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Chebyshev Wavelets

R. J. de Sobral Cintra H. M. de Oliveira L. R. Soares

Abstract—In this note we introduce a new family of wavelets, using these filter banks, we call the cascade iterative procedure
named Chebyshev wavelets, which are derived from conventional for creating wavelets.
Chebyshev polynomials. Properties of Chebyshev filter banks For the sake of notation, let us take the sequerides$

are investigated, including orthogonality and perfect reconstruc- . . .
tion conditions. Chebyshev wavelets of 2nd kind have compact as the lowpass filters and[n] as the highpass filters (by

support, their filters possess good selectivity, but they are not conventiony’ h[n] = 1 and )’ g[n] = 0). The matrixH
orthogonal. The convergence into 2nd kind Chebyshev wavelets is the convolution matrix. For the role of downsampling by

via the cascade algorithm is proved by the use of Markov chains two, it is adopted the operatdi2). The definiton symbol is
theorems. Computational implementation of these wavelets and 2

some clear-cut applications are presented. These wavelets are
offered as a choice in wavelet analysis.

. ) Il. CHEBYSHEV WAVELETS
Keywords—Wavelets, Filter banks, Chebyshev polynomials, ) ) ) ) o )
Wavelet design. In this section, we investigate the definition of filter banks
based on Chebyshev polynomials and also their possible

application for wavelet construction.
I. INTRODUCTION

Sturm-Liouville theory encompasses a multitude of enginé-. First Kind Chebyshev Filters

ering and physics problems [1]. One particular and interestingThe well-known Chebyshev polynomials of 1st ki, ()

case is that one related to Chebyshev differential equatiogge defined by a simple recurrence formulation [1]
Chebyshev polynomials of the first kind (Type I) of order

T,.(z), satisfies the equatiofi — x)jj — xy + n%y = 0 and Tin(2) = 28T -1(x) — Trn—2(2), 1)
Chebyshev polynomials of second kind (Type II) of degige 4oqiiming thally(z) = 1 and Ty (z) = .

Un (2), satisfies(1 —z)j —3zy +n(n +2)y = 0. Chebyshev. ) o\ ,aqq filters can be derived from these polynomials by
Simply assuming the variable change= cosw. Doing so, we

. ) - : 2\ 172
the interval [-1,1] with weighting functions(1 — 22)~1/ have the new functions [2]

and (1 — 22)'/2, for the polynomials of first and second kind
respectively. Some special values @tg1) = 1 and Ty, 1 = T, (cosw) = cos(mw), )
0; Un(1) =n+1 andUs,+1(0) = 0. Chebyshev polynomials

also respect symmetry propertiés(—z) — (—1)"T,,(x) and whose magnitude in the intervf), 7] satisfies lowpass filter

conditions for frequency response magnitude. In a naive way,

Un(—) = (—=1)"Un(2) [113] one may take these polynomials to define smoothing (lowpass)

. Chebyshev polynqmlals haye many appllcathns N NUMBiers to be used for wavelet generation through the cascade
rical computations, interpolation, series truncation and ec igorithm

qom|zat|on, to name a few. In the_past few years, Connec.:'Smoothing filtersH (e7~) intended to be used for signal
tions between orthogonal polynomials and wavelet analysis : o .
; .2 analysis [7] must hold some specific conditions, such as
have been explored, particularly a wavelet decomposition |IH(€jO)| _ 1 and|H(e/™)| = 0. In order to make Chebyshev
L?(—1,1) has been proposed [3], [4]. n o y

. . lynomials useful for this kind of application, a slight modi-

Repently another approach has peen |nv.est|gated. [51, [gﬁation onT,,(-) is carried out so as to meet these constraints.
the link between classical differential equation solutions ~Taking only Chebyshev polynomials of odd orde; we can
like Mathieu functions  (elliptic cosine and sine) and I‘eﬂefine the magnitude response of the smoothing filter as
gendre polynomials — and wavelet design. Exploring this A
connections, in this paper we investigate the possibility of |HD (7)) & | Ty (cos(w/2))|, for odd m. 3
wavelet construction from Chebyshev polynomials. Can th?éepserve that these functions are naturally normalized. Some
polynomials be used as smoothing filters for wavelets? In or | b i Fi 1 y :
to answer this question, we use filter bank theory results. exla:]m; efei:/i)nus ?/V?)?Ifl}Sl]n wlg\ljglaets. based on Mathieu diffe

The overview of our procedure is the following: (i) we start b '

defining smoothing filters from Chebyshev polynomials, (iiﬁmlal equations were defined. The mathematical structure of

2 ) ' thieu wavelets naturally induces a linear phase assignment
properties of filter banks based on these filters are explore(f}mw for the smoothing filter. This kind of approach seems to

such as perfect reconstruction, orthogonality, and finall if) . . .
P 9 y y( Qe perfectly reasonable to be considered in this development.
R. J. de Sobral Cintra, H. M. de Oliveira and L. R. Soares are wilﬁ‘]cter this judicious phase adeStment’ we have the fOIIOWing

the Communications Research GrougeDpec, Department of Electronics €xpression for the smoothing filter:
and Systems, Federal University of Pernambuco. Emails: risc@ee.ufpe.br, 1 A ) 9
hmo@ufpe.br HV (/%) & e7Imw@/2T (cos(w/2)), m odd.  (4)
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‘ expressions and taking into account thatis odd, yields

l “ e e s e e ...-‘% 1 :— 1 1
0.75 |- 4 0.75 2 \ﬁ(l+27 )5+ (=2)7")+
. . 1 1
0.5 - o 05 " —(-14+2"")—=1—=(-2)"") =
_‘ \/5( ) 2( (=2)™") 0
0.25 1 025 1 1 (10)
— (142" —=1-2"")=
o 1 o 2( )\/i( )
0 1 2 3 0 1 2 3 1 T 1 (2™ =0
Fig. 1. Plot of [T}, (cos(w/2))|, for m = 3,5, w € [0, 7. V2 SV 2" =0,

which asserts alias cancellation. Going further, to ensure
perfect reconstruction it is also required that the filter banks

Using Equation 2, we may easily recognize that introduce no distortion, that is, only a delay is allowed [12]:
() g ima HO (), () + ()0 () =227 (D)
Hy, () =em 7™/ Ty (cos(w/2)) Carrying over the substitutions, leads to
= Im/2 cos(mw /2 1 1
; ‘ (mw/2) (5) L agemy g m)s
_ _1+ TMY_T_ (] — ,mM) — 9,
\/5( 2 ™) \/5( 2" =2z

Sincenly 2% H,(,}), we can findh$ by an application of Observe that the filter bank delay is, exactly the order of
the inverse discrete-time Fourier transform H&). That is, the initially selected Chebyshev polynomial.
Another question to be examined is the orthogonality con-

12, n=0,m dition. A filter bank is orthogonal if it satisfies even-shift
AV [n] = { ’ o (6) convolution (kz) [10] [12]:
0, otherwise.
Zh hlk — 2n] = d[n), (13)
We use this filter(s'[n] to define reconstruction and decomwhere [n] is the unit sample sequence. It can be shown that
position filter banks. The relation among the highpass aggk lowpass filter,(!) [n] = i1 0 - 0 1] fuffills this
lowpass filters of these two filter banks is well-established [8brthogonality test.
[10] namely: Although these two desirable properties — perfect recons-
truction and orthogonality — are met, we will show that in a
heW[n] = vV2r D [n], V) = vV2(=1)"hV[m — n], general manner the iterative process of the cascade algorithm

using the filtersh’ [n] does not lead to wavelets. In other
words, the limit of cascade algorithm is not a smooth function
(7) and the algorithm does not converge i3. The following
hgWPn] = V2hI[m —n], g4Pn] =v2¢0[m —n], (8) handy theorem states a necessary and sufficient condition for
iteration convergence [10], [13].

for n = 0,...,m. Here, indexes: and d are used to denote Theorem 1 (Smoothness)Let h[n] be a lowpass filter of
reconstruction and decomposition filters, respectively. lengthm+1 andH be its associated filter matrix. If the infinite
matrix T = (|2)2HH” has a centered submatriXy,, ; of
order 2m — 1, such that all its eigenvalues satisfy| < 1
(except for a simple\ = 1), then the cascade algorithm
converges inL? sense.

1) Properties of Type | Chebyshev Filter Bankihe filter
banks based on lowpass flltér,g; ] share perfect reconstruc-
tion property. Let us use cap|tal Ietters to denotgansforms
of time domain vectors. Therefo\" is the z-transform of
the lowpass reconstruction filtért" 2 /2" In a similar ~ According to the definition given in Theorem 1, by re-
way, we may define the reconstructlon and decomgoosmm\OVing odd numbered rows afHH” (i.e., applying the

filter bank z-transforms byh RN & QIS decimation-by-2 operatof|2)), one can directly geTs,, ;.
h(l) H(l) andgd G(l) For Chebyshev polynomials of 1st kind, we have derived the

1 — T
To achieve perfect reconstruction, a filter bank must satishfe" hy) = 3[1 00 ---0 0 1], thus the rows o?HH" are
alias cancellation and present no distortion. To ensure allg

m — 1 zeros.
stack of sequential single-shifted versions of the followin
cancellation, we must have [11] g 9 g

vector:
1

HOHP (—2) + G060 (—2) =0 @ b 0 0 [0 0] = y
1

5[100~--00200--~001], (1)

Substituting these-transforms by their corresponding explicit m — 1 zeros. m — 1 z6r0s.
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wherex denotes usual convolution. main lobe (vicinity of zero) and can be computed without
Since the element 1 in this resulting vector is separated fraaffort:
the element 2 by a even number of zeras- 1, the odd-line

elimination of2HHH” will make every column ofl';,,,_; have sin((m + 1)w)

a single element 1 or a pair df/2, as it can be seen below: uljlg}) Un(cos(w)) = ul;li% sin(w) =m+l (18
r010--00000--00 07 Then a scaling factor owf# must be taken into consideration

to normalize the filter response. This adjustment redefines the
magnitude of the frequency response to
000-20000-010

T2m—1:% 000--00200-000]|, (15)

010--00002--000 |H7(73)(€jw)| £ — | U (cos(w/2))], for oddm. (19)

m+1

0000000010 This ensures thatH > ()| = 1. llustrations of the fre-

- - guency response magnitude ﬁlfﬁf)(eﬂw) are shown in Fi-
By explicit computation of the eigenvalues, the search fgure 2.

anm which makes the matri&',,,,_; meet the conditions of

Theorem 1 returned only one favorable case, for< 256.

This exception isn = 1. It is interesting to remark that when ! W W T 1 N N T

settingm = 1, the resultingh"[n] = 3 [1 1] is the Haar 75| 4 o7k _

filter bank, which makes the cascade algorithm generate the

Haar wavelets. Limited to our computational results, this is th@.5 - - 051 =

only choice of Chebyshev polynomial that produces a wavel%t.25 i 1 osl |
i 0 0 | |

B. Second Kind Chebyshev Wavelets 0 1 5 3 0 1 5 3

Now we examine another class of polynomials, name|g,(g 2
the Chebyshev polynomials of 2nd kind. This family of
polynomials is also built from the same recurrence relation

used to derive the 1st kind ones. However, different initial The final, but crucial, step concerns phase assignment.
conditions are set: Again let us take a linear phase convenient choice [5]. Conse-

qguently, the Chebyshev lowpass filters are completely specified
UT)’L(x) = 237U’m—1(-7;) - U’rn—?(x)a (16) by

for Up(z) = 1 and Uy(z) = 2x. A variety of interesting HO (eI 2 1 e=ImO/21 (cos(w/2)) (20)
properties and theorems on these polynomials can be found m m+1 " '
in [1], [2].

Following similar steps and derivations as in the previous Using now the fact thatlU,,(cos(w)) = sin((m +
subsection, we investigate the usegf(x) in the definition of  1)w)/sin(w), we can write the following:
lowpass filters. This time, our aim is to construct new wavelets.

Plot of |[Up, (cos(w/2))|, for m = 5,7, w € [0, 7].

First, we gdopt a usual variable change- cosw, yielding HO)(o) = 1 efjmw/zw 1)
to [2, p.776]: m m+1 sin(w/2)
. sin(m+ 1w
Un(cosw) = © osinw (7 Surprisingly, this is the exact formulation of the moving

Now we may consider the use of the modulus of these furRY€rage f'|t‘)9r3 or rectangular window (!) [14]. The impulse
tions as the magnitude response of lowpass filters. Howevi@sponser'y [n] of these filters are promptly derived:
one may not directly proceed in such a way, Sifiég (cosw)|

does not promptly satisfy lowpass filter conditiohd (¢/?)| = 1/(m+1), n=0,....,m
FTV| — | ) ! Aaf h(2)[n} _ ) ) . s 1L, (22)
1 and|H(e’™)| = 0). To make this possible, a simple rule-of 0 otherwise.

thumb adjustment can be used. Just as in the former 1st kind

polynomial case, a scaling on the argumentof(-) by 1/2

solves the problem, and mak&d (¢/™)| = 0. The restriction 1) Properties of the Type Il Chebyshev Filter BanKaking

of oddness form must be checked, otherwise the proposéddduation 22 as a starting point, we are now in a position to

1-scaling on frequency cannot work. carry on some investigation on Type |l Chebyshev filter banks.
In contrast with Chebyshev polynomials of 1st kind, the Based onhﬁ)[n} and using similar definitions for the

polynomials of 2nd kind are not naturally normalized. Theeconstruction and decomposition filters as done before (Equa-

maximum value ofU,,(cosw) is located at the peak of thetions 7 and 8), we may find the following-transforms for
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w2 n), i [n], b n] and g n): 008 ———r—— 0015 -
o 0.02 0.01 j -
Hr(2) (2) Tmatl Z zZ 5 (23) 0.01 0.005 I \ -
\/» z;O 0 0~ -
2 o \
GP(2) == D (1) (24) 0% 00051 7
m+1 ; -0.02 -0.01 [ \
V2 -0.03 1 -0.015 :
HP () =223, (25) 0 9 18 27 36 0 25 50
m+1 P
2 & o 0.02 0.008
G?(2) :7‘[1 S —(~1)iz (26) ]
m+1 0.01 - 0.004
Let us begin examining perfect reconstruction questions. As 0
stated before, a filter satisfying both alias cancellation and no B .
distortion has 001 - - -0.004
2 2
HP ()HP (—2) + GA(2)GP (=2) = 0, @) el 0,008
HO () HY (2) + GO ()G (2) = 227!, (28) 0 20 40 60 80
respectively. After some tedious manipulation, we find that 0.008 0.003
alias cancellation is completely fulfilled: ' oo 0.002
m m 0.004 H - '
2 : 2 .
f Zz—z \/> (_z)—7+ 0.001
m+1 i=0 m+1 i=0 0 B 0
5 N R -0.001
1)yt (—1)(—2) " = -0.004 — —
m+12( )'z m+1z (=1)*(—=) -0.002
=0 =0 -0.008 Lo -0.003 —L—
2 N e P i e i 0 200 400 600 0 225 450 675 900
(e - Sy
(m+1) i=0 i=0 i=0 i=0 ) (b)
= 0.

However, after an application of Equation 28, we find that

HP)HP (2) + G2 ()00 (2) =

8 1 — z—(m+1) 2 1
(m+1)? ( T+272 ) ’
Since this is clearly not in the forraz—!, we conclude that C. Implementing Chebyshev Wavelets
The filters proposed in this work were simulated with the

It is easy to see that(*)[n] does not verify Equation 13, yse ofMATLAB Wavelet Toolbox [8]. Some standard sample

therefore there is no orthogonality. It remains to examinggnals were analized to illustrate the behavior of the proposed
whether this filter bank class produces a convergent smooth{ggyelet and potential applications.

(regular) wave or not. In the appendix, we show the sketch ofjn Figure 4, we display the Chebyshev wavelet analysis of
the step signal: a naive, but ellucidative example. Figure 5

Lemma 1 Filter banks based on odd order Chebyshev pohRrings two practical examples. Firstly, we examine a 3-level
decomposition of a standard frequency breakdown signal. A

noisy signal was also analyzed in a 2-level decomposition,

such a filter bank introduces some distortion.

a proof of the following lemma.

nomials of 2nd kind satisfy Theorem 1.

(29)

(30)

Fig. 3.

m =5 and (b) form = 7.

Since all eigenvalues —+,
than one (except one), the regularity is assured.

Second order Chebyshev wavelets in 2, 3 and 4 iterations, (a) for

1 and 0 (double) — are less

Figure 3 displays some results derived by the iterative Cascqfﬂ.?strating potential uses of these wavelets in waveshrin-
algorithm, depicting the formation of a wavelet function kaage [15].

compact support.
Example 1 Take the Chebyshev 2nd kind filter of order 3, I1l. FINAL REMARKS

(2) _ ; i . . . .
hy' =1[1 1 % 1]. Constructing the centered submatrix |mpelled by a classical differential equation problem, we
of T = (|2)2HH", we have: introduced a new family of functions for signal analysis via

2 1 0 0 0 wavelet approach. Based on the Chebyshev polynomials (type
(143210 | and 1l) and on the results derived in [5], we defined simple
Ts=-12 3 4 3 2 filter banks.
8 01 2 3 4 We showed that Chebyshev polynomials of 1st kind are
0 0 0 1 2 not naturally suitable wavelet construction via the cascade
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Decompoxition st level 4:x=gd + d4+d1 + d2 + g1 .
20 t t f f t t t
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Fig. 4. An ellucidative example of Chebyshev wavelet decomposition: a
analysis of the step function.

Decomposition atlevel 3:s=a3 +d3 + d2 +d1.
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algorithm. But on the other hand, we demonstrated that the
Chebyshev polynomials of 2nd kind are adequate for such an

iterative process.

We also observed unexpected results, like the connectic
between the magnitude of frequency response of the filte
based on Chebyshev polynomial of 2nd kind and the well
known moving average filter.

The main properties of these filter banks were examine
in detail. In particular, a convergence proof for the iterative
process with Chebyshev Type Il filter banks was presented.

Potential applications of Chebyshev polynomials and wa
velets are particularly motivated by problems that deal witl
signal/pattern detection or denoising. Currently we are inve:
tigating the possibility of use of these wavelets in biomedica
signal analysis, in particular electrogastrography signals (pe
tern recognition) [16].

Finally we may call attention that the Chebyshev polynomi
als are in fact particular cases of the more general Gegenbat
(ultraspherical) polynomials, which can be an attractive toc
for investigating new wavelet constructions. Moreover, it is
expected that Gegenbauer polynomials based wavelets sho
exhibit a broader range of flexibility.
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Decomposition atlevel 2: s=a2 +d2 + d1.
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(a) Analysis of a signal with a frequency breakdown (3-level decom-
, (b) Denoising ohoisbump signal (2-level decomposition). Both
analysis were done with a wavelet generated by the Chebyshev polynomial of

2nd kind form = 3. These test signals are partMfaTLAB wavelet toolbox.
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