the OCAPI
library [23], which makes possible to emulate fixed-point
data-flow behavior at C level, to do implementation loss
analysis and to generate data for VHDL testbenches. The
last step of the design was to build the RTL-VHDL
description for the turbo codec. Testing this VHDL was
made easier by the exact correspondence between the RTL
model and the data-flow OCAPI model. A more detailed
description of the turbo codec architecture can be found in
[24].

IV. INTERLEAVER DESIGN AND TRELLIS

TERMINATION

The BER performance of turbo coding depends greatly on
the choice of the interleaver. Interleaving introduces the
random component necessary for good coding schemes, as
stated by the principles of information theory. Although a
lot of research has been carried out regarding design of
good interleavers, the problem of integrating them into the
decoding system is not normally considered because it does
not represent a special problem for non-parallel decoders.
However, in the specific case of paralleled MAP decoders,
some regularity in the interleaver is necessary in order to
avoid conflicts when accessing the storage elements
between two decoding half-iterations. Considering single-
port memories, that consume less power and are smaller
than multi-port memories, maximum throughput is
achieved when there are as many storage elements as
parallel processors. In order to reach this maximum, we
also have to guarantee that every storage element is being
accessed just once every cycle. This is illustrated in figure
4.1. At time instant t = 0, four parallel windows W0, W1,
W2 and W3 get values from the extrinsic/intrinsic
memories A, B, C and D. After one decoding pass, at time t
= T (where T is the time necessary to produce the first
extrinsic information), W0, W1, W2 and W3 have to store
four extrinsic values in A, B, C and D again. Where these
values will be stored depends on the permutation
introduced by the interleaver. In a random pattern, it is
possible that two or more extrinsic values have to be stored
into the same storage module at time T (in the example,
windows W0 and W1 try to store their extrinsic output in
C). Whenever such a collision occurs, the corresponding

windows have to wait at least one cycle more before being
able to store the information.
It becomes clear from the previous explanation that some
regularity should be introduced in the interleaving pattern
in order to avoid collisions.
We developed a systematic way to generate collision-free
interleavers [16] that still keep good BER performance. An
example is shown in figure 4.2 for N = 16 and W = 4
(where N is the interleaver size and M is the window size).
The first step consists in writing the elements of a liner
table row by row in a 2-dimensional matrix M, with
dimensions (N/W) x W. Because the row size is the same as
the window size, when reading these elements column by
column as in a basic block interleaver the result will be a
collision-full interleaver. It means that all extrinsic
information produced by the MAP windows at a certain
time t is stored in the same memory element. Such
regularity can be exploited in order to get a collision-free
pattern if progressive cyclic shifts are applied to every
column in M (right part of figure 4.2): 0 positions for the
first column, one position for the second column and so on,

Figure 4.2 Collision-free interleaver generation.

Figure 4.1 A collision when accessing extrinsic
memory modules.

until (N/W)-1 positions in the last column.
Such a regular pattern has a poor BER performance, and
figure 4.2 shows that the first position is even not
permuted. Nevertheless, all elements in each row in matrix
M belong to the same window, so that the collision-free
property is not lost if any intra-row permutation is applied.
Moreover, the order in which cyclic shifts are applied in
every column is not important, provided that two different
rows are shifted by a different number of positions. This
implies that the collision-free property is not lost if any
inter-row permutation is applied. Such freedom can be
exploited in order to design interleavers that have good
spreading properties and also can mask the expected loss
when using non-terminated encoders by avoiding edge
effects [17]. In our implementation, we applied the same
inter-row permutation as in the UMTS interleaver and a
random-like intra-row permutation that mapped the last
elements in the permutation table as far as possible to the
last positions. The result was a collision-free interleaver
with BER performance roughly the same as the UMTS
interleaver. On top of that, the effect of using no
termination was overcome. Collision-free interleavers as
such can be easily generated with on-the-fly address
generators based on additions and modulo operations.
The UMTS standard adopted a rather complicated double-
termination scheme that results in 6 tail positions appended
to the information block to be encoded. In the SNR
calculation for the simulation comparing the double
terminated and the non-terminated scheme (figure 4.3), a
correction factor was applied in order to take into account
the effect of introducing tail bits into the information to be
transmitted.

Both effects (special interleaver design and correction
factor) shrank the difference between the three curves (a
single termination simulation was also added for
comparison) in figure 4.3 and thus justified the adoption of
no termination in our demonstrator.

5 - PARALLEL TURBO DECODING SCHEDULE

In the previous section, we discussed about the collision
problem when interleaving output data from the MAP
windows. However, in a general turbo decoding scheme as
the one depicted in the top part of figure 5.1, avoiding
collisions in the interleaving step π does not guarantee a
collision-free behavior in the deinterleaving step π-1. In the
showed example, a dotted line indicates a data transfer
occurring at time instant t = 0; a dashed line indicates a
data transfer occurring at time t = 1; a full line indicates a
data transfer occurring at time t = 2. Whenever there are
two arrows of the same kind arriving at the same storage
element (A, B, C or D) there is a collision when writing
data. Whenever there are two arrows of the same kind
leaving the same storage element there is a collision when
reading. In the parallel decoding schedule shown above,
interleaving and deinterleaving operations are done when
writing into the storage elements. In this scheme, an
extrinsic value will not necessarily be stored in the same

Figure 4.3 Comparison between no termination, single
and double termination for N=432, k/n=1/3, BPSK.

Figure 5.2 Typical and optimized parallel turbo decoding
schedule.

position from where its correspondent intrinsic value was
read after one decoding step. The consequence of this fact
is that, although being π collision-free, there are 2
collisions in π-1 (in memory elements B and D).
We propose a novel decoding schedule in which a
collision-free interleaving results in a collision-free
deinterleaving (bottom part of figure 5.1). In the first half-
iteration intrinsic values are read linearly from the storage
elements and the correspondent extrinsic values are stored
linearly in the correspondent position. In the second half-
iteration intrinsic values are read in interleaved order and
extrinsic values are stored in deinterleaved order. This
implicates in storing extrinsic values in the same position
as their correspondent intrinsic values, thus guaranteeing
collision-free deinterleaving if the interleaving is collision-
free.

VI. RESULTS

The BER performance of the described architecture is
shown in figure 6.1 (based on the OCAPI C++
description), together with the results obtained with the
theoretical turbo codec (based on the C/Matlab

�

environment already mentioned). The implementation loss
shown is currently being tested by running simulations
with the ASIC testing board. Table 1 shows general
features of the implemented 0.18µm turbo codec core
(figure 6.2).

TABLE I
CORE MAIN CHARACTERISTICS

Max. clock frequency 170.9 MHz

Max. throughput 80.7 Mbit/s

Latency < 10 µs

Number of gates 373 K

Active area 7.16 mm2

Total die size 14.7 mm2

SRAM size 66 two-port (36 Kbit)

VII. CONCLUSIONS AND FUTURE WORK

This paper aimed mainly at describing some solutions that
can be adopted in turbo decoders in order to make them
suitable for future 4G systems, namely a parallel
interleaver, an optimized parallel decoder schedule and no
termination. These solutions combined with a systematic
data transfer and storage exploration made possible
designing a high throughput, low power architecture
mapped into a turbo codec ASIC as described in [24]. The
resulting architecture based on parallel windows can be
easily tuned to different applications. The presented turbo
codec proves that it is possible to have turbo coding with
low latency, low power and high-speed. Its BER
performance is going to be further evaluated in an IMEC
wireless demonstrator consisting of OFDM baseband
processing and integrated RF front-end. This set up will
also allow power measurements.

Figure 6.2 Turbo codec ASIC layout.

ACKNOWLEDGMENTS

This work was carried out in the context of a cooperation
program between IMEC in Belgium and LME-EPUSP
(Brazil). It was partially sponsored by the European Space
Agency (ESA) in Europe and CAPES in Brazil. The
authors would like to thanks the team that made possible
the steps towards the implementation of the turbo codec
ASIC: Francien Maessen, Veerle Derudder, Jan-Willem
Weijers, Steven Dupont, Johan David and João Paulo
Martins.

Figure 6.1 Implementation loss analysis for different code rates.

REFERENCES

[1] C. Berrou, A. Glavieux and P. Thitimajshima,
“Near Shannon Limit Error Correcting Coding and
Decoding: Turbo Codes” , IEEE International Conference
on Communications (ICC’93), Vol. 2/3, pp. 1064-1071,
Geneva, Switzerland, May 1993.
[2] Small Word Communications, "MAP04T Very High
Speed MAP Decoder", data sheet.
http://www.sworld.com.au/products.
[3] Turbo Concept, "TC1000 turbo encoder/decoder",
data sheet. http://www.turboconcept.com.
[4] Universal Mobile Telecommunications System
(UMTS); Multiplexing and Channel Coding (FDD) (3G TS
25.212 version 3.3.0 release 1999. http://www.etsi.org.
[5] C. Douillard, M. Jézéquel, C. Berrou, N. Brengarth, J.
Tousch and N. Pham, "The Turbo Code Standard for DVB-
RCS", 2nd International Symposium on Turbo Codes and
Related Topics", Brest, France, September 2000.
[6] European Telecommunication Standard Institute;
"Digital Video Broadcasting: Interactive Channel for
Satellite Distribution Channel" (DVB-RCS) EN 301 790.
http://www.etsi.org
[7] Consultative Committee for Space Data Systems,
"Recommendation for Space Data Systems Standards:
Telemetry Channel Coding", CCSDS 101.0-B-5.
http://www.ccsds.org.
[8] IEEE Std 802.11a – 1999, part 11; Wireless LAN
Medium: Access Control (MAC) and Physical Layer
(PHY) Specifications.
[9] Broadband Radio Access Networks (BRAN);
HIPERLAN Type 2: Physical (PHY) layer (ETSI 101 475
version 1.2.2 release 2001-02).
[10] Cathoor, S. Wuytack, E. de Greef, F. Balasa, L.
Nachtergaele and A. Vandecapelle, "Custom Memory
Management Methodology, Exploration of Memory
Organization for Embedded Multimedia System Design",
Kluwer Academic Publishers, 1998.
[11] L.R. Bahl, J. Cocke, F.Jelinek, and J.Raviv,
'Optimal decoding of linear codes for minimizing symbol
error rate', in IEEE Transactions on Information Theory,
vol.IT-20,pp.284-287, Mar. 1974.
[12] P. Robertson, E. Villebrun and P. Hoeher, “A
Comparison of Optimal and Sub-Optimal MAP Decoding
Algorithms Operating in the Log Domain” , IEEE
International Conference on Communications, pp. 1009-
1013, 1995.
[13] H. Dawid and H. Meyr, “Real-time algorithms
and VLSI Architectures for Soft Output MAP
Convolutional Decoding”, 6th IEEE International
Symposium on Personal Indoor and Mobile Radio
Communications (PIMRC’95), vol. 3, Toronto, pp. 193-

197, September 1995.
[14] C. Schurgers, F. Cathoor and M. Engels,
"Memory Optimization of MAP Turbo Decoder
Algorithms", IEEE Transactions on VLSI, vol.9, no. 2,
April 2001.
[15] A. Giulietti, M. Strum, B. Gyselinckx, L. van der
Perre, F. Maessen, "A Study on Fast, Low-Power VLSI
Architectures for Turbo Codes", in XV International
Conference on Microelectronics and Package, Manaus,
September 2000.
[16] A. Giulietti, L. Van der Perre, M. Strum, "Parallel
turbo code interleavers : avoiding collisions in accesses to
storage elements ", Electronics Letters, vol.38, no.5,
February 2002.
[17] J. Hokfelt, O. Edfors, T. Maseng, 'On the theory and
performance of trellis terminations methods for turbo
codes', in IEEE Journal on Selected Areas in
Communications, vol.19, no5, May 2001.
[18] R. Pyndiah, A. Glavieux, A. Picart and S. Jacq,
"Near optimum decoding of product codes", in Proc. IEEE
Globecom Conference (San Francisco, CA, Nov. 1994),
pp. 339-343
[19] J. Fang. F. Buda. E. Lemois, “Turbo Product Code:
A Well Suitable Solution To Wireless Packet Tranmission
For Very Low Error rates” in 2nd International Symposium
on Turbo Codes & Related topics (Brest, France, 2000), pp.
101-111.
 [20] A. Giulietti, J.Liu, F. Maessen, A. Bourdoux, L.
Van der Perre, B. Gyselinckx, M. Engels, M. Strum, "A
trade-off study on concatenated channel coding techniques
for high data rate satellite communications", in 2nd
International Symposium on Turbo Codes and Related
Topics, Brest, September 2000.
[21] J. Martins, A. Giulietti, M. Strum, "Performance
comparison of convolutional and block turbo codes for
WLAN applications", in 4th IEEE International
Conference on Devices, Circuits and Systems (ICCDCS) ,
Aruba, April 2002.
 [22] F. Maessen, A. Giulietti, B. Bougard, L. Van der
Perre, F. Catthoor, M. Engels, "Memory power reduction
for the high-speed implementation of turbo codes", in IEEE
Workshop on Signal Processing Systems (SIPS) Design and
Implementation, Antwerp, pp.16-24, September 2001.
[23] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde
and I. Bolsens, "A Methodology and Design Environment
for DSP ASIC Fixed Point Refinement", in IEEE Design
Automation Conference (DATE), Munchen, 1999.
[24] A.Giulietti, B.Bougard, V. Derudder, S. Dupont, J.W.
Weijers, L. van der Perre, " A 80 Mb/s Low-power Scalable
Turbo Codec Core", in IEEE Custom Integrated Systems
Conference (CICC), Orlando, May 2002.

