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Studying the compression performance of video

descriptors
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Abstract— The main objective of this paper is to study the per-
formance of a framework for encoding visual feature descriptors.
Local visual feature descriptors are employed in a number of
computer vision tasks, e.g. image and video retrieval by visual
search, object recognition and automatic annotation. In scenarios
strictly constrained in terms of storage capability, memory
and network resources such as those observed in visual sensor
networks and mobile visual search applications, compression may
be imperative. We evaluate coding schemes for the two most used
feature descriptors, namely Scale Invariant Feature Transform
(SIFT) and Speeded Up Robust Features (SURF). The coding
modes include intra- and inter-frame modes, with and without
decorrelating transforms. They are tested in descriptors extracted
from video sequences with different content characteristics. A
detailed rate-distortion analysis is conducted in order to assess
the contribution of each coding mode. Also, is shown that rate-
distortion optimization with all coding mode enabled leads to
best results.

Keywords— Visual features, descriptors, compression, SIFT,
SURF.

I. INTRODUCTION

Traditionally visual information has been represented using

picture elements (pixels), and one may say that ultimately

pixels are the entities that are input to the human visual system.

However, there are challenging tasks related to computer

vision applications that demand alternative representations.

Visual feature descriptors [9][11] are a powerful class of such

representations, and have been used to perform tasks such as

image/video retrieval, 3D reconstruction, homography estima-

tion and automatic annotation. In addition, developments in

areas of communication and networking as well as embed-

ded processing, provide the basis to construct visual sensor

network systems (VSN) [1][2]. Such systems aggregate huge

amounts of data captured from multiple and distributed visual

sensors and perform complex visual analysis [1]. They can be

used to provide interesting services such as augmented reality

in sport events, behavior analysis in security systems and auto-

motive driver assistance. Targeting such scenarios, the Moving

Picture Expert Group (MPEG)[3] has been considering the

Analyse then Compress (AtC) paradigm as an alternative to

traditional Compress then Analyse (CtA) paradigm to meet

transmission, storage and interoperability requirements. In the

CtA paradigm a central node gathers a massive amount of

visual data (pixel representation) from sensors and performs

visual analysis with relaxed requirements. On the other hand,

in AtC the visual sensor nodes are empowered with detection,
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description and coding algorithms in order to send a concise,

but effective representation of the captured content, allowing

the central node to perform complex visual analysis [2][7].

Also, the AtC paradigm alleviates computational load at the

sensing nodes. Efficient data storage and parsimonious usage

of network resources are necessary requirements to deploy

such systems. Therefore, compression methods specifically

designed for visual feature descriptors are necessary to meet

such requirements.

Visual descriptors are generated by algorithms that extract

succinct information of the captured scene by performing in

general two steps: visual feature detection and description.

Salient points are detected searching for maxima or minima

in some intermediate representation of the image, such as the

Difference of Gaussians[10]. Then, a vector describing the

image patches around the detected points is constructed. For

example, in the case of SIFT and SURF descriptors[9][11] the

vector is a histogram of gradient orientations. The problem

of compacting visual features extracted from images has been

tackled by researchers in several ways: through dimensionality

reduction [4], specially designed compressed feature descrip-

tors such as CHoG [6], transform coding [5][7] and binary

descriptors [2]. Naturally, the result should preserve desirable

properties of the descriptors, and yet being computationally

easy to obtain. Recently, the attention has turned to coding

visual features extracted from video sequences. In [8], the

authors have proposed a visual feature coding framework with

various coding modes, including intra- and inter-frame, with

and without decorrelating transforms. The objective of this

work is to make a comprehensive study of the framework

proposed in [8], in order to set up a firm ground for further

research in visual descriptors coding. This paper is organized

as follows: in Section II a brief overview of the SIFT and

SURF descriptors is given. Then, in Section III the coding

schemes used to encode visual features extracted from video

sequences are described. In Section IV the performance of

the coding framework for the SIFT and SURF descriptors is

presented and analyzed. Finally, in Section V the conclusions

of this work are presented.

II. KEY POINT DETECTORS AND DESCRIPTORS

SIFT[9][10] is a visual feature detector and descriptor that

describes the visual features through 128-dimensional vectors.

These vectors capture the gradient information in the region

near the interest points, and they are designed to be scale and

orientation invariant. In brief, the gradient magnitude and ori-

entation around the detected interest point are computed, and

a Gaussian weighting is applied to the magnitude. Then, the
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region around the interest point is divided into 4×4 subregions,

and for each subregion a histogram with 8 bins is computed,

each bin corresponding to one of eight gradient orientations.

The gradient orientation of the samples in each subregion is

quantized in eight orientations, and the magnitude is averaged.

The final descriptor vector is formed concatenating the 4× 4
histograms.

SURF[11] is a visual feature detector and descriptor, and it

was built on the strengths of previous works, specially SIFT.

After identifying interest points, a vector describing the image

region around each detected key point is computed. The de-

scriptor vector is formed by taking the region around the inter-

est point and dividing into 4×4 subregions. For each subregion

the Haar wavelet responses in vertical (dy) and horizontal (dx)

directions are computed, and these responses are Gaussian

weighted. Then, the values {
∑

dx,
∑

dy,
∑

|dx|,
∑

|dy|}
are computed for each subregion. The final descriptor vector

is obtained concatenating these values for all subregions,

resulting in a 64-dimensional vector. An alternative description

proposed by Bay et. al. with an 128-dimensional vector is also

widely used.

III. COMPRESSION SCHEMES FOR FEATURE DESCRIPTORS

Based on work reported in [5], [7] and [8], we conduct

a detailed description of the compression schemes for visual

features studied in this work. The coding schemes described

can be classified in intra-frame coding schemes and inter-

frame coding schemes. However, the best coding scheme

from the rate-distortion (RD) optimization point of view is

typically one appropriately combining the intra- and inter-

frame modes. In intra coding schemes the set of visual

features Dn extracted from the n-th frame of a video sequence

is encoded independently from those of other frames. On

other hand, in inter coding schemes the redundancy between

descriptors of neighbor frames can be explored to save bit rate.

These schemes are inspired in predictive coding employed in

traditional video encoders. The coding framework described

in this Section III is essentially the one described in [8], with

the following difference: the symbols probabilities used by

arithmetic encoder are allowed to be updated while running

the encoder. In following subsections III-A, III-B a detailed

description of the compression schemes is given. We also

describe in subsection III-C the RD optimization procedure

which allows the encoder to choose (descriptor-by-descriptor)

the best coding strategy between the intra- and inter-frame

coding modes.

A. Intra coding schemes

In intra coding schemes the feature set Dn of each frame is

encoded independently. Nevertheless, the correlation between

descriptor fields may be explored. Each feature has two

components, namely the descriptor vector dn,i describing the

image patch centered at the detected key point and associated

information pn,i =
[

x y σ θ
]

as location (x, y), scale

σ and patch dominant orientation θ. Both the associated

information pn,i and the descriptor dn,i should be encoded.

Each element of the associated information is quantized with a

quarter of unit precision and entropy encoded. The descriptor

vector part dn,i ∈ Dn of each feature is scalar quantized and

entropy encoded after an orthonormal transformation. Figure

1 illustrates the general idea of intra coding schemes. Next it

is detailed each step of coding process.

Transform Quantization
dn,i

pn,i

Initial statistic

Quarter of unit

quantization

Entropy

encoder

Fig. 1: Intra coding schemes

1) Transform: In intra coding mode the encoder applies

an orthonormal transform to the descriptor vector before

quantization. The simplest transform the encoder can use is

the identity matrix, in which case the encoder simply quantizes

and entropy encodes the descriptor vector. An alternative op-

tion is the Karhunen-Loève (KL) transform, which is known to

achieve maximal energy compaction, suitable for compression.

Moreover, KL transform was successfully employed in feature

coding as reported in [5], [7] and [8]. A collection {Dn} of

descriptors extracted from training video sequences is used

to estimate covariance matrix Σd in order to calculate KL

transform. Since the descriptor vector used has dimensionality

128, KLintra is a 128 × 128 matrix. After the transform we

have cINTRA

n,i = Tdn,i, where T ∈ {I,KLintra}.

2) Descriptor quantization: A straightforward scalar quan-

tization is used. Each descriptor vector field (after transforma-

tion) is quantized as defined in Equation 1.

c̃n,i,j = round

(

cn,i,j

QP

)

QP (1)

where cn,i,j is j-th field of the cINTRA

n,i (the vector after trans-

formation) and QP is quantization step size, and round(x)
rounds x to the nearest integer.

The quantization of the vector field cn,i,j is the same what-

ever transform is used, which in the case of our experiments

can be either the identity matrix or KL transform.

3) Entropy coding: An arithmetic encoder is employed

in order to entropy encode the descriptor vector as well as

position, scale and patch orientation. An initial statistic is set

up to the descriptor symbols and during encoding process the

statistic is adaptively updated. The training sequences were

encoded to generate the symbols statistics of each descriptor

vector field. The key point location, scale and orientation are

encoded using a uniform probability model, with cost:

Rpn,i = log
2
(4xmax + 1() + log

2
(4ymax + 1)+

log
2
(4σmax + 1) + log

2
(4θmax + 1)

(2)

Considering x ∈ [0, 352], y ∈ [0, 288], σ ∈ [0, σmax]
and θ ∈ [0, 360]. In case of SURF, for σmax = 120 it can

be verified that the encoder spends approximately 40 bits to

encode the position, scale and orientation of each interest point

in case of intra modes.

In summary, as described in this subsection III-A, the

descriptor vector can be encoded in two ways, namely Intra

and Intra-KLT. The transform applied to descriptor vector is

the main difference between the two modes.

B. Inter coding schemes

The inter coding schemes are inspired in traditional video

encoders like H.264/AVC and HEVC. A predictive scheme is
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used to take advantage of the repeatability property of robust

local image descriptors like SIFT [9][10] and SURF[11] in

addition to the smooth change of the captured scene.

The set of descriptors encoded from last frame D̃n−1 can be

used as a prediction to current frame descriptors Dn. First, a

matching for each descriptor vector dn,i is found, the encoder

takes the prediction residue between the current descriptor dn,i

and the matching descriptor vector d̃n−1,k∗. The prediction

residue is transformed, followed by quantization and entropy

coding steps. A predictive scheme is also adopted to encode

the position, scale and orientation. Figure 2 shows a block

diagram of the inter coding schemes. In what follows are

described the details of each step.

Transform Quantization
dn,i

pn,i

Initial statistic

Quarter of unit

quantization

Feature

matching

D̃n−1

dn,i − d̃n−1,k∗

pn,i − p̃n−1,k∗

Entropy

encoder

Fig. 2: Inter coding schemes

1) Descriptor matching: The encoder performs a search for

a matching descriptor vector encoded from reference set D̃n−1.

The nearest descriptor d̃n−1,k∗ is found using the distance

metric:

d̃n−1,k∗ = arg min
d̃n−1,k

1√
P
‖dn,i − d̃n−1,k‖2 (3)

subject to

{

xn,i − x̃n−1,k ≤ 30; yn,i − ỹn−1,k ≤ 30
σn,i − σ̃n−1,k∗ ≤ 5

where d̃n−1,k ⊂ D̃n−1, P is vector dimensionality and ‖ · ‖2
refers to the L2-norm.

Interest points in a scene have high probability to be

detected repeatedly in a frame sequence with smooth changes

in position. Therefore, we constraint the matching to reduce

computational complexity. The matching search is performed

within a spatial of 30 pixels in horizontal and vertical direc-

tions and scale window of 5.

With regard to location, scale and orientation, only the pre-

diction errors and the reference indication are encoded. That is,

the differences of position (xn,i − x̃n−1,k∗ ; yn,i − ỹn−1,k∗),
scale σn,i − σ̃n−1,k∗ and orientation θn,i − θ̃n−1,k∗ are quan-

tized and entropy encoded. The feature descriptors of the

current frame Dn are reordered with regard to the matching

reference descriptor D̃n−1 order, and a differential scheme is

used to encode the reference indication [8].

2) Transform: In inter scheme, the encoder can choose

between two transforms, T ∈ {I,KLinter}. If the choice is

T = I, the prediction residue rn,i = dn,i− d̃n−1,k∗ is simply

quantized and entropy encoded. If the choice is T = KLinter,

a KL transform is applied before quantization and entropy

coding steps. The procedure to obtain the KLinter is similar

to that to obtain KLintra as described before. However, is

this case, we collect a set of prediction residues in order to

obtain the covariance matrix. Only prediction residues which

satisfy ‖dn,i−dn−1,k∗‖2 < ‖dn,i‖2 are used. This procedure

is done using the training sequences. The transformed feature

vector residue cINTER

n,i = T(dn,i − d̃n−1,k∗) is then quantized

and entropy encoded as described next.

3) Descriptor residue quantization: The quantizer for the

inter schemes is equal to that used in intra schemes. But

in this case the transformed feature vector residue cINTER

n,i =

T(dn,i − d̃n−1,k∗) is quantized, where as described before

T ∈ {I,KLinter}. The quantization is performed as defined

in Equation 4.

c̃n,i,j = round

(

cn,i,j

QP

)

QP (4)

where cn,i,j is j-th field of cINTER

n,i and QP is the quantization

step size.

The position, scale and orientation prediction errors are

quantized with a quarter of unit precision.

4) Entropy coding: Arithmetic encoder is used to entropy

encode the descriptor prediction residue symbols as well as

position, scale and orientation prediction error symbols. A

training step is conducted in order to collect an initial statistic

of the symbols. We run the encoder for the training sequences

and store the symbol probabilities. The initial probability is

assigned to descriptor residuals as well as to the position, scale

and orientation prediction errors. The encoder can update the

probability during execution.

In this subsection we have discussed inter coding schemes.

In summary, the prediction residue can be encoded in two

ways which we call Inter mode and the Inter-KLT mode, either

using or not a KL transform step.

C. Rate-distortion optimization

While subsections III-A and III-B have described the intra

and inter coding modes, respectively, the best coding solution

is to appropriately combine these coding modes to better

exploit the specific correlation associated to each descriptor.

The encoder performs a RD optimization aiming to reach

high fidelity with as least as possible rate cost. We have

conducted experiments with different combinations of the

compression schemes described in subsections III-A and III-B.

Depending on which coding modes are enabled the encoder

chooses the coding mode which takes minimum Lagrangian

cost (see Figure 3). The cost function for intra coding mode

is defined as:
JINTRA =

1√
P
‖dn,i − d̃n,i‖2 + λ(RpINTRA

n,i +RdINTRA
n,i ) (5)

where RpINTRA
n,i is the cost to encode position, scale and ori-

entation information and RdINTRA
n,i is the cost to encode the

description vector. Note that in case of using the KL transform

the rate RdINTRA
n,i is the rate spent to encode the transformed

vector. The cost function for the inter coding mode is defined

as:
JINTER =

1√
P
‖dn,i − d̃n,i‖2 + λ(RpINTER

n,i +RdINTER
n,i ) (6)

where RpINTER
n,i is the cost to encode the position, scale, orien-

tation prediction errors as well as the reference indication, and

RdINTER
n,i is the cost to encode the descriptor vector with respect

to matched reference descriptor. Again, the rate to encode the

descriptor depends on which transform was chosen.

The Lagrange multiplier λ controls the rate-distortion trade-

off. Experiments were conducted in [8] inspired in [12] to

obtain the optimal λ value. A rule of thumb is λ(QP ) =
1.8 · 10−4QP 2 +0.1, where QP is the quantization step size.
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Fig. 3: Rate-distortion optimization based encoder

Besides the rate necessary to encode the description vector

and associated information as position, scale and orientation, it

is necessary to encode which coding mode was selected in the

rate-distortion optimization. Moreover, to know the number of

descriptors used for each frame, the encoder also needs to send

a frame end flag.

IV. RESULTS AND DISCUSSION

A. Test conditions and benchmarks

The following sequences were used: Foreman, Mobile,

Mother, News and Paris. All video sequences are in CIF

resolution (352×288 pixels) with 300 frames and 30 fps. The

sequences Mother, News and Paris were used as a training

set to estimate the initial statistic for arithmetic encoder,

as well as to compute the KL transforms. The encoder’s

implementation as well as video sequences are available at

[16]. The OpenCV’s [13] implementations of SIFT and SURF

(with 128-dimensional descriptors) were used in subsection

IV-B. VLFeat’s [14] implementation of SIFT was used in

subsection IV-A.

The following coding setups were tested:

• Intra: all features are encoded with intra mode, T = I.

• Intra-KLT: all features are encoded with intra coding

mode, T = KLintra.

• Inter: the features are encoded with inter coding mode,

T = I. Exceptions are the features for which the

matching step was not able to find any reference in the

search window, including those features of the first frame.

In this case, the features are encoded using Intra mode.

• Inter-KLT: same as the Inter above but T = KLinter

• Intra-Inter: the encoder performs rate-distortion opti-

mization with the Intra and Inter modes and chooses the

mode with lowest cost.

• 4-modes: the encoder performs rate-distortion optimiza-

tion with the Intra, Intra-KLT, Inter and Inter-KLT modes

and chooses the mode with lowest Lagrangian cost.

B. Rate-distortion performance

The performance of visual features descriptor compression

scheme should be evaluated taking into consideration how

much an encoded feature descriptor is effective in a matching

visual analysis task. In this sense, rate-distortion results tend

to have little meaning. In spite of this, it has been reported

in the literature that there is a strong correlation between

a descriptor’s performance in visual analysis and its rate-

distortion results. In fact, it was pointed out in [7] that at 15 dB

of SNR the descriptor’s rate-accuracy performance saturates.

In [8] it is also stated that the matching score saturation is

achieved at 15 dB of SNR. Moreover, it was shown in [5] that

MSE is good a predictor for the image and feature matching

error, and the SURF and SIFT descriptors achieve near-perfect

image matching and retrieval below 2 bits/field. Therefore,

in this work we decided to conduct the encoder performance

evaluation in the rate-distortion sense.

The signal-to-noise ratio (SNR) is measured as:

SNR = 10 log
10

∑N

n=1

∑Mn

i=1
‖dn,i‖22

∑N

n=1

∑Mn

i=1
‖dn,i − d̃n,i‖22

(7)

where N is number of frames and Mn is the number of

features in the n-th frame.

Figure 4 shows a performance comparison between our

implementation (labeled UFRJ) of the encoder with results

obtained running source code provided by the authors of

[8][15] (labeled POLIMI), that has only implementation for

SIFT descriptor with Intra and Intra-Inter modes only. For

these modes our implementation of the encoder outperforms

the author’s encoder. This is due to the adaptive statistic model

adopted in the arithmetic encoder. For a fair comparison with

authors’s encoder, the results presented in Figure 4 do not

include the rate to encode the key point orientation. Also, we

used VLFeat’s implementation of the SIFT as the authors.
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Fig. 4: Comparative performance for SIFT descriptor compres-

sion.

Figures 5 and 6 show encoder performance for SIFT and

SURF descriptors, respectively. As expected, when all coding

modes are available, the encoder can choose the best coding

strategy for each descriptor resulting in better overall perfor-

mance.

For SIFT descriptors, Intra-KLT mode achieves higher

coding efficiency than Intra only in low bit rates. Similar

behavior is observed when comparing inter-frame encoding
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Fig. 5: Comparative performance for SIFT descriptor compres-

sion.

modes, Inter-KLT outperforms Inter only in low bit rates. This

corroborates the results reported in [5], and is due to the non-

Gaussianity of individual descriptor fields.

In case of SURF descriptors, Intra-KLT mode outperforms

Intra coding mode in almost all bit rates. On the other hand,

the performance of Inter-KLT is worse the one of Inter, that

is, applying KL transform to descriptor residues is detrimental

to coding performance.

Using adaptively intra-frame and inter-frame coding

schemes gives better results than intra or inter schemes in-

dividually for both feature descriptors.

V. CONCLUSION

A comprehensive study of visual features coding schemes

was carried out in this paper. Visual features extracted from

video sequences were encoded resorting to intra-frame and

inter-frame coding schemes and their RD optimized combina-

tion. The coding tools were studied with two of the most used

feature descriptors, SIFT and SURF. Superior performance in

rate-distortion sense was achieved when the four coding modes

(Intra, Intra-KLT, Inter and Inter-KLT) were available to be

chosen by encoder, in which case the best coding strategy is

used for each feature.
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