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Abstract— The use of higher order statistics in blind source
separation problem is analyzed in this work. Despite the well
known fact that they are necessary to provide source separation
in a general framework, their impact on the performance of
adaptive solutions is a still open research field. In order to
provide new elements for the comparison of using one or more
higher order moments on adaptive solutions, two constrained
algorithms are investigated. The multiuser kurtosis algorithm
(MUK) and the multiuser constrained fitting probability density
function algorithm (MU-CFPA) are used due to the desired
characteristics of different higher order statistics involved in their
design. Simulation results are carried out to basis our analysis.

Index Terms— Blind source separation, higher order moments,
pdf estimation, kurtosis maximization, constrained criteria.

I. I NTRODUCTION

Blind source separation (BSS) has been gained increasing
attention in the signal processing community due to its wide
applicability in many fields such as digital communications,
biomedical engineering and financial data analysis among
others [1, 2].

Since the milestone work by H́eraultet al in 1985 [3] much
effort has been done in order to construct suitable statistical
criteria that reflect some known structural properties of the
sources [4]. A common characteristic of all those criteria is
the use of higher order statistics (HOS) since second order
statistics (SOS) are not sufficient to solve the separation
problem for general sources [2].

The information-theoretic approach has been introduced by
Donoho in [5], who has treated the BSS problem by an entropy
minimization view point. Other well known method to solve
BSS problems is the use of contrast functions introduced by
Comon [6], where a contrast function is a cumulant-based
function of the separation filter outputs that is maximized if
and only if separation is achieved [2, 4].

Those works have provided important results on the is-
sue of necessary and sufficient conditions to provide perfect
separation. Despite the development of techniques that rely
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directly on HOS cumulants, some single user techniques, such
as constant modulus (CM) and Shalvi-Weinstein criteria, have
been proposed to BSS in a single-stage and multistage context
[2, 7, 8].

Papadias proposed in [4, 8] a source separation approach
that is based on the Shalvi-Weinstein criterion. The proposal
is called multiuser kurtosis (MUK) and consists on the kurtosis
maximization, constrained to an orthogonal global response.
It has been a great advance on the field of BSS because it has
proved global convergence for an arbitrary number of users,
what has not been done so far.

We have previously proposed a source separation criterion
based on the estimation of the probability density function
(pdf) of the ideally recovered signals [9]. The criterion also
takes profit from the MUK approach by considering the
constraint over the global response in order to provide correct
source separation.

Our objective in this work is to evaluate the differences
on adaptive solutions when the algorithm considers only one
higher order moment, as in MUK case, orall higher order
moments as our approach in [9]. This aspect has not been
exploited in the literature and, as will shown in the sequel,
can provide significant improvements on the performance of
adaptive BSS algorithms.

The rest of the paper is organized is follows. Section II
presents the mathematical formulation of the problem. In Sec-
tion III, the necessary conditions to provide source separation
are presented, as well as the two fundamental strategies to
be analyzed in this paper. Simulation results that bases our
analysis are presented in Section IV and, finally, in SectionV
our conclusions are stated.

II. PROBLEM FORMULATION

We consider thatK independent and identically distributed
(i.i.d.) and also mutually independent zero mean discrete
sequencesak(n), k = 1, . . . ,K, that share the same statistical
properties, are transmitted over a MIMO linear memoryless
channel that introduces interuser interference.

If we considerM sensors in the receiver we can represent
the received signal at time instantn as

x(n) = Ha(n) + v(n), (1)

where a(n) =
[

a1(n) · · · aK(n)
]T

is the vector of
sources,H is theM ×K channel matrix,v(n) is theM × 1
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vector of additive gaussian noise andx(n) is theM×1 vector
of received signals.

The received signals are then precessed by the MIMO equal-
izer given by the matrixW(n) =

[

w1(n) · · · wK(n)
]

,
which produces aK×1 vectory(n) that consists of the estima-
tive of the sources. The receiver output can be mathematically
written as

y(n) = WH(n)x(n) = WH(n)Ha(n) + v′(n)

= G(n)a(n) + v′(n),
(2)

where

G = WH(n)H =
[

g1 · · · gK

]

=







g11 · · · gK1

...
.. .

...
g1K · · · gKK







K×K

is the global response matrix andv′(n) = WH(n)v(n) is
the filtered noise at the receiver output. Figure 1 depicts the
above-described system.
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Fig. 1. General blind source separation scheme.

Ideally, the global response system should be in such a way
that theK signals on the receiver output,yk(n), k = 1, . . . ,K,
should match the source (transmitted) signalsaq(n), q =
1, . . . ,K. However, by its blind characteristic, the problem
has an indeterminacy w.r.t. to scaling and order of separated
sources [2, 10]. This makes the solution become:

y(n) = PDa(n), (3)

whereP is a permutation matrix andD is a diagonal matrix.
We will focus our attention to the case of source separation

in an arbitrary order, since order recovering can be provided
by an appropriate post-processing.

To solve the overall problem a large variety of algorithms
can be used. Just to cite a few [11-16] and for a very good (and
huge) list on BSS solutions, see [2] and references therein.

Our interest concerns adaptive BSS techniques with no
explicit statistics estimation neither information-theoretic mea-
sures. Due to its simplicity and on-line capability, we chose
MUK to be compared with our previous proposal (MU-CFPA),
in order to evaluate the influence of the number of higher
order moments on the performance of adaptive solutions to
BSS problems. Both criteria are discussed and analyzed in
next section.

III. SOME STRATEGIES: MUK AND MU-CFPA

The presented strategies are based on the well known
Shalvi-Weinstein (SW) criterion [17] proposed to the single
user (equalization) case. From the SW criterion we know
that if the received power (after equalization) is assured to
be equal to the transmitted one, it is sufficient to equalize
one higher-order moment to achieve equalization, except bya
phase rotation. Generalization of this theorem to the multiuser
case is done by the insertion of the condition that the recovered
sources must be different. Then, the following conditions must
hold to assure source separation [4]:
C1. ak(n) is i.i.d. and zero mean(k = 1, . . . ,K);
C2. ak(n) andaq(n) are statistically independent fork 6= q

and have the same pdf;
C3. |κ [yk(n)]| = |κa| (k = 1, . . . ,K);

C4. E
{

|yk(n)|
2
}

= σ2
a (k = 1, . . . ,K);

C5. E
{

yk(n)y∗
q (n)

}

= 0, k 6= q .
whereak(n) is the transmitted sequence by thek-th source,
E {·} stands for expectation,κa is the kurtosis,σ2

a is the
variance of the transmitted sequence, andκ [·] is the kurtosis
operator.

In order to prove the sufficiency of the conditions above,
we may express the variance and kurtosis of each output as

E
{

|yk(n)|
2
}

= σ2
a

K
∑

k=1

|gkl|
2 (4)

and

κ [yk(n)] = κa

K
∑

k=1

|gkl|
4
. (5)

Then, from Equation (5) and Condition C3 we have
K

∑

k=1

|gkl|
4

= 1, (6)

and from Equation (4) and Condition C4 we obtain
K

∑

k=1

|gkl|
2

= 1. (7)

Therefore, based on the fact that
∑

|gk|
4
≤

(

∑

|gk|
2
)2

,

Equations (6) and (7) state thatgk must be in the form

gk =
[

0 · · · 0 ejφk 0 · · · 0
]T

, (8)

where the single nonzero element can be at any position
and φk is an arbitrary phase rotation. Then, by combining
Condition C5 with the noiseless case of Equation (2) we
obtain:

gH
k gq = 0, k 6= q. (9)

Equations (8) and (9) dictate the important property that the
nonzero position of the solution vectorsgk andgq cannot be
the same. Hence, the unique solution that satisfies the problem
corresponds to theK solution vectorsgk be different “Dirac”-
type vectors, as given in Equation (8).

In the sequel, we present two algorithms that perform BSS,
in according to the conditions given above.
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A. Multiuser Kurtosis Algorithm (MUK)

A multiuser algorithm based on the maximization of the
kurtosis for blind signals recovering is proposed in [8, 4].
MUK is a constrained criterion that maximizes the kurtosis
of the signals subject to the constraint of normalized global
response, it means,











max
G

JMUK (G) =
K
∑

j=1

|κ [yk]|

subject to:GHG = I

, (10)

whereI is the identity matrix.
The criterion divides the separation task into two parts:

the equalization step, that maximizes the kurtosis, and the
separation one, that performs the decorrelation of the outputs.
For each task, we denote the beamformers byWe for equal-
ization part, andW for the later one. The constraint step
corresponds to a Gram-Schimdt orthogonalization of matrix
We [4]. Therefore, those two parts can be, respectively,
written in their adaptive versions by [4, 8]:

We(n + 1) = W(n) + µ sign (κa)x∗(n)Y(n), (11)

whereY(n) =
[

|y1(n)|
2
y1(n) · · · |yK(n)|

2
yK(n)

]

and
Equation (11) corresponds to the equalization step. For the
orthogonalization one, we have, for thej-th user

wj(n + 1) =

we
j(n + 1) −

j−1
∑

l=1

(

wH
l (n + 1)we

j(n + 1)
)

wl(n + 1)

∥

∥

∥

∥

we
j(n + 1) −

j−1
∑

l=1

(

wH
l (n + 1)we

j(n + 1)
)

wl(n + 1)

∥

∥

∥

∥

.

(12)
The MUK algorithm is summarized in Table I [4].

TABLE I

MUK ALGORITHM .

1. Initialize W(0)

2. for n > 0

3. ObtainWe(n + 1) from Equation (11)

4. Obtainw1(n + 1) =
we

1
(n+1)

‖we
1
(n+1)‖

5. for j = 2 : K

6. Computewj(n + 1) from Equation (12)

7. Go to 5

8. Go to 2

This algorithm considers only the fourth order moment (un-
normalized kurtosis) to provide source separation. Next section
presents an algorithm that uses all higher order moments.

B. Multiuser Constrained Fitting Probability Algorithm (M U-
CFPA)

The MU-CFPA [9] is a constrained version of the algorithm
proposed for single-user equalization in [18] that has a mul-
tiuser version reported in [19]. The original one is based on
the estimation of the pdf of an ideally equalized signal at each
output, by means of a parametric model that fits the system
order and pdf features.

Then, we can construct the criterion in order to minimize the
“distance” between the desired pdf (ideally equalized one) and
the parametric model. Thus, the well knownKullback-Leibler
divergence (KLD) [20] is used to minimize the divergence be-
tween both functions, since both are positive definite functions.
The criterion may be written, for thek-th user, as [21]

JFP(wk) = DpY ,ideal(yk)‖Φ(y,σ2
r) , (13)

whereD◦‖• is the KLD between the pdfs,pY ,ideal is the pdf
of the ideally equalized signal andΦ(y, σ2

r) is the parametric
model given by

Φ(yk) =
1

√

2πσ2
r

S
∑

i=1

exp

(

−

∣

∣wH
k (n)x(n) − ai

∣

∣

2

2σ2
r

)

, (14)

whereσ2
r is the variance of each Gaussian in the model,S is

the number of symbols in the transmitted constellation andai

is the i-th symbol from the alphabet of transmitted symbols.
It worths to mention that minimize Equation (13) corresponds
to maximize the log-likelihood function [20] and also to find
the entropy ofy if Φ

(

y, σ2
r

)

= pY,ideal(y) [18, 19, 22].
In a previous work we have used the explicit decorrelation

procedure proposed in [23] in order to provide decorrelation
between the outputs. This results in the following multiuser
criterion:

JMU-FP (wk) = JFP(wk) + γ

K
∑

i=1

K
∑

j=1
j 6=i

|rij |
2
, (15)

whereγ is a regularization parameter andrij is the correlation
term between thei-th andj-th outputs. This criterion and its
stochastic adaptive algorithm presents good results but suffers
from the strong trade-off between the number of lost users and
steady state error w.r.t. the parameterγ.

In [9] the explicit decorrelation procedure has been dropped
and the orthogonalization procedure of the MUK is inserted
in order to cope with the previous described problem. Then,
the following constrained criterion has been derived:











min
W

JFP(W) =
K
∑

k=1

DpY,ideal(y)‖Φ(yk,σ2
r)

subject to:GHG = I

. (16)

and the adaptive version of the algorithm consists in replacing
the step 3 in Table I by the following expression:

We(n + 1) = W(n) − µ∇JFP(W(n)) , (17)
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where∇JFP(W(n)) is given by

∇JFP(W(n)) =

S
∑

i=1

exp
(

− |y(n)−ai|
2

2σ2
r

)

(y(n) − ai)

σ2
r ·

S
∑

i=1

exp
(

− |y(n)−ai|
2

2σ2
r

)

x∗

(18)
whereai is the K × 1 vector with theai symbol from the
transmitted alphabet in all positions.

The resulting algorithm is then called Multiuser Constrained
FPA (MU-CFPA) and Table II summarizes the dynamic of the
algorithm.

TABLE II

MU-CFPA.

1. Initialize W(0)

2. for n > 0

3. ObtainWe(n+1) from Equations (17) and
(18)

4. Obtainw1(n + 1) =
we

1
(n+1)

‖we
1
(n+1)‖

5. for j = 2 : K

6. Computewj(n + 1) from Equation (12)

7. Go to 5

8. Go to 2

The minimization of KLD in Equation (16) is achieved if
and only if the two pdf are equal, which consists in matching
all statistical moments of both pdfs. So, the MU-CFPA clearly
respects the necessary conditions to provide source separation
and kurtosis maximization is implicitly comprised in the
equalization procedure.

Then, the following question arises: Are the additional
higher order moments than kurtosis useful to achieve source
separation?

In the sequence we try to answer this question by showing
that those other higher order moments provide significant
improvements in terms of adaptive performance.

IV. SIMULATION RESULTS

We consider a simple case of a2×2 unitary channel matrix
[4]

H =

[

0.701 + j0.172 0.629 + j0.286
−0.274 − j0.634 0.159 + j0.704

]

, (19)

for the case of two independent QPSK inputs in a 30 dB
signal-to-noise ratio (SNR) environment. The parameters of
simulations were:µMUK = 2× 10−3, µMU-CFPA = 10−2, σ2

r =
0.1 andW(0) = We(0) = I for both algorithms.

In order to evaluate the performance of both algorithms we
use the constant modulus error (CME) defined, for thek-th
user, as follows:

CMEk(n) =
(

|yk|
2
− R

)2

. (20)

The constantR is related to the power of the transmitted
constellation. In our case we will assume a normalized power,
it means,R = 1. It is important to mention that the step sizes
were chosen as the highest ones that allow to reach the lowest
CME for both algorithms.

Figure 2 shows the evolution of the mean CME (from both
users) of the two algorithms. We can observe that the MU-
CFPA outperforms the MUK in terms of convergence rate
and reaches the same final steady state error (about -30 dB).
The convergence of the MU-CFPA is reached about of 150
symbols and the MUK converges around the 1500 symbols.
This is probably due to the consideration of all higher order
moments that allows to increase the step size and also helps
in the estimation of the sources by the filter.

After convergence the MU-CFPA reaches the following
setting:

G =

[

−0.0015 − j0.0024 −0.9990 + j0.0067
0.9992 − j0.0046 −0.0017 + j0.0026

]

, (21)

that corresponds to the first source recovered on the second
output and the second source on the first output. For the MUK
we obtain:

G =

[

0.0143 − j0.0087 −0.9369 − j0.3463
0.3295 + j0.9431 −0.0091 + j0.0139

]

, (22)

that corresponds to the same order of recovering that in the
previous case. One should note that the residual interference,
provided by the main diagonal terms in both cases, is higher
for the MUK, when compared with the MU-CFPA case. This
should imply that for a more complex case (more users,
antenna array receiver, etc.) the MUK performance can be
even more outperformed by the MU-CFPA due to the involved
HOS.

Further, we can observe that a phase rotation is inserted in
the MUK case. This is not observed in the MU-CFPA, due its
characteristic of phase recovering [9, 18, 19]. Figure 3 illus-
trate the 10% last symbols constellations from both algorithm,
so that the phase recovering capability of the MU-CFPA can
be observed.

V. CONCLUSIONS

We have presented a brief analysis of the use of higher order
moments in blind source separation.

We have investigated the improvements on adaptive algo-
rithms when they respect the sufficient and necessary con-
ditions to perform blind source separation and use one or
more higher order moments. For this sake, we have used
two algorithms that are based on constraint filtering, namely
the multiuser kurtosis algorithm (MUK) and the multiuser
constrained fitting pdf algorithm (MU-CFPA).

The main feature we have observed is the improvement
on the speed of convergence with a small increase in the
computational complexity, in the particular case of the MU-
CFPA.

A natural extension to this work is to derive mathematical
analysis on the influence of the use of other higher order
moments in adaptive BSS solutions.
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Fig. 2. CME evolution for both algorithms.
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