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Chebyshev Wavelets
R. J. de Sobral Cintra H. M. de Oliveira L. R. Soares

Abstract— In this note we introduce a new family of wavelets,
named Chebyshev wavelets, which are derived from conventional
Chebyshev polynomials. Properties of Chebyshev filter banks
are investigated, including orthogonality and perfect reconstruc-
tion conditions. Chebyshev wavelets of 2nd kind have compact
support, their filters possess good selectivity, but they are not
orthogonal. The convergence into 2nd kind Chebyshev wavelets
via the cascade algorithm is proved by the use of Markov chains
theorems. Computational implementation of these wavelets and
some clear-cut applications are presented. These wavelets are
offered as a choice in wavelet analysis.

Keywords— Wavelets, Filter banks, Chebyshev polynomials,
Wavelet design.

I. I NTRODUCTION

Sturm-Liouville theory encompasses a multitude of engine-
ering and physics problems [1]. One particular and interesting
case is that one related to Chebyshev differential equations.
Chebyshev polynomials of the first kind (Type I) of orderm,
Tm(x), satisfies the equation(1 − x)ÿ − xẏ + n2y = 0 and
Chebyshev polynomials of second kind (Type II) of degreem,
Um(x), satisfies(1− x)ÿ− 3xẏ + n(n + 2)y = 0. Chebyshev
polynomials form a complete set of orthogonal functions in
the interval [−1, 1] with weighting functions(1 − x2)−1/2

and(1− x2)1/2, for the polynomials of first and second kind
respectively. Some special values areTn(1) = 1 andT2n+1 =
0; Un(1) = n+1 andU2n+1(0) = 0. Chebyshev polynomials
also respect symmetry propertiesTn(−x) = (−1)nTn(x) and
Un(−x) = (−1)nUn(x) [1]–[3].

Chebyshev polynomials have many applications in nume-
rical computations, interpolation, series truncation and eco-
nomization, to name a few. In the past few years, connec-
tions between orthogonal polynomials and wavelet analysis
have been explored, particularly a wavelet decomposition in
L2(−1, 1) has been proposed [3], [4].

Recently another approach has been investigated [5], [6]:
the link between classical differential equation solutions —
like Mathieu functions (elliptic cosine and sine) and Le-
gendre polynomials — and wavelet design. Exploring this
connections, in this paper we investigate the possibility of
wavelet construction from Chebyshev polynomials. Can these
polynomials be used as smoothing filters for wavelets? In order
to answer this question, we use filter bank theory results.

The overview of our procedure is the following: (i) we start
defining smoothing filters from Chebyshev polynomials, (ii)
properties of filter banks based on these filters are explored,
such as perfect reconstruction, orthogonality, and finally (iii)
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using these filter banks, we call the cascade iterative procedure
for creating wavelets.

For the sake of notation, let us take the sequencesh[n]
as the lowpass filters andg[n] as the highpass filters (by
convention

∑
n h[n] = 1 and

∑
n g[n] = 0). The matrixH

is the convolution matrix. For the role of downsampling by
two, it is adopted the operator(↓2). The definiton symbol is
,.

II. CHEBYSHEV WAVELETS

In this section, we investigate the definition of filter banks
based on Chebyshev polynomials and also their possible
application for wavelet construction.

A. First Kind Chebyshev Filters

The well-known Chebyshev polynomials of 1st kindTm(·)
are defined by a simple recurrence formulation [1]

Tm(x) = 2xTm−1(x)− Tm−2(x), (1)

assuming thatT0(x) , 1 andT1(x) , x.
Lowpass filters can be derived from these polynomials by

simply assuming the variable changex = cos ω. Doing so, we
have the new functions [2]

Tm(cos ω) = cos(mω), (2)

whose magnitude in the interval[0, π] satisfies lowpass filter
conditions for frequency response magnitude. In a naive way,
one may take these polynomials to define smoothing (lowpass)
filters to be used for wavelet generation through the cascade
algorithm.

Smoothing filtersH(ejω) intended to be used for signal
analysis [7] must hold some specific conditions, such as
|H(ej0)| = 1 and |H(ejπ)| = 0. In order to make Chebyshev
polynomials useful for this kind of application, a slight modi-
fication onTm(·) is carried out so as to meet these constraints.
Taking only Chebyshev polynomials of odd orderm, we can
define the magnitude response of the smoothing filter as

|H(1)
m (ejω)| , |Tm(cos(ω/2))|, for odd m. (3)

Observe that these functions are naturally normalized. Some
examples can be seen in Figure 1.

In a previous work [5], wavelets based on Mathieu diffe-
rential equations were defined. The mathematical structure of
Mathieu wavelets naturally induces a linear phase assignment
e−jmω for the smoothing filter. This kind of approach seems to
be perfectly reasonable to be considered in this development.
After this judicious phase adjustment, we have the following
expression for the smoothing filter:

H(1)
m (ejω) , e−jmω/2Tm(cos(ω/2)), m odd. (4)
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Fig. 1. Plot of|Tm(cos(ω/2))|, for m = 3, 5, ω ∈ [0, π].

Using Equation 2, we may easily recognize that

H(1)
m (ejω) =e−jmω/2Tm(cos(ω/2))

=e−jmω/2 cos(mω/2)

=
1
2
(1 + e−jmω).

(5)

Sinceh
(1)
m

DTFT←→ H
(1)
m , we can findh

(1)
m by an application of

the inverse discrete-time Fourier transform onH
(1)
m . That is,

h(1)
m [n] =

{
1/2, n = 0,m,

0, otherwise.
(6)

We use this filterh(1)
m [n] to define reconstruction and decom-

position filter banks. The relation among the highpass and
lowpass filters of these two filter banks is well-established [8]–
[10] namely:

hr
(1)[n] =

√
2h(1)

m [n], gr
(1)[n] =

√
2(−1)nh(1)

r [m− n],

(7)

hd
(1)[n] =

√
2h(1)

r [m− n], gd
(1)[n] =

√
2g(1)

r [m− n], (8)

for n = 0, . . . , m. Here, indexesr and d are used to denote
reconstruction and decomposition filters, respectively.

1) Properties of Type I Chebyshev Filter Banks:The filter
banks based on lowpass filtersh

(1)
m [n] share perfect reconstruc-

tion property. Let us use capital letters to denotez-transforms
of time domain vectors. ThereforeH(1)

r is thez-transform of
the lowpass reconstruction filterh(1)

r ,
√

2h
(1)
m . In a similar

way, we may define the reconstruction and decomposition
filter bank z-transforms byh(1)

r
z←→ H

(1)
r , g

(1)
r

z←→ G
(1)
r ,

h
(1)
d

z←→ H
(1)
d andg

(1)
d

z←→ G
(1)
d .

To achieve perfect reconstruction, a filter bank must satisfy
alias cancellation and present no distortion. To ensure alias
cancellation, we must have [11]

H(1)
r (z)H(1)

d (−z) + G(1)
r (z)G(1)

d (−z) = 0. (9)

Substituting thesez-transforms by their corresponding explicit

expressions and taking into account thatm is odd, yields
1√
2
(1 + z−m)

1√
2
(1 + (−z)−m)+

1√
2
(−1 + z−m)

1√
2
(1− (−z)−m) =

1√
2
(1 + z−m)

1√
2
(1− z−m)−

1√
2
(1− z−m)

1√
2
(1 + z−m) = 0,

(10)

which asserts alias cancellation. Going further, to ensure
perfect reconstruction it is also required that the filter banks
introduce no distortion, that is, only a delay is allowed [12]:

H(1)
r (z)H(1)

d (z) + G(1)
r (z)G(1)

d (z) = 2z−l. (11)

Carrying over the substitutions, leads to
1√
2
(1 + z−m)

1√
2
(1 + z−m)+

1√
2
(−1 + z−m)

1√
2
(1− z−m) = 2z−m.

(12)

Observe that the filter bank delay ism, exactly the order of
the initially selected Chebyshev polynomial.

Another question to be examined is the orthogonality con-
dition. A filter bank is orthogonal if it satisfies even-shift
convolution (∗2) [10], [12]:

h[n] ∗2 h[n] =
∑

k

h[k]h[k − 2n] = δ[n], (13)

whereδ[n] is the unit sample sequence. It can be shown that
the lowpass filterh(1)[n] = 1

2

[
1 0 · · · 0 1

]
fulfills this

orthogonality test.
Although these two desirable properties — perfect recons-

truction and orthogonality — are met, we will show that in a
general manner the iterative process of the cascade algorithm
using the filtersh(1)

m [n] does not lead to wavelets. In other
words, the limit of cascade algorithm is not a smooth function
and the algorithm does not converge inL2. The following
handy theorem states a necessary and sufficient condition for
iteration convergence [10], [13].

Theorem 1 (Smoothness)Let h[n] be a lowpass filter of
lengthm+1 andH be its associated filter matrix. If the infinite
matrix T = (↓2)2HHT has a centered submatrixT2m−1 of
order 2m − 1, such that all its eigenvalues satisfy|λ| < 1
(except for a simpleλ = 1), then the cascade algorithm
converges inL2 sense.

According to the definition given in Theorem 1, by re-
moving odd numbered rows of2HHT (i.e., applying the
decimation-by-2 operator(↓2)), one can directly getT2m−1.
For Chebyshev polynomials of 1st kind, we have derived the
filter h(1)

m = 1
2

[
1 0 0 · · · 0 0︸ ︷︷ ︸

m− 1 zeros.

1
]
, thus the rows of2HHT are

a stack of sequential single-shifted versions of the following
vector:

1
2

[
1 0 · · · 0 1

] ∗ [
1 0 · · · 0 1

]
=

1
2

[
1 0 0 · · · 0 0︸ ︷︷ ︸

m− 1 zeros.

2 0 0 · · · 0 0︸ ︷︷ ︸
m− 1 zeros.

1
]
,

(14)
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where∗ denotes usual convolution.
Since the element 1 in this resulting vector is separated from

the element 2 by a even number of zerosm− 1, the odd-line
elimination of2HHT will make every column ofT2m−1 have
a single element 1 or a pair of1/2, as it can be seen below:

T2m−1 =
1
2




0 1 0 ··· 0 0 0 0 0 ··· 0 0 0

...
...

...
...

...
0 0 0 ··· 2 0 0 0 0 ··· 0 1 0

0 0 0 ··· 0 0 2 0 0 ··· 0 0 0

0 1 0 ··· 0 0 0 0 2 ··· 0 0 0

...
...

...
...

...
0 0 0 ··· 0 0 0 0 0 ··· 0 1 0




. (15)

By explicit computation of the eigenvalues, the search for
an m which makes the matrixT2m−1 meet the conditions of
Theorem 1 returned only one favorable case, form < 256.
This exception ism = 1. It is interesting to remark that when
settingm = 1, the resultingh

(1)
1 [n] = 1

2

[
1 1

]
is the Haar

filter bank, which makes the cascade algorithm generate the
Haar wavelets. Limited to our computational results, this is the
only choice of Chebyshev polynomial that produces a wavelet.

B. Second Kind Chebyshev Wavelets

Now we examine another class of polynomials, namely
the Chebyshev polynomials of 2nd kind. This family of
polynomials is also built from the same recurrence relation
used to derive the 1st kind ones. However, different initial
conditions are set:

Um(x) = 2xUm−1(x)− Um−2(x), (16)

for U0(x) = 1 and U1(x) = 2x. A variety of interesting
properties and theorems on these polynomials can be found
in [1], [2].

Following similar steps and derivations as in the previous
subsection, we investigate the use ofUm(x) in the definition of
lowpass filters. This time, our aim is to construct new wavelets.

First, we adopt a usual variable changex = cos ω, yielding
to [2, p.776]:

Um(cos ω) =
sin(m + 1)ω

sin ω
. (17)

Now we may consider the use of the modulus of these func-
tions as the magnitude response of lowpass filters. However,
one may not directly proceed in such a way, since|Um(cos ω)|
does not promptly satisfy lowpass filter conditions (|H(ej0)| =
1 and |H(ejπ)| = 0). To make this possible, a simple rule-of-
thumb adjustment can be used. Just as in the former 1st kind
polynomial case, a scaling on the argument ofUm(·) by 1/2
solves the problem, and makes|H(ejπ)| = 0. The restriction
of oddness form must be checked, otherwise the proposed
1
2 -scaling on frequency cannot work.

In contrast with Chebyshev polynomials of 1st kind, the
polynomials of 2nd kind are not naturally normalized. The
maximum value ofUm(cos ω) is located at the peak of the

main lobe (vicinity of zero) and can be computed without
effort:

lim
ω→0

Um(cos(ω)) = lim
ω→0

sin((m + 1)ω)
sin(ω)

= m + 1. (18)

Then a scaling factor of 1
m+1 must be taken into consideration

to normalize the filter response. This adjustment redefines the
magnitude of the frequency response to

|H(2)
m (ejω)| , 1

m + 1
|Um(cos(ω/2))|, for odd m. (19)

This ensures that|H(2)
m (ej0)| = 1. Illustrations of the fre-

quency response magnitude ofH
(2)
m (ejω) are shown in Fi-

gure 2.
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Fig. 2. Plot of|Um(cos(ω/2))|, for m = 5, 7, ω ∈ [0, π].

The final, but crucial, step concerns phase assignment.
Again let us take a linear phase convenient choice [5]. Conse-
quently, the Chebyshev lowpass filters are completely specified
by

H(2)
m (ejω) , 1

m + 1
e−jmω/2Um(cos(ω/2)). (20)

Using now the fact thatUm(cos(ω)) = sin((m +
1)ω)/ sin(ω), we can write the following:

H(2)
m (ejω) =

1
m + 1

e−jmω/2 sin((m + 1)ω/2)
sin(ω/2)

. (21)

Surprisingly, this is the exact formulation of the moving
average filters or rectangular window (!) [14]. The impulse
responseh(2)

m [n] of these filters are promptly derived:

h(2)
m [n] =

{
1/(m + 1), n = 0, . . . , m,

0, otherwise.
(22)

1) Properties of the Type II Chebyshev Filter Banks:Taking
Equation 22 as a starting point, we are now in a position to
carry on some investigation on Type II Chebyshev filter banks.

Based onh
(2)
m [n] and using similar definitions for the

reconstruction and decomposition filters as done before (Equa-
tions 7 and 8), we may find the followingz-transforms for
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h
(2)
r [n], g

(2)
r [n], h

(2)
d [n] andg

(2)
d [n]:

H(2)
r (z) =

√
2

m + 1

m∑

i=0

z−i, (23)

G(2)
r (z) =

√
2

m + 1

m∑

i=0

(−1)iz−i, (24)

H
(2)
d (z) =

√
2

m + 1

m∑

i=0

z−i, (25)

G
(2)
d (z) =

√
2

m + 1

m∑

i=0

−(−1)iz−i. (26)

Let us begin examining perfect reconstruction questions. As
stated before, a filter satisfying both alias cancellation and no
distortion has

H(2)
r (z)H(2)

d (−z) + G(2)
r (z)G(2)

d (−z) = 0, (27)

H(2)
r (z)H(2)

d (z) + G(2)
r (z)G(2)

d (z) = 2z−l, (28)

respectively. After some tedious manipulation, we find that
alias cancellation is completely fulfilled:√

2
m + 1

m∑

i=0

z−i

√
2

m + 1

m∑

i=0

(−z)−i+

√
2

m + 1

m∑

i=0

(−1)iz−i

√
2

m + 1

m∑

i=0

−(−1)i(−z)−i =

2
(m + 1)2

(
m∑

i=0

z−i
m∑

i=0

(−1)iz−i −
m∑

i=0

(−z)−i
m∑

i=0

z−i

)

= 0.
(29)

However, after an application of Equation 28, we find that

H(2)
r (z)H(2)

d (z) + G(2)
r (z)G(2)

d (z) =

8
(m + 1)2

(
1− z−(m+1)

1 + z−2

)2

z−1.
(30)

Since this is clearly not in the form2z−l, we conclude that
such a filter bank introduces some distortion.

It is easy to see thath(2)[n] does not verify Equation 13,
therefore there is no orthogonality. It remains to examine
whether this filter bank class produces a convergent smoothing
(regular) wave or not. In the appendix, we show the sketch of
a proof of the following lemma.

Lemma 1 Filter banks based on odd order Chebyshev poly-
nomials of 2nd kind satisfy Theorem 1.

Figure 3 displays some results derived by the iterative cascade
algorithm, depicting the formation of a wavelet function with
compact support.

Example 1 Take the Chebyshev 2nd kind filter of order 3,
h

(2)
3 = 1

4

[
1 1 1 1

]
. Constructing the centered submatrix

of T = (↓2)2HHT , we have:

T5 =
1
8




2 1 0 0 0
4 3 2 1 0
2 3 4 3 2
0 1 2 3 4
0 0 0 1 2




.
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Fig. 3. Second order Chebyshev wavelets in 2, 3 and 4 iterations, (a) for
m = 5 and (b) form = 7.

Since all eigenvalues —1, 1
2 , 1

4 and 0 (double) — are less
than one (except one), the regularity is assured.

C. Implementing Chebyshev Wavelets

The filters proposed in this work were simulated with the
use ofMATLAB Wavelet Toolbox [8]. Some standard sample
signals were analized to illustrate the behavior of the proposed
wavelet and potential applications.

In Figure 4, we display the Chebyshev wavelet analysis of
the step signal: a naive, but ellucidative example. Figure 5
brings two practical examples. Firstly, we examine a 3-level
decomposition of a standard frequency breakdown signal. A
noisy signal was also analyzed in a 2-level decomposition,
illustrating potential uses of these wavelets in waveshrin-
kage [15].

III. F INAL REMARKS

Impelled by a classical differential equation problem, we
introduced a new family of functions for signal analysis via
wavelet approach. Based on the Chebyshev polynomials (type
I and II) and on the results derived in [5], we defined simple
filter banks.

We showed that Chebyshev polynomials of 1st kind are
not naturally suitable wavelet construction via the cascade
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Fig. 4. An ellucidative example of Chebyshev wavelet decomposition: an
analysis of the step function.

algorithm. But on the other hand, we demonstrated that the
Chebyshev polynomials of 2nd kind are adequate for such an
iterative process.

We also observed unexpected results, like the connection
between the magnitude of frequency response of the filter
based on Chebyshev polynomial of 2nd kind and the well-
known moving average filter.

The main properties of these filter banks were examined
in detail. In particular, a convergence proof for the iterative
process with Chebyshev Type II filter banks was presented.

Potential applications of Chebyshev polynomials and wa-
velets are particularly motivated by problems that deal with
signal/pattern detection or denoising. Currently we are inves-
tigating the possibility of use of these wavelets in biomedical
signal analysis, in particular electrogastrography signals (pat-
tern recognition) [16].

Finally we may call attention that the Chebyshev polynomi-
als are in fact particular cases of the more general Gegenbauer
(ultraspherical) polynomials, which can be an attractive tool
for investigating new wavelet constructions. Moreover, it is
expected that Gegenbauer polynomials based wavelets should
exhibit a broader range of flexibility.
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APPENDIX I
SKETCH OF THECONVERGENCEPROOF

We have thath(2)
m [n] = 1

m+1

[
1 1 · · · 1 1︸ ︷︷ ︸

m + 1 ones

]
. The rows of

matrix 2HHT have the following pattern

2
1

m + 1
[
1 · · · 1

] ∗ 1
m + 1

[
1 · · · 1

]
=

2
(m + 1)2

[
1 2 · · · m m + 1 m · · · 2 1

]
,

(31)

a triangular-shaped vector. The matrix(↓2)2HHT is therefore
described by:

T2m−1 =

2
(m + 1)2

·




2 1 ··· 0 0 0 0 0 ··· 0 0

4 3 ··· 0 0 0 0 0 0 0

...
...

...
6 7 ··· m−1 m−2 m−3 m−4 m−5 ··· 0 0

4 5 ··· m+1 m m−1 m−2 m−3 ··· 1 0

2 3 ··· m−1 m m+1 m m−1 ··· 3 2

0 1 ··· m−3 m−2 m−1 m m+1 ··· 5 4

0 0 ··· m−5 m−4 m−3 m−2 m−1 ··· 7 6

...
...

...
0 0 ··· 0 0 0 0 0 ··· 3 4
0 0 ··· 0 0 0 0 0 ··· 1 2




.
(32)

One can check that such a specific matrix has the stochastic
property: every column sums one. This can be done by
separately analyzing even and odd columns, noting the fact
that each column has even or odd elements only. The sum of
the columns of the even (se) and odd (so) elements can be
calculated by:

se =m + 1 + 2

m−1
2∑

k=1

2k

=m + 1 + 2
m− 1

2
m + 1

2
=

(m + 1)2

2
. (33)

so =2

m−1
2∑

k=0

2k + 1 =
(m + 1)2

2
. (34)

Consequently,T2n−1 is a stochastic matrix.
The following theorem, derived from celebrated Perron-

Frobenius theorem [18, p.53], is useful for showing that
T2m−1 satisfies the conditions of Theorem 1.

Theorem 2 (Eigenvalues of Irreducible Stochastic Matrix)
Let M be an irreducible Markov matrix. Then the eigenvalue
λ = 1 of M is simple. IfM is aperiodic, then|λ| < 1 for all
other eigenvaluesλ of M.

It remains to show thatT2m−1 is (a) irreducible and (b)
aperiodic. The first condition is easily verified, becauseT2m−1

is a band-like matrix with non null elements within the band.
In Markov chain terminology, we can say that if all states
can be reached from each other, thenT2m−1 is irreducible.
Moreover, the diagonal of matrixT2m−1 has all elements
different from zero, then all states have a self-loop. This
guarantees that the periodicity of the Markov matrix equals
to one (aperiodicity).


