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Classification of the perfect codes in the ∞-Lee
metric

Claudio M. Qureshi and Sueli I. R. Costa

Abstract— This paper is concerned with perfect codes in the
∞-Lee metric. A complete classification and description of all
(linear and non-linear) two-dimensional perfect codes in the ∞-
Lee metric is presented. Moreover, in the linear case we construct
a generator matrix for these codes which induces an isomorphism
between the code and an abelian group of the form Za×Zb with
a | b and we determine all possible group structures that can
be represented for such codes. We also present an algorithm to
obtain a q-ary perfect code with a given group structure and two
methods of construction of perfect codes in the ∞-Lee metric
from codes of smaller dimension. In particular, these methods
allow us to construct interesting families of perfect ∞-Lee codes
including n-dimensional cyclic perfect codes for all n.

Keywords— Perfect codes, Lee metric, p-Lee metric, group
isomorphism

I. INTRODUCTION

Besides the Hamming metric, one of the metrics more often
used in error-correcting codes is the Lee metric, in part due
to several practical applications as those in [4], [8], [20],
[22]. The most important theoretical open problem related to
codes in the Lee metric is determining for what values of the
parameters (n, e, q) there exists a perfect Lee code with those
parameters (i.e. a n-dimensional perfect Lee code over the
alphabet Zq with packing radius e). In the seminal paper of
Golomb and Welch [10], the authors obtain important results
on the existence of perfect Lee codes over large alphabets
(i.e. when q ≥ 2e+1) and they conjecture that for dimension
n ≥ 3, the only perfect Lee codes over large alphabet are those
with packing radius e = 1. In the referred paper, the authors
construct perfect Lee codes with packing radius e = 1 for any
dimension and prove that their conjecture holds for n = 3. At
present it is known that the conjecture is true for dimension
n ≤ 6. There are several papers around the Golomb-Welch
conjecture and other related problems as [2], [3], [1], [11],
[18].

The Lee metric is part of a family of more general metrics
called the p-Lee metrics (for 1 ≤ p ≤ ∞). The use of these
metrics in applications to coding and cryptography is relatively
recent. For example, in [17] the authors study the complexity
of various computational problems related to codes in the ℓp
norm as the closest ans shortest vector problem (CVP and
SVP). In [15] some decoding algorithms for codes in the
ℓp metric are presented as well as generalizations of known
results regarding the Lee metric. In addition to the above
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references, there are not many references in the literature on
p-Lee metrics concerning error correcting codes, except for
specific values of p = 1 (Lee metric) and p = 2 (Euclidean
metric) which were extensively studied in the literature.

This paper is concerned with the case p = ∞. One
motivation to study this case (∞-Lee metric) is because this
metric captures much of the essence of perfect codes in other
p-Lee metrics since any perfect code in the ∞-Lee metric is
also perfect in the p-Lee metric for large enough p [5]. Another
motivation is that for some specific values of p it is possible
to prove that the only perfect codes in the p-Lee metrics are
also perfect codes either in the Lee metric or in the ∞-Lee
metric, this is the case for example for the two-dimensional
2-Lee perfect codes [6]. In contrast to other values of p, the
determination of the paremeters (n, e, q) for which there exists
a perfect code in the ∞-Lee metric is very simple and it was
done in [15]. Having solved the problem of existence, the next
step is to obtain these codes and characterize them from the
geometric point of view (i.e. up to isometries) and from the
algebraic point of view (i.e. up to group isomorphism). In
Section 3 we describe completely the two-dimensional prefect
codes. In Section 4 we consider some methods to construct a
perfect code in the ∞-Lee metric from perfect codes in lower
dimensions, in particular this leads us to generalize some of
the results obtained for the two-dimensional case and to obtain
some interesting families of perfect code as those described
in Corollaries 27 and 28. In the conclusion we present some
interesting problems related to this work.

II. PRELIMINARIES

We consider the set Zq = {0, 1, 2, . . . , q − 1} of integers
modulo q with the distance given by d(x, y) = min{|x −
y|, q − |x − y|} (Lee metric in Zq). This metric coincides
with the metric in the circular graph whose vertices are the
elements of Zq and edges {i, i + 1} for i in Zq . Let p be a
real number in [1,∞) or p = ∞, the p-Lee metric in Zn

q is

given by dp(x, y) =

{
p
√∑n

i=1 d(xi, yi)p if p ∈ [1,∞),
maxni=1 d(xi, yi) if p = ∞

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Zn
q and d denote

the Lee metric in Zq . The p-Lee metric in Zn
q coincides with

the quotient metric of (Zn, ℓp) over the subgroup qZn, see
[6]. When p = 1 we refer to the 1-Lee metric simply by
Lee metric. We denote by Bp(x, e) the ball with center x ∈

Zn
q and radius e ≥ 0 and define two radii e and e′ as being

equivalent when Bp(x, e) = Bp(x, e
′) (note that since e is

a real number we may have Bp(x, e) = Bp(x, e
′) with e ̸=

e′ as in the example B2(0,
√
2) = B2(0,

√
3) ( Z2

5). Each
equivalent class of radii is a left-closed interval of real numbers
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whose minimum and supreme element we denote by e− and
e+ respectively. With this notation the equivalence class of e
is given by [e−, e+).

A n-dimensional q-ary code is a subset C of Zn
q . We refer

the elements of C as the codewords. The minimum distance
of C with respect to the p-Lee metric is given by dp(C) =
min{dp(x, y) : x, y ∈ Zq, x ̸= y}. If e ≥ 0 is such that the
balls Bp(c, e) are all disjoints when c runs over the codewords
of C, but there exist distinct elements c1, c2 ∈ C such that
Bp(c1, e

+) ∩ Bp(c2, e
+) ̸= ∅ we say that e− is the packing

radius of C. We denote the packing radius of C with respect
to the p-Lee metric by ep(C). A perfect code with respect to
the p-Lee metric is a code for which the balls Bp(c, ep(C))
cover the whole space Zn

q when c runs over the elements of
C. In this case we also say that C is an e-perfect code where
e = ep(C). If C ⊆ Zn

q is an e-perfect code in the p-Lee metric
for p = 1 or p = ∞ we have the relation dp(C) = 2e + 1.
In general, the minimum distance dp is not determined by the
packing radius ep for 1 < p < ∞, see [6].

We also consider codes in Zn (defined as subsets
of Zn) and we denote by dp the metric ℓp given by
dp(x, y) =

p
√∑n

i=1 |xi − yi|p. The concept of perfect codes,
packing radius and minimum distance of a code is analogous
to the respective concepts over Zq . We say that a code
C ⊆ Zn is q-periodic for all c ∈ C and x ∈ Zn we have
c+qx ∈ C, that is C+qZn ⊆ C. We denote by π : Zn → Zn

q

the natural projection (taking modulo q in every coordinate).
There is a correspondence between q-periodic codes in Zn

and codes in Zn
q induced by π, and this correspondence

preserve linearity. This way of constructing linear codes
(or lattices) in Zn from a linear code in Zn

q is the so
called Construction A, see [7]. If a code C ⊆ Zn

q verifies
dp(C) ≥ q then the corresponding code π−1(C) ⊆ Zn

has the same minimum distance [21], in fact we have
dp(π

−1(C)) = min{dp(C), q}. In particular, since the ∞-
Lee metric is upper bounded by q, we have the correspondence

{Perfect q-periodic codes in (Zn, ℓ∞)}
π .. {∞-Lee Perfect
π−1
oo

codes in Zn
q }

.

This correspondence preserve the packing radius and
minimum distance. We remark that for p < ∞ a similar
correspondence only exists for “large alphabets” (for example,
when q ≥ 2e+ 1 if p = 1).

Every ball B ⊆ Zn is associated with a polyomino PB ⊆
Rn given by

PB =
∪
x∈B

x+ [−1/2, 1/2]
n
.

In this way, tilling Zn by translated copies of B is equivalent
to tilling Rn by translated copies of its associated polyomino
PB . This association give us an important geometric tool to
study perfect codes over Z. In the seminal paper of Golomb
and Welch [10], the authors uses this approach to settle several
results in perfect Lee codes over large alphabets.

The following specific notations and definition are used
along this paper. For p (1 ≤ p ≤ ∞) we denote by

PLp(n, e, q) = {C ⊆ Zn
q : C is e-perfect in the p-Lee metric},

LPLp(n, e, q) = {C ∈ PLp(n, e, q) : C is linear},
CPLp(n, e, q) = {C ∈ LPLp(n, e, q) : C is cyclic},
and for C ∈ PL∞(n, e, q) we denote by fC the corresponding
error-correcting function, that is, the function fC : Zn

q → C
given by fC(x) = c ⇔ x ∈ Bp(c, e).

Definition 1: The trivial (perfect) codes in Zn
q are the codes

{0} and Zn
q . A n-dimensional cartesian q-ary code is a code

of the form (2e+ 1)Zn
q for some e ∈ N such that 2e+ 1 | q.

Fig. 1. The cartesian code 3Z2
9 ∈ LPL∞(2, 1, 9), the codewords are marked

with C.

Definition 2: We say that a code C ∈ PL∞(n, e, q) is
standard if there exists a canonical vector ei (i.e. a vector
with an 1 in the i-st coordinate and 0 in the other coordinates)
for some i : 1 ≤ i ≤ n such that C + (2e+ 1)ei ⊆ C. In this
case we say that C is of type i (or a type i code).

Fig. 2. The cyclic perfect code C = ⟨(2, 3)⟩ ∈ Z2
9 ∈ CPL∞(2, 1, 9) is a

type 1 code but is not a type 2 code, the codewords are marked with C.

Remark 3: As we will see later, a code could be of no type
or it could be of type i for different values of i (for example
the cartesian codes are type i for 1 ≤ i ≤ n).

III. CLASSIFICATION THEOREM FOR TWO-DIMENSIONAL
PERFECT CODES IN THE ∞-METRIC

In this section we focus on two-dimensional perfect codes
with respect the ∞-Lee metric and the main result is Theorem
14. The following results are summarized in Theorem 14 and
the main tools used in the proofs are the sphere packing condi-
tion and some results from group theory such as the “product
formula for subgroups” (#(H +K) = #H ·#K/#(H ∩K)
for H and K subgroups of a finite group (G,+)) and some
standard formulas for calculating the order of an element of
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a group. It can also be helpful interpreting the results in term
of tilling by polyominoes.

Lemma 4: A necessary and sufficient condition for the
existence of a n-dimensional q-ary e-perfect code in the ∞-
Lee metric is that 2e + 1|q. Moreover, if this condition is
satisfied there exist a code in LPL∞(n, q, e).

Corollary 5: There exists a non trivial perfect code over Zq

if and only if q is neither a power of 2 nor a prime number.

It is immediate to see that the only perfect codes C in
PL∞(1, e, q) are of the form a + (2e + 1)Zq where q =
(2e+1)t. If we fixed a function h : Zt → Zq we can construct
a two-dimensional q-ary perfect code as follows:

• Horizontal construction: C1(a, h) = {(h(k), a + (2e +
1)k) : k ∈ Zt}+ (2e+ 1)Ze1 where e1 = (1, 0) ∈ Z2

q .
• Vertical construction: C2(a, h){(a + (2e + 1)k, h(k)) :

k ∈ Zt}+ (2e+ 1)Ze2 where e2 = (0, 1) ∈ Z2
q .

Proposition 6: The codes obtained by horizontal (vertical)
construction are e-perfect q-ary code type 1 codes (type 2
codes).

Remark 7: It can be prove easily that in fact, every standard
two-dimensional perfect code can be obtained from a one-
dimensional perfect code using horizontal or vertical cons-
truction.

The following geometric lemma is the analogous of the
“Lema do estilingue” [19] and it is used in a similar way
to prove the next proposition.

Lemma 8: Let ei be the i-st canonical vector of Zn
q and let

πi : Zn
q → Zq be the canonical projection (i.e. π(x) is the i-st

coordinate of x). Let C ∈ PL∞(n, e, q) and fC its correcting
error function. Let x be an element of Zn

q .
• If fC(x) ̸= fC(x− ei) then πi ◦ fC(x) = πi(x) + e · ei.
• If fC(x) ̸= fC(x+ ei) then πi ◦ fC(x) = πi(x)− e · ei.

Proposition 9: Every two-dimensional perfect code in the
∞-Lee metric is standard.

Remark 10: Proposition 9 cannot be generalized to grea-
ter dimensions. Let C = {000, 500, 105, 605, 150, 651, 155,
656} ⊆ Z3

10. Then C ∈ PL∞(3, 2, 10) is a three-dimensional
non-standard perfect code.

Now, for linear perfect codes, a generator matrix is given in
the next proposition.

Proposition 11: Let C ∈ LPL∞(2, e, q) with
q = (2e + 1)t. Let d1 = gcd(2e + 1, q) and
h1 = 2e+1

d1
. A generator matrix for C is given by(

2e+ 1 0
kh1 2e+ 1

)
∈ M2×2(Zq) if C is of type 1,(

0 2e+ 1
2e+ 1 kh1

)
∈ M2×2(Zq) if C is of type 2.

The next goal is determining when two linear q-ary perfect
codes in dimension two are isomorphic (in the sense of group
theory) and what isomorphism class of abelian groups are
represented by perfect linear q-ary code in the ∞-Lee metric.
In particular, we shall describe which of those are cyclic.

Since the cardinality of a perfect q-ary code is determined
by the packing radius, it suffices to classify isomorphism
classes in the set LPL∞(2, e, q) for a fixed value of e. Indeed,
if C ∈ LPL∞(2, e, q) and q = (2e + 1)t then by the
packing sphere condition #C = t2. The following Lemma
is a straightforward consequence of the Structure theorem for
finitely generated abelian group.

Lemma 12: If C is an abelian group of order t2 then there
is an unique divisor d|t such that C ≃ Zt/d × Zdt.

Remark 13: This mean that the question of what iso-
morphism class are represented by two-dimensional perfect
codes in the ∞-Lee metric is equivalent to determining for
what values of d|t there exists C ∈ LPL∞(2, e, q) such that
C ≃ Zt/d × Zdt.

Now, we summarize all the previous results in the following
theorem.

Theorem 14: For two-dimensional perfect codes in the ∞-
Lee metric over Zq we have:
i. (Existence) The following statements are equivalent
• There exists a non-trivial code C ∈ PL∞(2, e, q)
• There exists a non-trivial code C ∈ LPL∞(2, e, q)
• q = (2e+1)t where e and t are positive integers with t > 1.
ii. (Characterization) Every two-dimensional q-ary type 1
perfect code C is standard and can be expressed as C =
C1(a, h) for some a ∈ Zq and some function h : Zt → Zq .
Moreover, if C is linear, a generating set for C is given
by {(2e + 1, 0), (kh1, 2e + 1)} where h1 = 2e+1

d1
, d1 =

gcd(2e + 1, t) and k ∈ Z (that can be chosen such that
0 ≤ k < d1).
iii. (Structure) Let q = (2e + 1)t. There exists a code
C ∈ LPL∞(2, e, q) isomorphic to Zt/d × Zdt if and
only if d | gcd(2e + 1, t). Moreover, if d1 = gcd(2e +
1, t), h1 = 2e+1

d1
, k ∈ Z, d2 = gcd(k, d1), h2 = d1

d2
and C ∈

PLP∞(2, e, q) generated by {(2e+1, 0), (kh1, 2e+1)} ⊆ Z2
q .

Then, C ≃ Zt/h2
× Zth2 . If k′ ∈ Z is such that kk′ ≡ d2

(mod d1) we have that M =

(
0 (2e+ 1)h2

h1d2 (2e+ 1)k′

)
is a

generator matrix for C and an explicit isomorphism ϕ : C →
Zt/h2

× Zth2
is given by ϕ(x, y)M = (x (mod t/h2), y

(mod th2)) for x, y ∈ Z.

Remark 15: Composing with the linear isometry ϕ : Z2
q →

Z2
q given by (x, y) 7→ (y, x) we can obtain analogous results

for type 2 codes. We also recall that, by Proposition 9, if C
is a two-dimensional perfect code, then either C or ϕ(C) is a
type 1 code (and the other is a type 2 code).

Proof: Existence follows from Lemma 4 and characterization
follows from Prop. 9 and Prop. 11. For the last part (structure),
we consider (by hypothesis) a generator matrix for C of

the form N =

(
2e+ 1 0
kh1 2e+ 1

)
. First, we shall prove

that the matrix M =

(
0 (2e+ 1)h2

h1d2 (2e+ 1)k′

)
is also a

generator matrix for C. For this, we consider the matrices U =( −k1 h2
1−k1k

′

h2
k′

)
and V =

( −k′ h2
1−k1k

′

h2
k1

)
where k1 = k

d2
.
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Is straightforward to check that UN = M and VM = N
(as matrices over Zq), which prove that M is a generator
matrix for C. If x, y ∈ Z verify (x, y)M = (0, 0) ∈ Z2

q is
straightforward to check that this is equivalent to congruences
x ≡ 0 (mod t/h2) and y ≡ 0 (mod h2t), this proves that ϕ
is an isomorphism of abelian group. We finish observing that
h2 | gcd(2e+1, t), so every C ∈ LPL∞(2, e, q) is isomorphic
to Zt/d×Ztd for some d | gcd(2e+1, t), and for each choice
of such d it is easy to construct a perfect code isomorphic to
it.

�
Corollary 16: There exists a perfect code in the ∞-Lee

metric such that C ≃ Za × Zb and a | b if and only if ab
is a perfect square and b/a is an odd number.

Corollary 17: Let C ∈ LPL∞(2, e, q) with q = (2e+ 1)t.
Then, C ≃ Zt × Zt ⇔ C is a cartesian code (that is, C =
(2e+ 1)Z2

q).

Corollary 18: There exists a linear two-dimensional q-ary
perfect code C that is neither trivial nor cartesian if and only
if q = p2a where p is an odd prime number and a is a positive
integer.

Example 19: The first value of q for which there exists a
two-dimensional q-ary perfect code that is neither standard nor
cartesian nor cyclic is for q = 32 ·2. An example of such code
has generators {(0, 9), (1, 3)} ⊆ Z2

18, see Figure 3.

Fig. 3. For q = 32 · 2 we have the perfect code C = ⟨(0, 9), (1, 3)⟩ ⊆ Z2
18

which is isomorphic to Z2 × Z18, therefore this code is neither trivial nor
cartesian nor cyclic.

Corollary 20: There exists a two-dimensional cyclic q-ary
perfect code if and only if q = p2a where p is an odd prime
number and a is an odd positive integer.

Corollary 21: Let q = (2e + 1)t. We have
CPL∞(2, e, q) ̸= ∅ ⇔ t | 2e + 1. In this case, a code
C = ⟨(2e+1, 0), (kh1, 2e+1)⟩ ∈ CPL∞(2, e, q) if and only
if gcd(k, 2e+ 1) = 1.

IV. RECURSIVE CONSTRUCTION OF PERFECT CODES IN
THE ∞-LEE METRIC FOR ALL DIMENSIONS

In this section we give some construction of perfect codes
in the ∞-Lee metric from perfect codes in smaller dimension.

We use these construction to generalize some results given in
the previous section and to construct some interesting families
of perfect codes.

The simplest way to obtain ∞-Lee perfect codes is using
cartesian product. The proof that it works is using the sphere
packing condition and will be omitted.

Proposition 22 (Cartesian product construction): If C1 ∈
PL∞(n1, e, q) and C2 ∈ PL∞(n1, e, q) then C1 × C2 ∈
PL∞(n1 + n2, e, q). This construction preserves linearity.

Corollary 23: There exists a linear n-dimensional q-ary
perfect code C that is neither trivial nor cartesian if and only
if q = p2a where p is an odd prime number and a is a positive
integer.

Corollary 24: If q = (2e + 1)t and d1, d2, . . . , dk are
divisors (not necessarily distinct) of gcd(2e + 1, t), there
exists a code C ∈ LPL∞(2k, e, q) such that C ≃ Z t

d1
×

Z t
d2

× . . .Z t
dk

× Zd1t × Zd2t × . . .Zdkt and a code C ∈
LPL∞(2k + 1, e, q) such that C ≃ Z t

d1
× Z t

d2
× . . .Z t

dk

×
Zt × Zd1t × Zd2t × . . .Zdkt.

Remark 25: As we will show next, there are others linear
perfect codes whose group structure is not of the form given
in Corollary 24 (for example cyclic perfect codes in every
dimension).

The next construction is exclusively for linear codes, this lead
us to construct a linear perfect q-ary code from other codes
of smaller dimension.

Proposition 26 (Linear construction): Let C and (n, e, q)-
perfect code in the ∞-Lee metric with q = (2e + 1)t and
x ∈ Zn

q is such that tx ∈ C, then C̃ = C×{0}+(x, 2e+1)Z ∈
LPL∞(n+ 1, e, q).

Sketch of the proof: We denote by ∥x∥∞ = d∞(x, 0). As
tx ∈ C every codeword v ∈ C̃ can be written as v = (c +
xk, (2e+ 1)k) with c ∈ C and 0 ≤ k < t and we have

∥(c+ xk, (2e+ 1)k)∥∞ = max{∥c+ xk∥∞, ∥(2e+ 1)k∥∞}.
(1)

If k = 0, then ∥(c + xk, (2e + 1)k)∥∞ = ∥c∥∞ ≥ 2e + 1
if c ̸= 0 (because C have packing radius e). If 0 < k < t,
then ∥(2e + 1)k∥∞ ≥ 2e + 1 and by Equation (1) we have
∥(c + xk, (2e + 1)k)∥∞ ≥ 2e + 1. We conclude that C has
packing radius at last e. We want to calculate the cardinality
of C, that is

#C =
#C × {0} ·#(x, 2e+ 1)Z
#C × {0} ∩ (x, 2e+ 1)Z

. (2)

We have #C × {0} = #C = tn. Let θ be the additive order
of tx in Zn

q (i.e. the least positive integer θ such that θtx = 0).
It is straightforward to check that the order of (x, 2e + 1) in
Zn+1
q is tθ and that C×{0}∩ (x, 2e+1)Z = (tx, 0)Z. Using

Equation (2) we have #C = tn·tθ
θ = tn+1 and by the sphere

packing condition the code C̃ ⊆ Zn+1
q is perfect with packing

radius e. �
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Corollary 27: If q = (2e + 1)t with tn−1 | 2e + 1 and
n ≥ 1, then the q-ary cyclic code

Cn,e,q =

⟨(
2e+ 1

tn−1
,
2e+ 1

tn−2
, . . . ,

2e+ 1

t
, 2e+ 1

)⟩
is a cyclic perfect code in CPL∞(n, e, q).

Corollary 28: If q = tn where t is an odd number, then
the q-ary code C = ⟨(1, t, t2, . . . , tn−1)⟩ ∈ CPL∞(n, e, q)
for the packing radius e = (tm−1 − 1)/2.

V. CONCLUSION

In this work we have studied the problem of describing
the perfect codes in the ∞-Lee metric over the alphabet
Zq and which isomorphism classes of abelian groups can
be represented for such codes. Theorem 14 in Section 3
solves this problem for the two-dimensional case and several
corollaries are obtained from this. For greater dimensions, we
presented two recursive constructions of perfect codes in the
∞-Lee metric obtained interesting families of perfect codes
(such as those that appear in Corollaries 27 and 28) and
extending some results obtained for the two-dimensional case.
It should be interesting to obtain extensions of Theorem 14
to higher dimensions. Regarding Proposition 9, as remarked
it cannot be extended to higher dimensions, although we can
prove that an analogous result holds for linear perfect codes
in dimension 3. We wonder if with this extra condition the
result can be extended to higher dimension.
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