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Abstract— The use of higher order statistics in blind source directly on HOS cumulants, some single user techniques, suc
separation problem is analyzed in this work. Despite the well as constant modulus (CM) and Shalvi-Weinstein criterizeha

known fact that they are necessary to provide source separation  paan proposed to BSS in a single-stage and multistage ¢ontex
in a general framework, their impact on the performance of 2, 7, 8]

adaptive solutions is a still open research field. In order to . . .
provide new elements for the comparison of using one or more Papadias proposed in [4, 8] a source separation approach
higher order moments on adaptive solutions, two constrained that is based on the Shalvi-Weinstein criterion. The prapos
?I{%(L)Jrlig)hmsdiﬁ inVEii_tigated- Tthe _mlélt]j_ttlts_er kUFEOSti)S_I_?lggrith;n is called multiuser kurtosis (MUK) and consists on the ksigo

an € multiuser constrained Tittn rooapili ensi i : H
function algorithm (MU-CFPA) are used_gd_ﬁe_to they _desire_é/ Imﬁletl)2atlon, constrﬁlned to anhortfhﬂgor}aégg)ial respopsh
characteristics of different higher order statistics involved in their thas been a great advance on the 'e, 0 ecause It has
design. Simulation results are carried out to basis our analysis. ~ Proved global convergence for an arbitrary number of users,
what has not been done so far.

We have previously proposed a source separation criterion
based on the estimation of the probability density function
(pdf) of the ideally recovered signals [9]. The criteriorsal
|. INTRODUCTION takes profit from the MUK approach by considering the

Blind source separation (BSS) has been gained increasfig§\straint over the global response in order to provideeodrr
attention in the signal processing community due to its wid&urce separation.
applicability in many fields such as digital communications Our objective in this work is to evaluate the differences
biomedical engineering and financial data analysis amoff adaptive solutions when the algorithm considers only one
others [1, 2]. higher order moment, as in MUK case, all higher order
Since the milestone work by@faultet al in 1985 [3] much Moments as our approach in [9]. This aspect has not been
effort has been done in order to construct suitable steaisti €xploited in the literature and, as will shown in the sequel,
criteria that reflect some known structural properties @ tifan provide significant improvements on the performance of
sources [4]. A common characteristic of all those critesia pdaptive BSS algorithms.
the use of higher order statistics (HOS) since second orderThe rest of the paper is organized is follows. Section I
statistics (SOS) are not sufficient to solve the separatiffesents the mathematical formulation of the problem. lox Se
problem for general sources [2]. tion 1, the necessary conditions to provide source sejmara
The information-theoretic approach has been introduced B{e Presented, as well as the two fundamental strategies to
Donoho in [5], who has treated the BSS problem by an entrop§ @nalyzed in this paper. Simulation results that bases our
minimization view point. Other well known method to solvednalysis are presented in Section IV and, finally, in Section
BSS problems is the use of contrast functions introduced Byf conclusions are stated.
Comon [6], where a contrast function is a cumulant-based
function of the separation filter outputs that is maximizéd i Il. PROBLEM FORMULATION

and only if separation is achieved [2, 4]. We consider thaf independent and identically distributed

Those works have provided important results on the i§ 4y and also mutually independent zero mean discrete
sue of necessary and sufficient conditions to provide perf%%quenceak(n) k—1. . . K. thatshare the same statistical

separation. Despite the development of techniques thyt rﬂoperties, are transmitted over a MIMO linear memoryless
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vector of additive gaussian noise arfh) is the M x 1 vector [1l. SOME STRATEGIES MUK AND MU-CFPA

of received signals. The presented strategies are based on the well known
~ The received signals are then precessed by the MIMO equahialvi-Weinstein (SW) criterion [17] proposed to the single
izer given by the matrbtW (n) = [ wi(n) -+ wk(n) |, yser (equalization) case. From the SW criterion we know
which produces & x 1 vectory (n) that consists of the estima-ihat if the received power (after equalization) is assured t
tive of the sources. The receiver output can be mathemigticgle equal to the transmitted one, it is sufficient to equalize
written as one higher-order moment to achieve equalization, excet by
y(n) = WH (n)x(n) = W (n)Ha(n) + v'(n) phase rotation. Generalization of this theorem to the wseti
— G(n)a(n) +v'(n), @ case is done by the insertion of the condition that the reealve
sources must be different. Then, the following conditionsstn
hold to assure source separation [4]:
G=W'nH=[g - gx] C1. ax(n) is ii.d. and zero meafk = 1, ... ,K);
g11 - gK1 C2. ai(n) anda,(n) are statistically independent fér# ¢
— S . and have the same pdf;
S C3. |nlyx(n)]| = ral (k=1, ... ,K);
ca. E{|yk(n)|2} —02 (k=1, ... ,K);
is the global response matrix and(n) = W#(n)v(n) is g Ely(n)yz(n)} =0, k#q.
the filtered noise at the receiver output. Figure 1 depiots tQ/her ’ :
above-described system.

where

g1k ' 9KK | gyk

eai(n) is the transmitted sequence by théh source,
E{-} stands for expectations, is the kurtosis,c2 is the
variance of the transmitted sequence, ard is the kurtosis

a X y operator.

t t . ? In order to prove the sufficiency of the conditions above,
a,—H— & xk —5——> y, we may express the variance and kurtosis of each output as
a, .E 5 > H .E E > W _‘_’—>.E 5 Y, 9 K )

E{lyml*} =023 lgul (4)

L Y L k=1

N y and «
4
p4 m ()] = ko Y loml* (5)

G k=1

Then, from Equation (5) and Condition C3 we have

K
Fig. 1. General blind source separation scheme. Z ngz|4 =1, (6)
k=1
Ideally, the global response system should be in such a waiyd from Equation (4) and Condition C4 we obtain
that theK signals on the receiver outpuf,(n), k=1,..., K, K
should match the source (transmitted) signal¢n), ¢ = 2:|g,€l|2 =1 )
1,..., K. However, by its blind characteristic, the problem k=1

has an indeterminacy w.r.t. to scaling and order of separate Therefore, based on the fact that
sources [2, 10]. This makes the solution become:

2
4 2
9k < ( 9k ) )
¥(n) = PDa(n), ® 2ol (O ll’)
whereP is a permutation matrix an®) is a diagonal matrix. Equations (6) and (7) state thgt must be in the form
We will focus our attention to the case of source separation gr=[0 - 0 &% 0 -~ 0 ]T7 (8)

in an arbitrary order, since order recovering can be praﬂ/idsvh re the single nonzero element can be at an ition
by an appropriate post-processing. ere the singie hohzero element can be at any positio

To solve the overall problem a large variety of aIgorithm%nd m IS an art_)ltrary pha_se rotation. Then, by _combmmg
can be used. Just to cite a few [11-16] and for a very good (a n(_jlt.|on C5 with the noiseless case of Equation (2) we
huge) list on BSS solutions, see [2] and references therein® tain: "
Our interest concerns adaptive BSS techniques with no gk 8¢ =0, k#q ©)
explicit statistics estimation neither information-thetic mea- Equations (8) and (9) dictate the important property that th
sures. Due to its simplicity and on-line capability, we ahosnonzero position of the solution vectogs andg, cannot be
MUK to be compared with our previous proposal (MU-CFPA)the same. Hence, the unique solution that satisfies thegobl
in order to evaluate the influence of the number of highebrresponds to th& solution vectorsgs,, be different “Dirac”-
order moments on the performance of adaptive solutions tigpe vectors, as given in Equation (8).
BSS problems. Both criteria are discussed and analyzed irin the sequel, we present two algorithms that perform BSS,
next section. in according to the conditions given above.
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A. Multiuser Kurtosis Algorithm (MUK) B. Multiuser Constrained Fitting Probability Algorithm (M U-

) _ o CFPA)
A multiuser algorithm based on the maximization of the

kurtosis for blind signals recovering is proposed in [8, 4]. The MU-CFPA [9] is a constrained version of the algorithm
MUK is a constrained criterion that maximizes the kurtosigroposed for single-user equalization in [18] that has a-mul
of the signals subject to the constraint of normalized dlobtiuser version reported in [19]. The original one is based on
response, it means, the estimation of the pdf of an ideally equalized signal ahea
output, by means of a parametric model that fits the system
K order and pdf features.

e o (G) = ]; < [yl (10) Then, we can construct the criterion in order to minimize the
’ “distance” between the desired pdf (ideally equalized one) and
the parametric model. Thus, the well knownllback-Leibler
. . . . divergence (KLD) [20] is used to minimize the divergence be-
wherel is the identity matrix. tween both functions, since both are positive definite fiomst

The criterion divides the separation task into two pansie criterion may be written, for the-th user, as [21]
the equalization step, that maximizes the kurtosis, and the

separation one, that performs the decorrelation of theutsitp Jep(Wy) = D , 13
For each task, we denote the beamformersWy for equal- (W) = Doy et (0. (13)

ization part, andW for the later one. The constraint SteRNhereDoH, is the KLD between the pdfsy igea is the pdf

corresponds to a Gram-Schimdt orthogonalization of matrst the ideally equalized signal aribl(y, o2) is the parametric
W¢ [4]. Therefore, those two parts can be, respectiveljzodel given by

written in their adaptive versions by [4, 8]:

subject t0:GH7G =1

, * D) — L S e [ IWE OO a7
W¢(n+1) = W(n) + psign (k,) x*(n)Y(n), (11) (yk)_WZeXP 207 ., (14)

T =1
_ 2 2
\I’EVhefe_y(mlI [ y1(n)] y(lj(n) " IyK(?N yx(n) | a'r:1d tﬁ:herea,? is the variance of each Gaussian in the modeis
quation (11) corresponds to the equalization step. For f& number of symbols in the transmitted constellation and

orthogonalization one, we have, for theh user is thei-th symbol from the alphabet of transmitted symbols.

It worths to mention that minimize Equation (13) corresmond

wi(n+1) = _ to maximize the log-likelihood function [20] and also to find
Wit 1) j—1 (wh (n+ Dwe(n + 1)) wi(n + 1) the entropy ofy if ® (y,02) = py,icealy) [18, 19, 22].

! = / . In a previous work we have used the explicit decorrelation

j=1 procedure proposed in [23] in order to provide decorrefatio

Hwi(” +1) = X (Wil (n+ Dwi(n + 1)) wi(n + 1)H between the outputs. This results in the following multiuse

' (12) criterion:

The MUK algorithm is summarized in Table | [4]. K K
Jvu-ep (W) = Jep (W) + i, 15
TABLE | Mu-Fp (W) = Jrp (Wi) ’Y;;| 1 (15)
MUK ALGORITHM. j#i

where~ is a regularization parameter ang is the correlation

1. Initialize W (0) term between the-th andj-th outputs. This criterion and its
5 f stochastic adaptive algorithm presents good results bifgrsu

- forn >0 from the strong trade-off between the number of lost useds an
3. ObtainW¢(n + 1) from Equation (11) steady state error w.r.t. the parameter
4. Obtain 1) = Wwi(n+1) In [9] the explicit Qecprrelation procedure has begn .drdppe

wi(n+1) [|w$ (n+1) | and the orthogonalization procedure of the MUK is inserted
5. forj=2:K in order to cope with the previous described problem. Then,
6. Computew,(n + 1) from Equation (12) the following constrained criterion has been derived:
7. Goto 5 K
min Jep(W) = D o

8 Go o2 W FP( ) kgl Py, ideal(y) | 2 (yx,02) (16)

subject to:GHG =1

and the adaptive version of the algorithm consists in répac
This algorithm considers only the fourth order moment (unhe step 3 in Table | by the following expression:
normalized kurtosis) to provide source separation. Nectice
presents an algorithm that uses all higher order moments. Wén+1)=W(n)— uVJep(Wn)), a7
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whereV.Jgp (W(n)) is given by The constantR is related to the power of the transmitted
s ) constellation. In our case we will assume a normalized power
> exp (—%) (y(n) —a;) it means,R = 1. It is important to mention that the step sizes
VJep (W(n)) = =2 S ’ x* were chosen as the highest ones that allow to reach the lowest
023 exp (_ |y(712);ai\2) CME for both algorithms.
i=1 o Figure 2 shows the evolution of the mean CME (from both

(18) users) of the two algorithms. We can observe that the MU-

wherea; is the K x 1 vector with thea; symbol from the crpa gutperforms the MUK in terms of convergence rate

transmitted alphabet in all positions. , and reaches the same final steady state error (about -30 dB).
The resulting algorithm is then callec_i Multiuser Con_stemin The convergence of the MU-CFPA is reached about of 150

FPA (MU-CFPA) and Table Il summarizes the dynamic of thgymbols and the MUK converges around the 1500 symbols.

algorithm. This is probably due to the consideration of all higher order
TABLE Il moments that allows to increase the step size and also helps
MU-CEPA. in the estimation of the sources by the filter.
After convergence the MU-CFPA reaches the following
setting:
1. Initialize W(0) , )
—0.0015 — 70.0024 —0.9990 + 50.0067
2. forn>0 G= [ 0.9992 — j0.0046  —0.0017 + 50.0026 ] - (21)
3. ObtainW*(n +1) from Equations (17) an that corresponds to the first source recovered on the second
(18) output and the second source on the first output. For the MUK
4. Obtainw, (n + 1) = % we obtain:
5. forj=2: K 1 G- { 0.0143 — j0.0087  —0.9369 — j0.3463 ] (22)
0.3295 + j0.9431 —0.0091 + 50.0139 |’
6. Computew;(n + 1) from Equation (12) . .
that corresponds to the same order of recovering that in the
7. Gotos previous case. One should note that the residual intexderen
8. Goto 2 provided by the main diagonal terms in both cases, is higher

for the MUK, when compared with the MU-CFPA case. This
should imply that for a more complex case (more users,

The minimization of KLD in Equation (16) is achieved ifantenna array receiver, etc.) the MUK performancg can be
and only if the two pdf are equal, which consists in matching"en more outperformed by the MU-CFPA due to the involved
all statistical moments of both pdfs. So, the MU-CFPA cigarl Os.

respects the necessary conditions to provide source sigpara Further, we can observe that a phase rotation is inserted in
and kurtosis maximization is implicitly comprised in théh® MUK case. This is not observed in the MU-CFPA, due its

equalization procedure. characteristic of phase recovering [9, 18, 19]. Figure &sill
Then, the following question arises: Are the additiondate the 10% last symbols constellations from both algort
higher order moments than kurtosis useful to achieve souf that the phase recovering capability of the MU-CFPA can
separation? be observed.
In the sequence we try to answer this question by showing
that those other higher order moments provide significant V. CONCLUSIONS
improvements in terms of adaptive performance.

We have presented a brief analysis of the use of higher order
IV. SIMULATION RESULTS moments in blind source separation.

We have investigated the improvements on adaptive algo-
rithms when they respect the sufficient and necessary con-
ditions to perform blind source separation and use one or
g— | 0701+;0.172  0.629 + ;0.286 (19) more higher order moments. For this sake, we have used

—0.274 — j0.634  0.159 + 50.704 |~ two algorithms that are based on constraint filtering, ngmel
for the case of two independent QPSK inputs in a 30 di®e multiuser kurtosis algorithm (MUK) and the multiuser
signal-to-noise ratio (SNR) environment. The parametdrs eonstrained fitting pdf algorithm (MU-CFPA).
simulations wereumuk = 2 x 1073, umu-crpa = 1072, 02 = The main feature we have observed is the improvement
0.1 and W(0) = W¢(0) = I for both algorithms. on the speed of convergence with a small increase in the

In order to evaluate the performance of both algorithms we®mputational complexity, in the particular case of the MU-
use the constant modulus error (CME) defined, for khtln  CFPA.
user, as follows: A natural extension to this work is to derive mathematical

9 2 analysis on the influence of the use of other higher order
CMEg(n) = <|yk\ - R) : (20) moments in adaptive BSS solutions.

We consider a simple case oRa 2 unitary channel matrix

[4]
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Fig. 2. CME evolution for both algorithms.
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