NEW WAY TO ANALYZE TRIANGULAR MICROSTRIP RESONATORS

Humberto César Chaves Fernandes and Carlos Barboza Beltrão Federal University of Rio Grande do Norte, Natal – RN, Brazil

Abstract – The triangular microstrip resonator with steps in the width is a way to simulate the triangular form by the triangular discrete. The analysis is made using the full wave and concise Transverse Transmission Line (TTL) method in the Fourier Transformed Domain (FTD), in conjunction with the Moment Method. Numerical results of the resonance frequency are presented in graphics in 2D and 3D with the use of the FORTRAN Power Station and MATLAB languages.

I. INTRODUCTION

The microstrip antennas can generate different electric and magnetic fields for different applications, one way to obtain a specific field is modifying its patch that can have different geometric forms. In the present paper a triangular discrete microstrip resonator is analyzed.

This study consists of the analysis of a structure with two dielectric substrates and a rectangular patch that is changed in the number of steps in its width. A consequence of this is that with a great number "n", of steps that tends to infinite, makes the patch takes the triangular form. The triangular discrete resonator is a good approximation of the triangular continue and has a simpler analyze.

The triangular microstrip resonator with steps in the width is analyzed using the full wave efficient and concise Transverse Transmission Line (TTL) method in the Fourier Transformed Domain (FTD) [1-2], in conjunction with the Moment Method. Numerical results of the resonance frequency of this triangular microstrip resonator with steps in the width are obtained using a computational program developed in the FORTRAN Power Station language, using a 500 MHz microcomputer. These results are presented in curves in 2D and 3D obtained using the MATLAB for WINDOWS 5.0 software, showing the variations of the resonance frequency as function of the length, of the substrate thickness, of the width and of the different dielectric materials. The actual study brings a good contribution for microstrip resonators with new geometric forms, its respective peculiarities and analysis through the use of the precise full wave TTL method.

H. C. C. Fernandes and Carlos B. Beltrão, Department of Electrical Engineering - Technological Center – Federal University of Rio Grande do Norte, Natal - RN, Brazil, P. O. Box: 1583 - 59.072-970, Phone: +55 84 215.3731. E-mail: <u>humbeccf@ct.ufm.br</u>. This work received financial support by CAPES and CNPq.

The results are very satisfactory and comparisons with other results of resonators were realised [3-7]. The fig. 1 shown the superior view of a two steps in the width triangular microstrip resonator is presented.

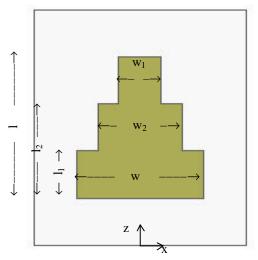


Fig. 1 Triangular microstrip resonator with two steps in the width.

II. THEORY

Considering the microstrip patch antenna as a microstrip resonator, a set of equations that represent the electromagnetic fields in the x and z direction as function of the fields in the y direction are obtained applying the TTL method. Starting from the Maxwell's equations, the components can be used to represent the electric and magnetic fields, the transverse (y) and tangential (t = x and z) components to the resonator.

After various algebraic manipulations the general equations for the structure in the FTD are obtained. For example for the x direction,

$$\widetilde{E}_{xi} = \frac{-j}{k_i^2 + \gamma_i^2} \left(\alpha_n \frac{\partial}{\partial y} \widetilde{E}_y + \omega \mu_o \Gamma \widetilde{H}_y \right)$$
(1)

$$\widetilde{H}_{xi} = \frac{-j}{k_i^2 + \gamma_i^2} \left(\alpha_n \frac{\partial}{\partial y} \widetilde{H}_y + \omega \varepsilon_i \Gamma \widetilde{E}_y \right)$$
(2)

where $\gamma^2 + k^2 = \alpha_i^2 - \Gamma^2$ and α_i is the spectral variable.

After the application of the boundary conditions, the moment method is used to eliminate the electric fields in (3) and to obtain the homogeneous matrix equation with two variable in (4), for the calculation of the complex resonant frequency.

$$\begin{bmatrix} Z_{xx} & Z_{xz} \\ Z_{zx} & Z_{zz} \end{bmatrix} \cdot \begin{bmatrix} \tilde{J}_{zg} \\ \tilde{J}_{xg} \end{bmatrix} = \begin{bmatrix} \tilde{E}_{xg} \\ \tilde{E}_{zg} \end{bmatrix}$$
(3)

Chosen appropriately the base functions and calculated the current densities in the spectral domain, are done substitutions in the equation (3).

Applying the inner product in (3) is obtained,

$$\begin{bmatrix} \mathbf{K}_{xx} & \mathbf{K}_{xz} \\ \mathbf{K}_{zx} & \mathbf{K}_{zz} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{a}_{x} \\ \mathbf{a}_{z} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$
(4)

The roots of this matrix determinant are the real and imaginary resonance frequency.

Making the number of steps very big, the patch is considered like a discrete triangle, with each value calculated as the following equations:

Calculation of the lengths,

$$l_{1} = \frac{1}{n+1}$$

$$l_{2} = l_{1} + l_{1}$$

$$l_{3} = l_{2} + l_{1}$$

$$\dots \qquad (5)$$

$$l_{n-1} = l_{n-2} + l_{1}$$

$$l_{n} = l_{n-1} + l_{1}$$

$$l = l_{n} + l_{1}$$

Calculation of the widths,

$$w_{1} = \frac{w}{n+1}$$

$$w_{2} = w_{1} + w_{1}$$

$$w_{3} = w_{2} + w_{1}$$
....
(6)
$$w_{n-1} = w_{n-2} + w_{1}$$

$$w_{n} = w_{n-1} + w_{1}$$

$$w = w_{n} + w_{1}$$

where n is the number of steps, l is the total length and w is the total width.

Calculation of the number of segments "s" of the patch,

$$\mathbf{s} = 2\mathbf{n} + 1 \tag{7}$$

III. RESULTS

The numerical results are obtained with the use of a computational program in the FORTRAN Power Station language, using a 500 MHz microcomputer. Curves are presented in 2D and 3D obtained using the MATLAB for Windows 5.0. The graphics show the resonance frequency variation as function of the length, substrate thickness and width to different number of steps. The Fig. 2 shows results in 3D of the resonance frequency as function of the length and of the width. Making the number of steps 0 is obtained a rectangular patch.

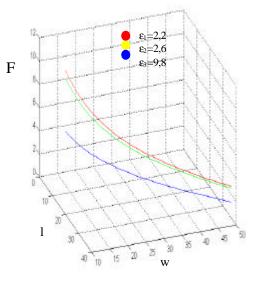


Fig. 2 Curves in 3D of the resonance frequency as function of the length and width, n = 0.

The Fig 3 shows results of the resonance frequency as function of the relative permittivity and is in accordance with results of the reference [8].

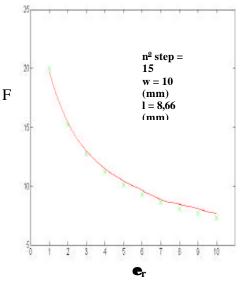
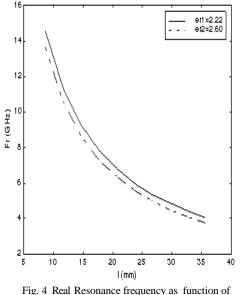



Fig. 3 Curve in 2D of the resonance frequency as function of the relative permittivity in the region 1.

The Fig.4 shows the real resonance frequency as function of the length, with $\varepsilon_{r1} = 2.22$ and $\varepsilon_{r1} = 2.60$, thickness = 0.7 mm, number of steps = 15, $\sigma_1 = \sigma_2 = 0.0$, $\varepsilon_{r2} = 1.0$, width = 14 mm and length = 8.66 mm.

the length for n = 15 steps.

Curve in 3D of the real resonance frequency is shown in fig. 5 using the following parameters, thickness = 0.7 mm, number of steps = 15, $\sigma_1 = 0.0$, $\sigma_2 = 0.0$, $\varepsilon_{r1} = 2.22$, $\varepsilon_{r2} = 1.0$, width = 10.0 mm and length = 8.66 mm.

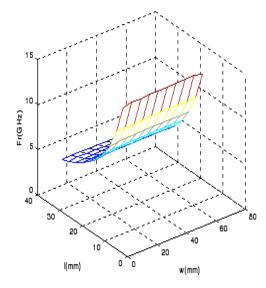


Fig.5 Curves in 3D of the real resonance frequency of a triangular microstrip resonator with n = 15 steps.

IV. CONCLUSIONS

The Transverse Transmission Line (TTL) with the Moment Method was used to analyse the triangular microstrip resonator with steps in the width. This study brings a good contribution to develop the analysis of different patch geometry with the use of the full wave method TTL which is an excellent and versatile method that can be used with and without losses as semiconductor substrate, in various structures. The results for the complex resonance frequency confirm the exactness of the TTL method applied to analysis with triangular microstrip resonators, facilitating its study and design.

Graphics in 2-D and 3-D that show the resonance frequency with relation to the patch width and length of the microstrip with steps resonator were presented.

V. REFERENCES

- Farias, A. R. N. and H. C. C. Fernandes, "Microstrip antenna design using the TTL method", 1997 SBMO/IEEE Int. Microwave and Optoelectronics Conference, Natal-RN, pp. 291-296, Aug. 1997.
- [2] H. C. C. Fernandes, J. P. Silva and G.F.S. Filho, "TTL Method Applied on Microstrip Rectangular- Patch Antenna Analysis and Design", XXVIII Moscow International Conference on Antenna Theory and Technology, Moscow-Russia, Conf. Proc. pp. 424-427 Sept. 1998.
- [3] Agrawal, A. K. and B. Bhat "Resonant Characteristics and End Effects of a Slot Resonator in Unilateral Fin Line", Proc. IEEE, Vol. 72, 1416-1418, Oct. 1984.
- [4] H. C. C. Fernandes, G. F. S. Filho, A. R. N. Farias and J. P. Silva, "High Precision Characterization and Analysis of superconducting Microstrip Patch", 4th InternationalConference on Millimeter and Submillimeter Waves and applications, San Diego-USA, pp. 128-129, Jul. 1998.
- [5] Eritônio F. Silva and Humberto C. C. Fernandes, "Efficient Analysis of Microstrip Rectangular-Patch Antenna and Arrays", AP-2000, Conf. Proc pp. 315-319, Davos, Swisse, April, 2000.
- [6] Humberto César Chaves Fernandes, Sidney A. P. Silva and Luiz Carlos de Freitas Júnior, "Computational *Program to the finline Coupler in High frequency*", VIII SBMO-Simpósio Brasliero de Microondas e Optoeletrônica, Joinvile-SC. Proc. pp. 256-259, Jul. 1998.
- [7] Humberto C. C. Fernandes, Sidney A. Pinto and Eritonio F. Silva, "A New Educational Program for Microstrip Antenna Arrays", ICECE'99 – Int. Conference Eng. Comput. Educational, Rio de Janeiro- RJ, Conf. Proc pp. 519.1-519.4, August 1999.
- [8] I. J. Bahl, P. Bhartia, "Microstrip Antennas", Artech House, 1980.