
Abstract - The paper presents the analysis and results of

traffic measurements in the 155 Mbit/s ATM backbone

network. The traffic is described as an ordered sequence of

real–time cells. We present an evaluation of cell flow

characteristics in a real working ATM network, analysis of

cell distribution based on experimental data, and analysis of

cell distribution based on the Markov model. We also present

another way to describe and check the cell flow in ATM

networks by definition of the function Q(l, n), designed to be

the probability of the burst of length l in n sequential slots.

Index terms - High speed networks, ATM technology, traffic

statistics, Markov chains.

1 INTRODUCTION

The comprehension of ATM traffic

characteristics is of particular importance for the future of

ATM networks in the areas of network protocols,

architecture design, congestion control and performance

modeling. To manage the traffic implications of all types

of connections, we must return to the basic principles of

traffic statistics. There are two basic modeling approaches:

simulation and analysis. Simulation models are very useful

in investigating the detailed operation of an ATM system,

which can lead to key insights into equipment, network, or

application design. A simulation is usually much more

accurate than analysis, but can become a formidable

computational task when trying to simulate the

performance of a large network. Analysis can be less

computationally intensive, but is often inaccurate.

While theoretically optimal, detailed source

modeling can be very complex and 
1
usually requires

computer-based simulation. Often this level of detail is not

available for the source traffic. Using source traffic details

and an accurate switch and network model will result in
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the most realistic results. When either traffic or switch and

network details are not available, approximations are the

only avenue that remains. Approximate modeling is

usually simpler, and can often be done using only

analytical methods.

There is also a philosophical aspect related to

how accurate the traffic model should be. As would be

expected, the more complicated the model, the more

difficult the results are to understand and calculate. The

accuracy of the switch and network model should be

comparable to the accuracy of the source model traffic. If

we only know approximate, high-level information about

the source, then an approximate, simple switch and

network model is appropriate [11].

Realistic source and switch traffic models are not

currently amenable to direct analysis. The results

presented in different publications provide only

approximations under certain circumstances. Such

approximate methods may have large inaccuracies, which

can only be ascertained by actual tests.

Investigation of cell flows in ATM networks is an

actual problem. An appropriate statistics is a basis for

developing the probabilistic models of ATM switching

nodes and end-to-end connections. The traditional data

flow models of Bernoulli or Poisson type appear to be not

realistic in ATM networks. This has been extensively

studied in recent years, and there is a large volume of

published work on the subject. New more realistic models

can be structured on the basis of tests performed on the

working network. A number of such models have been

developed recently for a mesh-oriented topology of an

ATM network that are based on the concepts of Markov

modulated Bernoulli process and Markov modulated

Poisson process. However, up to now there is lack of

experimental cell flow statistics referring to the backbone

ring topology of ATM network.

In this research we are interested in timescales in

which some form of a stochastic process is taking place.

The advantage of analyzing traffic over different

timescales is that each timescale gives information on the

validity of the assumptions used at a shorter timescale.

 The timescales at which we can find stochastic

processes that are important to our understanding of the
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traffic are cell scale and burst scale. Cell scale is the

timescale that considers the multiplexing of cells using a

first-in-first-out queuing buffer, which is at the heart of

every ATM concentrator or switch. At the burst scale, we

are interested in phenomena that can cause modulation of

the cell rate over short time periods [9].

ATM is popular now because of its high QoS

characteristic, despite its high price and complexity.

Acquisition of high-speed statistics is a critical issue in the

world of data communications. The results of real traffic

measurements in the 155 Mbit/s ATM backbone network

are presented and analyzed in this paper. The traffic is

described as a collection of real-time cell sequences with

the keeping order of cells. The evaluation of cell flow

characteristics in a real working ATM network is also

presented.

2 ORGANIZATION OF EXPERIMENTS AND

CALCULATIONS

As noted above, there is a lack of experimental

data on ATM cell flows. In order to obtain statistics on

data flows and to process it, we used an ATM backbone

network that is installed at Bar-Ilan University. The

topological state of the ATM network is presented in

Figure 1. Specifically, the University ATM network

incorporates a number of Ethernet LANs which are

allocated in different buildings on campus. In addition,

there are connections from LAN hosts to external WANs.

The various types of connections with LANs and WANs

are performed by means of ATM switches.

Figure 1.  Network topology

The following digits form a sample of real ATM

traffic:

...1010101010
171514

The exponents are run lengths; i.e., 
140 denotes a run

of 14 consecutive slots, and 1 denotes the cell.

 The first step in the evaluation of the statistical

behavior of the cell arrival process will be the building of

the k-order (k = 2) Markov chain that is characterized by

the probability transition matrix:

P = 








1110

0100

pp

pp
,

where 11p  is the probability that there was another cell

after the cell, 00p  is the probability that there was an

empty slot after an empty slot, 01p  is the probability that

there was a cell after an empty slot and 10p  is the

probability that there was an empty slot after the cell.

Another way to describe the cell flow in ATM

network is by bursts. We process the sequence of cells-

slots, searching for a specific burst (for example, burst

100001011, where 1 is cell and 0 is slot). So, we have the

sequence of “burst, no-burst” of the original cells-slots

sequence. We define the probability transition matrix for

burst scale:

P = 








1110

0100

qq

qq
,

where 11q  is the probability that there was a burst after the

burst.

We define the function P(i, n) as the probability

of i cells in n sequential slots and ( )niP ,
*

as the cell

distribution based on the Markov model. The analysis of

cell distribution based on experimental data, and the

analysis of cell distribution based on the Markov model,

are presented in [3]. Now, we define the function Q(l, n),

as the probability of the burst of length l in n sequential

slots and the function ),(
*

nlQ as the cell distribution based

on the Markov model.

We define the function Q(l, n) as the probability

of l cells in n sequential slots by the formula [5]:

Q(l, n ) = [ 01q / ( 01q + 10q )] G(l, n) + [ 01q / ( 01q + 10q )]

B(l, n).

The functions G(l, n) and B(l, n) are calculated by the

recursive formulas:

G(l, n) = G(l, n-1)
 00q k + B(l, n-1)

 01q k + G(l-1, n-1)

00q k’ + B(l-1, n-1)
 01q k’,

B(l, n) = B(l, n-1) 11q h + G(l, n-1) 10q h + B(l-1, n-1)

11q h’ + G(l-1, n-1) 10q h’,

G(0, 1)=k, B(0, 1)=h,



G(1, 1)=k’, B(1, 1)=h’,

G(l, n) = B(l, n) = 0, if l<0 or l>n.

The function G(l, n) defines the probability of l

bursts in n slots with the condition that in the first n slots

there was a burst. The function B(l, n) defines the

probability of l bursts in n slots with the condition that the

first n slots are not the burst.

3 RESULTS

In this section we present some of the results that

we have received in our experiments in the real working

ATM network. For example, the Markov matrices of the

cell scale presentation of the traffic in our experiments and

the Markov matrices of the burst scale presentation of the

ATM traffic are:

P = 







14670.0003563285330.99964367

80660.0001475719340.99985242
,

Q = 







05880.0011764794120.99882352

80070.0001461419930.99985385
.

Table 1 presents the numerical presentation of the

distribution functions P(i, n), ),(
*

niP , ),(
*

nlQ  and Q(l, n),

when the number of slots is 2390503672132, n = 2091

and l = ”100000”.

i, l P(i, n) ),(
*

niP Q( l , n ) ),(
*

nlQ

0 0.74143 0.734468 0.92814 0.926415

1 0.23189 0.226633 0.06816 0.0706579

2 0.01657 0.0349962 0.00286 0.00284457

3 0.00518 0.00360585 0.00065 8.02E-05

… … … … …

Table 1: Numerical presentation of P(i, n), ),(
*

niP ,

),(
*

nlQ  and Q(l, n).

Figures 3-5 presents the ),(
*

niP  function, the

function ),(
*

nlQ  and the experimental functions P(i, n)

and Q(l, n). We compared the experimental and theoretical

distributions on the basis of the omega-squared criteria [6].

The cell distributions based on the experimental

data, and cell distributions based on the simple Markov

model in the cell and burst scales are not close. It means

that there is a need for an experimental algorithm with a

more complicated process of theoretical definition of P(i,

n) and Q(l, n).

The distributions based on the cell scale and the

burst scale are not close enough. The reason is that the

actual burst size is hard to predict. This makes it difficult

to produce any reliable model using this technique.
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Figure 3: Graphical Representation of P(i, n), ),(
*

niP ,

),(
*

nlQ  and Q(l, n).
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Figure 4: Graphical Representation of P(i, n), ),(
*

niP , ),(
*

nlQ

and Q(l, n).



Figure 5: Graphical Representation of P(i, n), ),(
*

niP ,

),(
*

nlQ  and Q(l, n).

4 CONCLUSIONS

The results of traffic measurements in the 155

Mbit/s ATM backbone network were presented and

analyzed. The traffic was presented as a collection of real -

time cell sequence. The evaluation of cell flow

characteristics in a real working ATM network was

presented as well. The cell distributions based on

experimental data and the cell distributions based on the

simple Markov model were analyzed and presented in two

timescales: the cell scale and the burst scale.

As more information about the traffic characteristics

are obtained, these should be fed back into the modeling

effort. For this reason, modeling has a close relationship to

the performance measurement aspects of network

management. We intend to expand our results for

formulating and solving the problem of optimal resource

allocation in the ATM networks. This problem, very actual

now in ATM networking, can be solved only on the basis

of concise traffic characterization in the ATM links. The

complex Markov chain model must be further developed

to structure ATM cell flow in the backbone network.
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