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Abstract— Convolutional codes over groups are defined by
Loeliger and Mittelholzer in [6] as being controllable and ob-
servable group codes. This means the convolutional codes
over groups deserve be studied from both algebraic and sys-
tem theoretic point of view. We first give a fast review of
algebraic facts which will be used to describe the encoder of
a group code. Then, we use these facts together with sys-
tem basics of group codes to show that the controllability
of these codes depends on the existence of a class of normal
series of subgroups from its state group.
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I. INTRODUCTION

Group codes were first introduced by Slepian in [1] as
the codes generated by a group of orthogonal matrices.
Years later Forney, Trott and Loeliger, in [2], [3], [4], gen-
eralized the definition of these group codes. They noticed
that the trellis section of the classical binary convolutional
codes have several group structures interacting themselves
according to rules which allow to define the convolutional
encoder using the ISO (input/state/output) model of ma-
chines and, only, the additive operation of the mod 2 ring
Zo = {0,1}. Thus, under the modern group codes point
of view, a binary convolutional encoder (n,k,m) can be
seen as a ISO machine (Z% Z7, Z3,v,w), where Z% 77,
Z% are the input(information) group, the state group and
the output(encoded) group respectively. The mappings
v:ZEXZP — 77 and w : Z§ x ZF — ZT are the encod-
ing and the next state homomorphisms, respectively, with
r = ($1,$2,. "71'.19) € Z’2€ and q = (q17q27' .. 7qm) € Zgn
This group description of binary convolutional codes allows
its generalization over arbitrary groups, beyond the binary
groups Z%. On the other hand, since a convolutional code
is a class of infinite sequences flowing through states, at
each instant of time, then under the dynamical point of
view, it has some behavior properties such as controllabil-
ity and observability. In [3], [4], by using, the dynamical
systems paradigm proposed by Willems, in [5], is given this
system theoretic treatment. Every known binary convolu-
tional code is trivially controllable and observable but with
many generalized codes based on arbitrary, especially non
abelian, groups arises the lack of well behaviorness. Thus,
towards to overcome this problem, in [6] a convolutional
code over a group is defined as a group code which is con-
trollable and observable.
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In this work we give necessary conditions for a group
code be a controllable one and therefore, it be almost a
convolutional code over a group. For this, in the Section 2
we present some algebraic facts collected from [7], [8] and
[9]. In the Section 3 firstly we present some facts collected
from [6] and some of the our basic results to show the main
proposition of this work which is the Theorem 1. Finally,
in the Section 4 some conclusions are given.

II. ALGEBRAIC PRELUDE

Given a group G, a normal series of G is a sequence
of subgroups G; C G such that G =G, D Gp_1 D --- D
G, D Gy = eg, where eg is the identity element of G and
G;_1 is a normal subgroup of G, that is, G;_1 < G; [7], [8],
[9]. Also, in the literature just cited, the subgroup gener-
ated by elements of the form ghg~'h~! is called either the
commutators subgroup or derived subgroup of G and it
is denoted by G’. Clearly, if G is abelian then G’ is reduced
to {eg}. One important property of G’, shown in [7], is its
invariance under the action of the group of automorphisms
of G, that is, ¢(G’) = G’ for all ¢ € Aut(G).

Ezample 1: Consider the group of symmetries of the
square, denoted by D8 = {Ry,Ri,Ra,R3,d;,ds,V,H},
whose generators are R; and d; via the relations;

R' = R,
& = Ry
Ridi = diR?.

By making R2 = R%,R3 = R?,dQ = R%dl,H = Rldl,
and V = R}d;; the group operation of D8 is completely
defined, for instance Ridy = RiR?d; = R3d; = V. The
lattice diagram for the subgroups of D8 is shown at Figure
1. Some normal series of this group are;

{Ro} < {Ro,Rs} <« {Ro,R3,Ri,Rs} <« Dy
{Ro} < {Ro,Rz} <« {Ro,Rs,di,d2} < Dy
{Ro} < {Ro,R2} <« {Ro,Rs,H,V} < Dg
{RO} d {R07H} < {R07R27H7V} < -DS
{Ro} < {Ro,Rg} < DS

{Ro} < Ds,

whereas the derived subgroup D} = {ghg~'h™'; g,h €
G} is D8 = {Ro,RQ}.

Definition 1: If X and @ are groups, then an extension
of X by @Q is a group G having a normal subgroup N,
isomorphic to X, with the factor group % isomorphic to
Q. [7]

Let oy : Q — % and v : N — X be the isomorphisms of

P
the above Definition 1, that is, @ = & and N 2 X. Then,
the group operation for the ordered pairs (z,q) of X x @
is defined by (1)
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Fig. 1. Latice diagram of the group Dg
(#,9)-(y,r) = (@.0(0)(¥)-<(g,7) , q7), 1)

where ¢ : Q = Aut(X) and ¢ : @ x Q@ — X are mappings
defined by (2) and (3);

2)

s(g,m) = vl (¥()-1(r)-((gr)) '], 3)

and where [ : % — G is a lifting such that [(N) = eg. In
this way, by combining both (1) and (2) and (3) we have
f:G — X x @ defined by

8(g) = 6(n.l(Ng)) = (v(n) , ¥~ (Ng)), 4)

is a group isomorphism. Therefore, given an abstract
group G, the isomorphism 8 can be used as a practical tool
to decompose each g € G as an ordered pair (z,q) with
z € X and q € Q.

On the other hand, since the operation on the extension
group X X @ depends on ¢ and ¢ we will denotate this

group as X4, that is, G é X¢cQ). Notice that if the
lifting [ : % — @ is a homomorphism then, the mapping
defined in (3) becomes ¢(g,7) = ex, the identity element of
the group X, for all ¢, € Q. Also, if [ is homomorphism, ¢
of (2) is a group homomorphism and the operation defined
by (1) is reduced to

(,9)-(y,7) = (2-0(0)(¥) > a7), (1)

which is the semidirect product operation X4 ¢). From
this, we can say the extension of groups is a generalization
of the semidirect product

Ezample 2: Consider the abstract group G = {e, a, 8, af,

v, v, By, 87,6, ad, B8, a 86,76, ayd, By5, aBv}, generated
by four elements satisfying the following relations

a®=e

B2 =e, Pa=ap,

v =e ya=oay, B8=_Py

0 =e, ba=ady, 88=086, dy=2dy

We have N = {e, v} is a normal subgroup of G. N is
isomorphic to the additive mod 2 group Z, = {0,1}, via
the isomorphism v(e) = 0 and v(8y) = 1. On the other
hand the quotient group % is isomorphic to = Dg, (Exam-
ple 1), via the mapping % : Dg — G/N defined by

Ry— N Ry — N.ad RQHNB R3»—>Na[35
di— Na dy— Naf Hw NBS Vs NG

Consider the lifting I : G/N — G defined by I(N) = e,
I(N.ad) = ad, I(N.8) = 8, I(N.af6) = afd, I(N.a) = a,
I(N.af) = apB, I(N.B6) = 86 and I(N.4) = 6.

Thus, the mappings ¢ e ¢ de (3) and (2) respectively, are
defined. Therefore the extension group Zsy Dg is isomor-
phic to G via the following mapping 6;

e (OaRO) a = (Oadl)
6 — (O,RQ) O g (1,R2)
§ = (0,V) af = (0,d2)
ay — (1,d2) ad — (0,Ry)
By — (1, R) Bs — (0,H)
v — (1,H) afy — (1,d1)
aﬂd — (07R3) a75 — (17R3)
Bys — (1,V) afyé — (1,Rq).

III. CONTROLLABLE GROUP CODES

Given a group G, consider the bi-infinite Cartesian G% =
<+ X G@x G xE % ..., which with the componentwise op-
eration induced from G is also a group. Then a group
code C is a subgroup of G%, [3], [2] [6]. For a codeword
c€Cand I CZ,let ¢|; be defined by c|j= {c ; k € I},
for instance if I = [k,00) = {k,k+ 1,...00} we will have
Yl{k,00) ={Ck>Yr+1,--- }- Now, consider the codeword sub-
sets Cr = {c € C; ¢, = eq, ifk & I}t. These subsets are
normal subgroups of C. In particular consider C(_u,0) and
Clo,00) since they are normal subgroups then the product
C(~c0,0) * C[0,00) 18 also a normal one. Hence the quotient
group @) = m is well defined and it is called the
state group of C. Given a [¢,j] C Z the [i, j]-projection
map of a codeword is projy; ;) (c) = {c, €iy1,---,¢;}. Then,
the input group X of the group code C is defined as the
projection progo,0)(C(—co,0))-

Definition 2: A group code C is said controllable when
there is an integer | > 0 such that for any j € Z and for



each pair of codewords y, y/ there is a codeword y// such
that y/|(_co,) = Yl(=c0,j) a0 YM|[j11,00) = Y/|[j+1,00)-

Definition 3: Consider a group code C C Y%, with state
group ) and input group X. Consider the extension Xy.Q).
An encoder of C is a machine M = (X,Y,Q, v,w), where v :
X = Y and w : XycQ) — @ are group homomorphisms,
with w being a surjective one.

Consider an initial state go € @ and a sequence of inputs,
i.e. information symbols, {z;}2,, ; € X, for each i € N.
Then, the encoder M responds with two sequences, {g;}$2,
and {y;}32, as follows;

@ = w(=1,q) 1= v(z1,9)
@ = w2, q) yo = v(w2,q1)
¢ = w(®igi—1) yi= v(Tigi-1)

Each element of the sequence {g;}$2, is in the state group
of C and each y; is Y.

Proposition 1: Let () be a finite sate group with iden-
tity element eg. If there is an state ¢ € @ such that
g # w(ep,w(@n, w(@p-1,...,w(@2,w(@1,eQ))...), for all
sequence {z;}?, of inputs; then the group code C is non
controllable

Proof.- Since w is surjective, then there is an ordered
pair (x1,q1) such that w(z1,q1) = q. For ¢ there is (22, ¢2)
such that w(x2,g2) = ¢1 In this iterative way we can con-
struct a sequence {(Zm,qm)}m With W(Zm,@m) = gm-1-
Since () is finite exists a subset ()4 C @) such that ¢,, € @,
for all m. Notice that ¢}, must be a proper subset of () be-
cause the condition of the Proposition. Then; for any code
y, with y1 = v(2z1,eq), and the all zeroes code y/ given by
yn = ey for all n € N; there is not any code y/ satisfying
the conditions of the Definition (2) B

Given an encoder M = (X,Y,Q,v,w) consider the
family{@;}, recursively defined by;

Qo = {eq}

Ql = {w(m,q) ; $€X7q€QO}

Q2 = {W(il»',q), $€X,Q€Q1}

S 5)
Qi - {w(m,q) ; xeXaqui—l}

Proposition 2: Some properties of the family {Q;};

1. G1<@Q
2. Q;1<4Q; ,foralli=1,2,....
3. Qi—1 = Q; implies Q; = Qit1
4. If the family {Q;}; is not a normal series then the group
code is non controllable

Proof.-
1. Let w(z,eq) and ¢ be arbitrary elements of ()1 and @,
respectively. Since w is surjective, there is p € @ such
that w(z1,p) = ¢, for some z; € X. Hence, by using
the fact that w is a group homomorphism and the oper-

ation (1) of the extension group XycQ; qw(z,eq).q™' =

w(@1,p)w(z,e0)w(@,p) ! = w((@r,p).@,eq).(z1,p) )
= w(zse,pegp™"') = w(z2,eq) € Q1. Therefore Q1 < Q.

2. In the first place we show that Q;_; C Q;, for any i.
Clearly Qo C Q1. Now, for ¢ > 1, suposse ;1 C @, for
all j < i. Given ¢ € (); There are p € ;1 and z € X
such that w(x,p) = g. On the other hand, p € Q;_1 C Q;
implies that w(x,p) = ¢ € Qit1-

On the other hand, clearly Qo < @1. For i > 1, suposse
Qj—1 C Q ,forall j <i. Givengq € Qiy1 ep € @, consider
qp.q" = w(z,p1)w(u, q)w(@,pi) ", where p1 € Qi, q1 €
Qi—1, 7,u € X. Hence, ¢.p.qg~" = w(z1,p1.q1.07 ") € Qi
because p;.qq -P1_1 €Q;i 1.

3. Given ¢ € ;41 there are p € (); e z € X such that
w(z,p) = q. Since Q; = Q;—1, p € Q;—1. Hence w(x,p) =
q€ Q.

4. Let Qs be such that Qg = U;@;. Then, Q; C Qg for
all i. If Qs = @ then {Q;}; is a normal series. If Qs # Q,
there is ¢ € @) such that ¢ € Q5. This ¢ is an isolated state
from respect the neutral eg state, as in the Proposition 1,
thus the group code is a non controllable one.ll

Proposition 3: If (); C () is invariant under the group
Aut(Q) then the group code is non controllable.

Proof.- Let G be such that G é X¢cQ. Let w: G = Q
be a surjective homomorphism from the definition of the
encoder. If 7 : G — G/N is the fixed natural homomor-
phism and ¢ : @ — G/N is the fixed homomorphism used
in (1), then the choice of w depends only on the choice of
¢ € Aut(Q). That is, w = @,tp; 17, as is shown in the Fig-
ure 2. Therefore, w(z, Qi) = wots; i7(w, Q) = 9(Q3) = Qi
forallze X. A

Y
Qo

Xe@ = 0O

Y
=1
v

G/N - 0

Fig. 2. The states homomorphism w

In particular if some @); is contained in the derived sub-
group ', which is invariant under Aut(Q), then the code
will be non controllable.

On the other hand, given the extension Xy.(), the num-
ber of transitions flowing from the neutral state eg is
| X| = | Xol|.|@1], where X is a normal subgroup of X given
by Xo = {x € X; w(z,eq) = eg}, [3]. Thus, |Q1] must
be a divisor of |X|. In the particular case of the trellis be-



ing without parallel transitions, that is | Xo| = 1, we have
Q1] = |X].

Thus we have shown the main result of this work;

Theorem 1: Let X4c() be an extension. If there is an
controllable associated group code C, then () must have a
normal series eg = Qo 4Q1 <+ -+ 4Qy_1 <@y = @ such that
1. @1 <@ and |@Q4] is a divisor of | X]|,

2. Q; ¢ @, for all i = 1,2,..., where @’ is the derived
subgroup of Q.

Ezample 3: Consider the extension ZggDg from the Ex-
ample 2.

Among all the normal series just the following ones sat-
isfy the necessary first condition of the above Theorem
o {Ro}<{Ro, Ra} <{Ro, Ra, R1, R3} < Ds,

° {Ro} < {Ro, RQ} < {Ro,RQ, dl, dg} < Dg.
. {Ro} N {Ro, RQ} N {Ro,Rg, H, V} < Ds.

But both the three series fault the second necessary con-
dition beacuse {Ry, Rz} is the derived subgroup of Ds.
Therefore there is not any controllable group code C as-
sociated to the extension ZgycDs.

IV. CONCLUSIONS

In this work we have shown the fundamentals of one
necessary test of controllability of group codes. This test
combines both the algebraic and system theoretic point of
view. We hope that this can be the basis for an algorithm
which may be implemented in GAP [10], for instance. We
also expect this work may help to achieve more elaborated
algebraic techniques to overcome the control problem of
group codes.

REFERENCES

[1] Slepian, D.; “Group Codes for the Gaussian Channels”. Bell
Systems Technical Journal, 47:575-602.

[2] G.D.Forney, “Geometrically uniform codes” IEEE Trans. In-
form. Theory; vol. IT-37 No 5, pp. 1241-1260, 1991.

[3] G.D. Forney and M.D. Trott, “The dynamics of group codes:
state spaces, trellis diagrams and canonical encoders”, IEEE
Trans. Inform. Theory, vol IT 39(5):1491-1513, September 1993.

[4] H.A. Loeliger; “Signal sets matched to groups”, IEEE Trans-
actions on Information Theory Vol 37, No 6, pp 1675-1682,
November 1991.

[5] J.C.Willems, “Models for dynamics” em Dynamics Technical
Report vol. 2, U.Kirchgraber e H.O.Walther, Eds. Wiley and
Teubner, 1989.

[6] H.A. Loeliger, Mittelholzer T.; “Convolutional Codes Over
Groups”, IEEE Transactions on Information Theory Vol IT 42,
No 6, pp 1659-1687, November 1996.

[7] Rotman J. J.; An Introduction to the Theory of the Groups,
Fourth Ed., Springer Verlag 1995.

[8] Hall M. Jr..; The Theory of Groups, MacMillan, New York, 1959.

[9] A. Garcia, Y Lequain, Algebra, um Curso de Introducio; Pro-
jeto FEuclides 18, IMPA Rio de Janeiro, 1988.

[10] The GAP Group — Groups, Algorithms, and Programming,
Version 4.2; Aachen, St Andrews, 1999.
(http://www-gap.dcs.st-and.ac.uk/ gap)

[11] G. Ungerboeck; “Channel coding with multilevel phase signal”,
IEEE Transactions on Information Theory Vol IT 25, pp 55-67,
Jan 1982.

[12] J. Bali, Rajan, S; “Block-Coded modulation using two-level
group-codes over dihedral groups”, IEEE Transactions on In-
formation Theory Vol IT 44, pp 1620-1631, July 1998.



