
MNT23D: A Graphical User Interface for

Formulation and Element Matrix Assembling in

the Finite Element Method
K. Z. Nóbrega, IEEE Student Member, A. M. Frasson, H. E. Hernández-Figueroa, IEEE Senior Member

UNICAMP-FEEC-DMO , Albert Einstein Avenue 400 Caixa Postal: 6101 CEP: 13083-970

Abstract — This paper discusses an integrated Finite Element

Modeling package to derive an to analyze two and three-

dimensional formulations of Maxwell’s equations governing

classical electromagnetic propagation. In fact, the interactive

developer here presented converts the point-wise partial differential

operators to equivalent scalar integral operators, retrieves results,

stores them in an external database, and finally calculates and

exports the element matrices, necessaries to the Finite Element

Method (FEM), in pre-established programming language formats,

such as FORTRAN and C. The element matrices are calculated in

an exact and efficient manner. Our developer takes into account

linear and quadratic nodal elements, which can be triangles (2D) or

tetrahedrons (3D). For the former, line and surface integrals are

considered, while for the latter, surface and volume integrals are

computed. This interactive developer is intended to alleviate the

considerable programming effort normally demanded by the FEM,

which is a powerful numerical tool widely used in engineering and

applied sciences. Therefore, this developer may be beneficial for

either professional and educational FEM activities. Here, the

usefulness of the present developer is demonstrated through key

electromagnetic examples.

Index Terms Finite Element Method, MATLAB, Symbolic

Calculation, Education, Electromagnetics.

I. INTRODUCTION

Technological advances in computing technology have

made a variety of tools available for solving complicating

numerical problems in engineering, applied and earth

sciences. Certainly, two of the most significant numerical

methods available for that purpose is the FEM and the

Finite Differences.

Currently, the FEM has been widely used and its

fundamentals explored and modified to develop new and

powerful numerical techniques. In fact, there are number

of finite element analysis (FEA) package available [1]-

[3], they are either bundled with solid modeling tools or

distributed as stand-alone packages. A first problem with

FEA software is that it can be quite complicated to use

and most of the time engineers who have some

knowledge of finite element theory are needed to use

them and interpret the results. As a second point, these

software packages are generally too specialized and

K. Z. Nóbrega, bzuza@dmo.fee.unicamp.br, A. M. Frasson,

frasson@dmo.fee.unicamp.br, H. E. HernándezFigueroa,

hugo@dmo.fee.unicamp.br , Tel +55-19-37883735. This work

has the financial support of FAPESP Project 00/04593-6, and

CNPq.

expensive, not being an interesting tool to that people who

would like to develop their own programs, formulations

and improve their capabilities on the FEM.

The MNT23D (Mounting Nodal formulations on 2 and

3 Dimensions) graphical user interface (GUI) provides a

common interface to the user who would like to elaborate

their own formulation (be scalar or vectorial) and after to

perform an exact computer calculation of the element

matrices in the FEM. To do this, we have made use of the

mathematical and visualization capabilities of MATLAB

that are tightly integrated into our developer, simplifying

the data analysis and the presentation of the results.

The programs available under the MNTNOD23D

interface have been naturally divided into two categories:

sources codes to manipulate and to become discrete

vectorial and scalar operators (inner product, curl,

gradient, divergent, and so on), making possible to the

user create his own formulation and operators; the other

code calculates by itself the so-called element matrices

(EM’s), once there are already defined the matricial

operators desired. As a point of fact, both programs can

run independent from each other, e.g., it is not necessary

to create operators to calculate the EM’s. It will become

clear with the examples shown later.

In the remainder of this paper, we will briefly describe

the basic theory of the FEM which makes possible to

discuss, by using of some examples, the capabilities of the

codes executed by MNTNOD23D. Some of the examples

will be integrated, so that the output of one program will

be the input for another program, making explicit the

MNT23D’s high level of integration. Finally, we will

discuss the main characteristics of our developer, showing

that it is possible to use it not only in electromagnetic’s

problems, but in other fields also.

II. NODAL FEM FORMULATION

Different kinds of elements are available in the FEM

formulation, like rectangular, quadrilateral, rectangular

bricks, hexahedral, tetrahedral and so on. However, in this

paper we summarize the study only for the two main

elements that are widely used in electromagnetics, optics

and microwaves, i.e., triangular and tetrahedral elements,

for 2D and 3D respectively.

To solve an equation with FEM it is necessary to

define an equivalent integral formulation. It can be done

using a variational method or the Galerkin Method. In this

paper will focus our attention only on the latter one.

In a first step, a differential equation like (1) must be

defined

 LΦ=f (1)

where L is the differential operator, Φ is the field and f
the source.

Applying the Galerkin formulation to (1) the following

equivalent integral formulation is obtained,

 Ω=ΩΦ ∫∫ ΩΩ
dwdw . f . L (2)

where w is the weight or test function and Ω is the domain

of the problem.

In the FEM, the problem’s interior domain is

partitioned into a number of logically regular and

contiguous subdomains called elements (Ωi), see Fig. 1,
and the field is approximated by an expansion of the form

 ∑
=

=Φ
N

j
jjc

1

φ (3)

φj being a set of basis functions, N the total number of

nodes and cj the unknown coefficients defined over the

triangle or tetrahedral nodes. Notice, that a nodal

formulation is adopted here, therefore, it does not apply

for edge elements or vector formulation.

Fig.1 – Ω-Domain ’s discretization.

 Substituting (3) in (2) we find the expression

 ∑ ∫∫
= ΩΩ

Ω=Ω
N

j
j wwc

1

j d . fd . Lφ (4)

which is one equation of N unknowns. To get a set of N
independent equations one can take the same set basic

functions for the weight function, i.e.,

 iφω = (5)

Rewriting the left side of (4) as follows,

 ∑ ∫∫
= ΩΩ

Ω=Ω
NEL

e e

e
e
i

e
j

1

ij d . Ld . L φφφφ (6)

In (6)
e
jφ is the part of φ j in the element e, in such a way

that,

 ∑
=

=
NEL

e

e
jj

1

φφ .

The integrals over the domain Ω e are called element
matrices. These matrices are represented in (6) by

 ∫
Ω

Ω
e

e
e
i

e
j d . L φφ . (7)

It is important to emphasize that such integrals can spend

some time because it is common the presence of complex

operators. Only with the purpose to facilitate the

numerical integration, a transformation of a given integral

defined on the domain Ωe , to another on the domain Λ.

The domain Λ is called the master element. As a matter

of fact, no transformation of the physical domain is

involved in the finite element analysis.

The transformation between Ωe and Λ (or

equivalently, between (x, y, z) and (ξ η, θ)) is

accomplished by a coordinate transformation of the form

∑

∑

∑

=

=

=

=

=

=

m

j
j

e
j

m

j
j

e
j

m

j
j

e
j

Lzz

Lyy

Lxx

1

1

1

),,(

),,(

),,(

θηξ

θηξ

θηξ

 , (8)

where
jL denotes the well known area or volume

coordinates [4] and m an index that can be 3 or 4,

depending on the domain of discretization.

 In typical FEM problems, the integrand in (6) usually

has differential operations in x, y or z , the so-called

global derivations. In the way it is important to define and

make explicit the relation

 []

∂∂
∂∂

∂∂

=

∂∂
∂∂

∂∂

z

y

x

J
e

e

e

e

e

e

/

/

/

/

/

/

φ
φ
φ

θφ
ηφ
ξφ

 , (9)

where [J] is known as the Jacobian matrix and given by

 []
e

zyx

zyx

zyx

J

∂∂∂∂∂∂
∂∂∂∂∂∂
∂∂∂∂∂∂

=
θθθ
ηηη
ξξξ

///

///

///

 . (10)

Once defined the global differentiation it is also as

important as to define the integral relation

∫∫∫∫∫∫
ΛΩ

= θηξθηξθηξ dddJfdxdydzzyxf
e

),,(),,(),,((11)

where),,(θηξJ is the determinant of the Jacobian’s

matrix, known as the Jacobian. Equation (11) has implicit

and important characteristics:

 Usually,),,(zyxf has an integrand that gets double

differentiation. However, for the usual linear

approximation of the basic functions,
e
jφ , this operation is

not possible. In this way, it is necessary to convert the

point-wise partial differential operator to an equivalent

but “weaker” scalar integral operator admitting lower

order derivatives. It is done using integration by parts,

which rewrite the double differentiation in a product of

two first differentiations applied simultaneously in both

weight and basic functions. Because of it, it is introduced

a new integrand defined along the boundary (Γe) of Ωe .

Thus, for the 2D domain, it is possible an integral of line

along the edge of an element, and for the 3D domain, this

is an integral along a surface.

 As the second point, there is the value of),,(θηξJ . In

fact, |J| is twice the triangle area, i.e., 2Ae , and six times

the tetrahedral volume (6Ve) (both defined in Ωe) for the

2D and 3D domain, respectively. However for the

boundary Γe , |J| is equal to the length of the edge of the

triangle for the 2D domain, and two times the face’s area,

2Af , for the 3D domain [1] .

III. MNT23D FUNDAMENTALS

Concerning the theoretical description of FEM, our

developer is devoted to the calculus of (1) and (7). In fact,

from (1) we expect to give to the user the mobility to

create and/or to manipulate vectorial and scalar operators,

in such a way that after that it is possible to evaluate the

integral operators, represented by (6), for the simplified

field basis, giving an algebraic system of equations on the

nodal field vector and its first-order derivatives.

A customized FEM package intended for designing has

to be developed to provide fast and applicable design in

an user-friendly environment. Thinking about it, we have

used the MATLAB, a well known interpreter used in

engineering, physics, chemistry, etc., and its Symbolic

Toolbox that became possible the high level of

integration.

Using MATLAB’s graphical functions that integration

was facilitated. It included all information associated with

program’s presentation, the dataflow, designing,

numerical calculations, etc. In this way, we have done a

GUI which modularize the process. The two basic’s

layouts of our developer are illustrated on Fig. 2.

The Illustration of Fig. 2 leads someone to have a main

idea about how our developer works. The develop is

shared in two basic GUI’s. Beginning with Fig. 2a, one

has a series of vectorial operators, unit vectors, generic

operations, etc. in such a way that it is possible to

manipulate two and three dimensional vectorial operators

(like curl, divergent, inner dot, transverse curl, transverse

divergent) and/or scalar ones such as gradient, transverse

gradient, multiplication, difference, sum, with these

operation applied in unit vector, basis field, weight

function, and multiplication by tensors or scalar constants.

Once it was previous done (or not), one is able to

import (or not) such operators exported in a file, into the

format .KF, and use these results to calculate the EM’s in

a very fast and exact way. The matrices are calculated

with the second GUI (see Fig. 2b). Now, for the sake of

brevity, we will not explain all the functions presented in

those layout, but instead of it only the most important

characteristic we will presented.

Fig. 2. The MNT23D’s Layout. The top figure shows the program which

manipulates the operators. The button figure is the element matrix’s

assembler.

Both interface are point-and-click and shows the last

command line executed by the user, which warn a

possible mistake. Also, if some incompatible operation is

done, the programs stop their execution printing or not an

error message. After the execution is done, the programs

print a message in the screen to the user.

Concerning the EM calculation, the developer works

with triangular and tetrahedron nodal elements for 2D and

3D domains, respectively. The user also has the

possibility to set an appropriate accuracy order for those

elements, choosing between linear or quadratic basis

functions. A third important characteristic is the capability

to evaluate line and surface integrals for 2D and surface

and volume integrals for 3D domains, which are specially

helpful when the complexity of the mathematical model

increases. The analytical by-hand computation of these

integrals may be cumbersome and induce to erroneous

results, so, the present developer helps the user in this task

avoiding such undesired mistakes.

As a last facility, the element matrices output can

easily be exported to FORTRAN, C and MATLAB,

emphasizing that saving the EM in a file in any of these

formats, this matrix keep its name into the language

format. In other words, considering the possibility to have

the necessity to generate many matrices, if someone

exports the matrix to the file A.m , the elements of the

matrix are A(1,1), A(1,2), ... and so on, saving time of the

user to open each file generated and rename the matrices.

IV. EXAMPLES

In this section, it will be shown one single basic

example on 2D discretization but it is a very complex

representation for our purpose, becoming clear what the

program provides to the user, and its functionalities. In

fact, it makes possible to express: the mobility possible to

operate and to create vectorial operators followed by

generic operations; the calculation of element matrices of

surface and line domains; the differences between linear

or quadratic field approximations; the exportation’s

format in different languages and the matrice’s name

according to the saved file name.

Example 1: To illustrate the use of our program, it will

be considered the formulation proposed in [5]. That

formulation is described for analysis of leaky optical

waveguides with arbitrary cross-section. The formulation

adopted solves the following equation involving the

transverse magnetic field components, Ht :

0)]([-

)]([)(

122

0

2

0

11

=×⋅×−

⋅∇×∇⋅×−×∇×∇
→

−
→

→
−

→
−

ttt

ttttttzzt

HzzkHk

HzzH

εγ

εε
 (12)

, where γ is the (complex) propagation constant and k0 the

wavenumber. In addition, it was considered a (complex)

permivittivity tensor ε of the form,
→→

+= zzzzt εεε , being

ε t an arbitrary 2x2 tensor given by
→→→→→→→→

+++= yyxyyxxx yyyxxyxx εεεεε .

Applying the Galerkin’s Method, one can easily find a

set of integrals similar to that shown in (13)

⋅×⋅×⋅∇=

×⋅×∇=

⋅×⋅×−=

⋅−=

×⋅×∇⋅⋅∇=

×∇⋅×∇=

→→

→

→→

→

∫
∫

∫∫
∫∫

∫∫
∫∫

nWzKHL

nWHKL

WHzKzkS

WHkS

WzKHS

WHKS

tt
T
ttzttt

tttttzz

tttttt

tttt

tt
T
tttzttt

ttttttzz

)]}([){(

)()(

]})([{

)(

)]()[()(

)()(

2

1

2

04

2

03

2

1

where 1−= ttttK ε , 1−= zzzzK ε ,
→
z is the normal vector in

the z direction, and
→
n the normal vector associated to the

boundary. The integral’s denomination was given because

they are surface and line integrals, respectively. Also from

(13), Htt and Wtt refers to the magnetic field, H, and the

transverse weight function. In [2] the Galerkin’s Method

was applied only to the transverse fields. The tt index was

used to represent the transverse coordinates which could

be oriented in the x or y direction. We will make the

assumption that the material characteristics do not change

inside an element.

To illustrate the examples concerning the manipulation

and creation of operators, we will take (13.a) and (13.b).

For the former, there are shown in (14) only the response

that our program returns to the user in the MATLAB’s

prompt

H_X_W_X = +kzz*dif(Fi(j),Y)*dif(Fi(i),Y)
H_X_W_Y = -kzz*dif(Fi(j),Y)*dif(Fi(i),X)
H_Y_W_X = -kzz*dif(Fi(j),X)*dif(Fi(i),Y)
H_Y_W_Y = +kzz*dif(Fi(j),X)*dif(Fi(i),X)

It was done manipulating the layout of Fig. 2a, using

the pop-up buttons. From (14) it must be noticed the

indexes following H and W. The first line of (14) is the

result considering Hx and Wx , and so on. In this part, we

have seen that the program has given to us the four

possible combinations (H and W are transverse functions).

The word dif means differentiation and Fi(i), Fi(j) are the

numerical representation of W and H (according to (3)

and (6)), respectively, that could be used or not later.

Considering (13.b) with the same procedure

commented before but, now, saving the results on the file

S2.kf, and looking inside of it, someone will see

somewhat similar to:

% OP 1=
% K_tt
% Transposed
% multiplied by
% VECTORIAL PRODUCT of

(13.a)

(13.b)

(13.c)

(13.d)

(13.e)

(13.f)

(14)

% unit vector in z direction (a_z)
% AND
% weight_t

% OP 2=
% TRANSVERSE CURL OF
% OP1

% OP 3=
% unit vector in z direction (a_z)
% multiplied by
% TRANSVERSE DIVERGENT OF
% field_t

% OP 4=
% INNER PRODUCT of
% OP2
% AND
% OP3

H_X_W_X=+(dif(kyy*Fi(i),X)-dif(kyx*Fi(i),Y))*dif(Fi(j),X)
H_X_W_Y=+(-dif(kxy*Fi(i),X)+dif(kxx*Fi(i),Y))*dif(Fi(j),X)
H_Y_W_X=+(dif(kyy*Fi(i),X)-dif(kyx*Fi(i),Y))*dif(Fi(j),Y)
H_Y_W_Y=+(-dif(kxy*Fi(i),X)+dif(kxx*Fi(i),Y))*dif(Fi(j),Y)

From this example, someone should see that every file

saved in the KF format has a header which describes all

operations done until the generation of the final

expression. In fact, the header is the step by step

manipulation of the operators, and assure the user about

what was done.

For both cases illustrated before, (14)-(15), it must be

seen that the final expressions have transverse

components, which, from the FEM theory explained in

Section II, are the so-called element matrices, EM’s.

However, this is not the most common way to define

an EM because, for the examples above, our results

consider the material characteristics (kyy , kyx , kxx , etc).

In the books, it is usual the definition of an EM without

any conditions, or material characteristics embedded on it.

The authors say that if these characteristics changes inside

of a single element e, a finite element program running

will produce wrong results. That’s true!

∫

∫

∫∫

∫∫

∫∫

∫∫

Γ

Γ

Ω

Ω

Ω

Ω

Γ
∂

∂
=

Γ
∂

∂
=

∂
∂

∂
∂

=

∂
∂

∂
∂

=

∂
∂

∂
∂

=

∂
∂

∂
∂

=

e

ei

T
je

ij

e

ei

T
je

ij

e

i

T
je

ij

e

i

T
je

ij

e

i

T
je

ij

e

i

T
je

ij

d
y

FF

d
x

FF

dxdy
yy

SS

dxdy
xx

SS

dxdy
xy

SS

dxdy
yx

SS

}{
}{

2

}{
}{

1

}{}{
4

}{}{
3

}{}{
2

}{}{
1

φ
φ

φ
φ

φφ

φφ

φφ

φφ

 i, j=1, 2, 3 (linear triangular element) or
 i, j= 1,2, 3, ... 6 (quadratic triangular element)

However for classical and practical considerations in

optics, when someone is building a source-code program

he will certainly deal with expressions similar to those

one found by our developer.

Then, if someone decide to extract the element

matrices of (13) in their simplest form, he will find only

six basic element matrices, as those one showed in (16).

In fact, to finalize this brief discussion, our developer

attends any conditions. It means, if the user decides to

calculate the element matrices directly from the output of

(14) or (15), for example, there is no problem. This

example was done using (13.c) and for the sake of

brevity, its partial result is shown below. It is exported to

the MATLAB format, linear field approximation, and

surface integral.

%%%%% 2D-AREA INTEGRATION OF %%%%%
%% (-k0^2*fi(j)*fi(i))

H_X_W_X(1,1)=-1/6*Ae*k0^2;
H_X_W_X(1,2)=-1/12*Ae*k0^2;
.
.
.
H_X_W_X(3,2)=-1/12*Ae*k0^2;
H_X_W_X(3,3)=-1/6*Ae*k0^2;

%%%%% 2D-AREA INTEGRATION OF %%%%%
%% (0)

H_X_W_Y(1,1)=0;
.
.
.
H_X_W_Y(3,3)=0;

%%%%% 2D-AREA INTEGRATION OF %%%%%
%% (0)

H_Y_W_X(1,1)=0;
.
.
.
H_Y_W_X(3,3)=0;

%%%%% 2D-AREA INTEGRATION OF %%%%%
%% (-k0^2*fi(j)*fi(i))

H_Y_W_Y(1,1)=-1/6*Ae*k0^2;
H_Y_W_Y(1,2)=-1/12*Ae*k0^2;
H_Y_W_Y(1,3)=-1/12*Ae*k0^2;
H_Y_W_Y(2,1)=-1/12*Ae*k0^2;
H_Y_W_Y(2,2)=-1/6*Ae*k0^2;
H_Y_W_Y(2,3)=-1/12*Ae*k0^2;
H_Y_W_Y(3,1)=-1/12*Ae*k0^2;
H_Y_W_Y(3,2)=-1/12*Ae*k0^2;
H_Y_W_Y(3,3)=-1/6*Ae*k0^2;

Also, if the user wants to calculate the EM just like in

(16), it will be done using the layout of Fig. 2b. The

switching between one program or another is done by a

simple click of mouse, without leaving the ambient.

To illustrate the functionality of our second program

(see Fig. 2b), we will now calculate (16.c) and save the

EM in C format (file called SS1.c), evaluating it with a

(15)

(16.a)

(16.b)

(16.c)

(16.d)

(16.e)

(16.f)

quadratic field’s approximation. The partial file’s contents

is shown below.

//Differentiation of Fi-i with respect x
//multiplied by
//Differentiation of Fi-j with respect x

ss1 [0][0] = pow(-y3+y2,2.0)/Ae/4.0;
ss1 [0][1] = (y1-y3)*(-y3+y2)/Ae/12.0;
ss1 [0][2] = -(-y3+y2)*(y1-y2)/Ae/12.0;
ss1 [0][3] = -(y1-y3)*(-y3+y2)/Ae/3.0;
ss1 [0][4] = 0.0;
.
.
ss1 [5][3] = -2.0/3.0*(y1-y3)*(y1-y2)/Ae;
ss1 [5][4] = -2.0/3.0*(y1-y3)*(-y3+y2)/Ae;
ss1 [5][5] = 2.0/3.0*(y1*y1-y1*y3-y1*y2+y3*y3-
y3*y2+y2*y2)/Ae;

From this example, let’s pay attention the EM’s name,

the same of the file saved. It is done automatically. As

expected, the EM is in the C format, including the head.

In fact, it always happens independent if it is in C,

FORTRAN or MATLAB.

In our next examples, we will show the result of a

difficult and not common EM: the boundary integral. For

the 2D case, an integral of line. For this case, let’s save

the file in MATLAB format, called FF1.m, and consider

a linear field approximation.

%Differentiation of Fi-j with respect x
%multiplied by
%Fi-i

FF1_12(1,1)=1/4*h12/Ae*(-y3+y2);
FF1_12(1,2)=1/4*h12/Ae*(-y1+y3);
FF1_12(1,3)=1/4*h12/Ae*(y1-y2);
FF1_12(2,1)=1/4*h12/Ae*(-y3+y2);
FF1_12(2,2)=1/4*h12/Ae*(-y1+y3);
FF1_12(2,3)=1/4*h12/Ae*(y1-y2);
FF1_12(3,1)=0;
FF1_12(3,2)=0;
FF1_12(3,3)=0;

FF1_23(1,1)=0;
FF1_23(1,2)=0;
FF1_23(1,3)=0;
FF1_23(2,1)=1/4*h23/Ae*(-y3+y2);
FF1_23(2,2)=1/4*h23/Ae*(-y1+y3);
FF1_23(2,3)=1/4*h23/Ae*(y1-y2);
FF1_23(3,1)=1/4*h23/Ae*(-y3+y2);
FF1_23(3,2)=1/4*h23/Ae*(-y1+y3);
FF1_23(3,3)=1/4*h23/Ae*(y1-y2);

FF1_31(1,1)=1/4*h31/Ae*(-y3+y2);
FF1_31(1,2)=1/4*h31/Ae*(-y1+y3);
FF1_31(1,3)=1/4*h31/Ae*(y1-y2);
FF1_31(2,1)=0;
FF1_31(2,2)=0;
FF1_31(2,3)=0;
FF1_31(3,1)=1/4*h31/Ae*(-y3+y2);
FF1_31(3,2)=1/4*h31/Ae*(-y1+y3);
FF1_31(3,3)=1/4*h31/Ae*(y1-y2);

In this case h12, h23, h31 are the length of the edges of

the triangular element, and the three integrals expressed

by _12, _23, _31 are the results along the path going from

1 to 2, 2 to 3 and 3 to 1, respectively.

Although no one example on 3D was done, we would

like to call attention that our programs were already tested

on 3D formulations. In fact, EM were calculated using

our developer and specifics programs in FEM used them,

giving consistent results.

As a second point, we would like to state that our

developer works very fast and it is running in both

Windows-MS and Li(UNIX) platforms.

And as a last point, to say that the developer is

available with a user’s guide in the internet, or through

the authors’s email.

V. CONCLUSIONS

In this paper, it was presented a GUI using MATLAB

to design and to manipulate differential operators in FEM,

as well as for the evaluation of element matrices on the

nodal FEM. The developer works with both 2D and 3D

domains, using triangular and tetrahedral elements,

respectively. For the 2D domain, it calculates flow (line)

and surface integral, while for the 3D it calculates volume

and flow (surface) integrals. It also makes possible to

export results in a compatible format with MATLAB,

FORTRAN, and C. Finally, it provides matrices

considering linear or quadratic elements for both 2D and

linear 3D domains.

Finally, because of its structure, designing and

simplicity, the developer here presented can be used also

in other fields of engineering, physics and chemistry,

being their results very easy to be interpreted. Therefore,

this developer may be beneficial for either professional

and educational FEM activities. Here, the usefulness of

the present developer is demonstrated through key

electromagnetic examples.

REFERENCES

[1] Wen X. Zhou, Chien H. Hsiung, Robert E. Fulton, Xun Fei Yin et al.

“CAD_Based analysis tools for electronic packaging design”,

INTERpack Innovations in CAD/CAE Integration in Electronic Packing,
Kohala, June 15-19, 1997.

[2] Donald Koo, Russel S. Peak and Robert E. Fulton “An object-

oriented parser-based finite element analysis tool interface”, SPIE
Photonics East, pp. 215-237, September 1999.

[3] Roger J. Dejus and Manuel Sanchez del Rio, “XOP: A graphical user

interface for spectral calculations and x-ray optics”, AIP Rev. Sci.
Instrum. , Vol. 67, Nº 9, pp. 1-4, September 1996.

[4] M. Koshiba, Optical Waveguide Theory by the Finite Element
Method. Kluwer Academic Publishers: Boston, 1992, pp. 13.

[5] H. E. Hernández Figueroa, F. A. Fernández, Y. Lu and J. B. Davies,

“Vectorial finite element method of 2D leaky waveguides”, IEEE
Transaction on Magnetics, vol. 31, pp. 1710-1713, May 1995.

