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Abstract - This paper presents a procedure to design passive 
waveguide components taking into account the presence of 
complementary modes in the formulation. The algorithm, based 
on the Boundary Element Method (BEM), solves the wave 
equation for each discontinuity plane using two different 
formulations (TE and TM). The complete waveguide structure 
is obtained by cascading all discontinuities. The scattering 
parameters for a rectangular waveguide transformer are 
presented and it is shown  to be computationally affordable. 

Index Terms – Complementary modes, Ridge waveguide, 
BEM, Cutoff wavenumber, Integral Equation Method. 
 

I. INTRODUCTION 

 
Ridge waveguide plays an important role in 

telecommunication applications. They are elements used in 
many devices as filters, transformers and polarizers. When 
complex components are required the numerical effort 
involved by electromagnetic models may easily become 
unaffordable. Moreover, these components are part of 
complex waveguides sub-systems that requires an accurate 
software tool, to perform, in short time, the analysis of the 
structures involved. In theses algorithms the complete set of 
the modes, which is the main part of the design, represents a 
significant computational effort. It takes over 80% [1-3] of 
the total CPU time.  

The commonly approaches of electromagnetic (EM) 
problems analysis can be divided into three groups: the 
volume method, mode matching method and integral method 
(MoM). The modes solutions in these methods are obtained 
from the roots of the characteristic equation of the problem. 
These roots are the wavenumbers (eigenvalues). Once the 
boundary conditions have been specified, we can find 
accountable numbers of roots. Elsewhere, not all of them 
result in a physical mode solution [3].  
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The set of numerical solutions is composed by physical, 

nonphysical (spurious) and complementary solutions. This 
last one is intrinsic to the numerical solution of boundary 
methods, like as BEM. In this case, the surface domain of the 
problem is replaced by a contour one. Then, all information 
about the real direction of the outward normal vector n

r
 to 

the surface is lost (Fig. 1). By the way, others methods 
currently present cutoff wavenumbers (solutions) in the 
vicinity of the complementary solutions. It is pointed out that 
even the solutions of the hollow waveguide can be very 
closed to the modes of the ridge one [4].  

In this paper, we use a particular case of the method of 
moments (MoM), the Galerkin method, to solve the 
homogenous system in matrix form AX=0. This matrix 
obtained from the system of partial differential equations is a 
non-linear eigenvalues problem. The solutions are determined 
using a monotonous functions approach [5]. The modes 
orthogonality and the inner product are automatically 
verified. 

In order to illustrate the efficiency of the algorithm in the 
selection of the numerical solutions we design a metallic 
rectangular waveguide transformer (Fig. 2). For the design of 
these structures, some important aspects need to be taken into 
account, as the influence of the finite thickness, higher order 
mode coupling effects and the optimisation possibilities in 
stepped design (height and width). To study these 
components it is important to determine with accuracy; 
firstly, the different types of transitions used in the complete 
structure (Fig. 2); and secondly, the interaction between 
subsequent discontinuities by considering it in cascade. The 
contour integral formulation is used to calculate the coupling 
coefficients and to determine the transition parameters. The 
functions are cascaded by taking into account the numbers of 
coupled modes, in conjunction with an impedance matrix 
association technique [6]. The scattering parameters are 
calculated and they are in good agreement with the published 
data. 

Of course, the analysis presented here is not limited to the 
shape of waveguide neither the complexity along the 
propagation axis z. The transformer is homogeneous and 
uniform. 

 



 

II. FORMULATION 

  

 

 

 

 

 

 

Fig.1 Cross-section of an arbitrary homogenous waveguide with perfect 
metallic wall. 
 

The modeling method is divided in several successive 
steps. Its begin with the resolution of Helmholtz’s equation, 
through a Green’s function satisfying the boundary 
conditions, and finish in a matrix form by projection of the 
operators deduced from the segmentation method with 
Galerkin’s procedure. 

By using a 2D method (BEM) the domain of study can be 
reduced to the cross section presented in Fig.1. It represents 
the cross section of an arbitrary homogenous waveguide, 
uniform along the propagation axis z. In this waveguide, the 
electric and magnetic fields satisfy Helmholtz’s equation (1). 
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where )(r

r
ψ  represents the TE or TM modes. 

To model the electromagnetic fields in a waveguide we 
use the scalar Green's function that satisfies (2). 
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The TE and TM modes are trated independently with its 

appropriate boundary conditions. The matrix size is reduced 
with the help of a judicious choice of the Green function. In 
this way, for a rectangular contour Γ  (Fig. 2) the basis 
functions )(r

r
ϕ  are developed in a series of sines and 

cossines trigonometric functions.  
 

A. TM modes  
 

 Using the second Green’s identity we can relate the fields 
and the scalar Green function. 
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The Dirichlet conditions for TM modes 0)( == zEr
r

ψ , 

leads the follow final system on the contour Γ   
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Where Ĝ  is a monotonous integral operator as defined in 

[5]. The unknowns znE∂  are developed in weighting 

functions. 
 

B. TE modes 
 

In this case we use the vector Green’s function. The 
transverse electric field, solution of the wave equation, can be 
written as a complete set of basis functions with free curl, 

Hφ , and free divergence, Eφ .  
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where T denotes transverse coordinates and n

r
 is the normal 

unit vector. 
The appropriate boundary conditions to theses basis leads 

the follow final system of equations to be solve 
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where Ĝ  is the monotonous integral operator as defined in 
[3] and the unknowns TJ  are developed in weighting 

functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2: A metallic rectangular waveguide transformer. 
 
C. Impedance matrix 

 
The final systems of homogeneous equations ((4) and (6)) 

are represented in the matrix form using the Galerkin 
procedure and BEM, over the contour C. It is written as 
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A indicates all matrix elements of the system and the 
unknowns are placed in Nx1 column matrix, [X]. [A] is a NxN  
square matrix and N is the number of segments over 
discretized contour C. 

The zeros of the matrix determinant are solved by a 
systematic procedure [3]. Once the coupling coefficients have 
been obtained, using the integral contour technique, the 
matrix impedance of each the discontinuity can then be 
evaluated by the Multimodal Variational method [7]. The S -
parameters for the complete structure are deduced by 
cascading the Z-matrix of each discontinuity plane. 

 

III. COMPLEMENTARY MODES 

 
In the boundary elements method (BEM), the surface 

domain of the problem is replaced by a contour one. Then, all 
information about the real direction of the outward normal 
vector n

r
, when the fields unknowns are numerical 

represented on the contour C, are lost. 
The set of cutoff wavenumbers calculated are then put in 

the modes expressions and they should satisfy the 
orthogonality properties.  

 

pqcqcp kk δϕϕ =)(/)(                     (8) 

 

where pqδ  represents the Kronecker delta and pϕ  is the 

p-th mode (TE or TM). 
We numerically identified the values of (8) that are greater 

than 1.001 as nonphysical modes and those that are less than 
0.94 as complementary one (inside the hollow ridge). If the 
scalar products are between these two values, we state that 
the functions represent modes of ridge waveguide. This rule 
is a purely empirical one. It was verified in some cases of 
ridged rectangular and circular waveguides. 

 
IV. NUMERICAL RESULTS 

 
In Fig. (3), we can see the cross section of the transformer 

mounted in a WR-140. This is the geometry of each 
discontinuity with different values of 

iS . 

 
 
 
 
 
 
 
 
 
Fig.3: Cross-section of the rectangular waveguide transformer. 
 

The dimensions presented in Fig. 3 are given in 
millimeters, as we can see in Table I. Where 

il  is the length 

of i-th ridge and WGi is i-th ridge waveguide. 
 

TABLE I 

DIMENSIONS OF THE DOUBLE RIDGE WAVEGUIDE 
(Si  and li in millimeters) 

 

 WG1 WG2 WG3 WG4 WG5 WG6 

Si 6.67 5.32 4.29 3.34 2.44 2.00 
li 5.98 6.00 7.37 6.90 5.62 6.02 

 
 
The transformer has symmetry along the propagation axis, 

i.e., the first six ridges (WG i) are repeated to form the 
complete structure. The results for the cutoff wavenumbers 
that satisfy equation (8) for four TE and TM modes are 
shown in Table II. 

 
TABLE II 

FOUR CUTOFF WAVENUMBERS OF THE TRANSFORMER 
(Kc in rad/m) 

 
 Kc 

TE 192,61 578,40 812,16 952,15  
TM 844,08 1017,69 1283,58 1630,27 
TE 182,32 549,91 807,46 904,06  
TM 874,82 1080,03 1332,72 1646,54 
TE 171,50 525,24 804,99 882,63  
TM 887,50 1124,61 1408,81 1673,43 
TE 159,00 503,25 804,16 871,31  
TM 893,07 1146,13 1468,15 1751,67 
TE 144,32 483,77 803,65 864,24  
TM 895,26 1154,00 1487,79 1785,38 
TE 135,80 474,75 803,21 861,59  
TM 895,73 1155,55 1491,01 1789,37 

 
 
Once the modes orthogonality assured, we can obtain the 

matrix impedance of each discontinuity and so cascade all of 
them to compute the scattering parameter. It should be 
pointed out here that the cutoff wavenumbers presents in 
Table II are not the first ones detected by algorithm. They are 
the first ones that satisfy equation (8). 

Fig. 4 presents the results for the module of the reflection 
coefficient (|S11| in dB) of the transformer. The frequencies 
are given in GHz. The results are very closed to the reference 
[10] even thought we can see a little displacement in the 
second resonance frequency. It can be attributed to the 
differences in the input data. In this case this difference is not 
so important, in fact, this power is -60 dB. Validated our 
results to experimental and theoretical one published we 
checked it with a commercial software based on finite 
elements method (FEM), HFSS. In a PC with 400 MHz and 
64Mo, 35000 tetrahedral are used to discretize the entire 
structure.  

 

1.0 

15.9 

7.95 iS

y 
x 

WG1 

WG2 

WG3 

WG4 

WG5 

WG6 



 

 
Fig.4: The module of the reflection parameter of the transformer as a 

function of the frequency (GHz). 
 
The PC characteristics put the HFSS software under 

constraints limitations. The results obtained after 264 
hours in CPU time were not good, even though the slope 
curve give us a single idea of the reflection coefficient 
behavior. By the way, our algorithm took 3,5 hours only to 
arrive in the above results (Fig. 4). A 65,5% of this time 
was reserved to search the cutoff wavenumbers of all ridge 
waveguide. In each step of this procedure the symmetry of 
the structure was considered.  

 
V. CONCLUSIONS  

 
In this paper we shown that the criterion use to check 

physical modes in ridge waveguide can be used without 
increase the CPU time. By the way, the algorithms based 
on the BEM should to apply any kid of selection technique 
to build a complete set of modes. The complementary 
modes are more pronounced when the dimensions of the 
ridge are in same order of the guide house. The results are 
accurate and the curves for the module of the reflection 
coefficient of a transformer with twelve discontinuities 
planes have been shown. In the analysis of the table II we 
can see the well behaved of the cutoff wavenumbers and it 
can be taken as intuitive information. 
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