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Abstract - This paper presents the initial studies and 
the structure adopted in the development of a new 
method for objective assessment of audio quality, named 
Objective Measure of Audio Quality (Medida Objetiva 
da Qualidade de Audio - MOQA). New techniques are 
presented and their impact on the global performance of 
the method is analysed. The results are compared to that 
one reached by PEAQ method, which is currently 
adopted as standard by International Telecommunication 
Union. 
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I. INTRODUCTION 
The digital transmission and storing of audio signals 

have been strongly based on algorithms for data 
reduction, which are adapted to several peculiarities of 
human auditory system, as the masking effects. Such 
algorithms do not necessarily aim the minimization of 
distortions. They do intend some manipulations of the 
audio signal in such a way that the users minimally 
perceive them. Therefore, the quality of the so-called 
perceptual coders cannot anymore be assessed by the 
traditional methods based on the global value of 
distortion, such as the signal-to-noise ratio (SNR) and 
total harmonic distortion (THD). In certain cases, the 
noisy structures are so effectively masked by the signal 
that they become nearly inaudible, even when the 
signal has a SNR as low as 13 dB.1 

In this way, the use of subjective tests is necessary to 
perform confident quality assessments of perceptual 
codecs. Nevertheless, such tests are expensive in terms 
of time and cost. So, the development of objective 
measures able to replace efficiently the subjective tests 
is highly desirable. 

Some methods were proposed at the late seventies, 
but the first perceptual codecs (MPEG and Dolby) at 
the late eighties turned such measures obsolete. Then, 
in 1994, the ITU-R (International Telecommunication 
Union - Radiocommunication) performed an open call 
of proposals, in order to establish a standard for 
objective audio quality measurement. Six methods 
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were proposed [1, 2, 3, 4, 5], none of them reaching 
the minimum acceptable performance. After that, the 
proponents concentrated their efforts in the 
development of a single method composed by the best 
former proposals, originating the method Perceptual 
Evaluation of Audio Quality (PEAQ) and a new 
recommendation, the ITU-R BS-1387 [6]. This method 
presents a clearly better performance than its 
predecessors. Nevertheless, it is not good enough for 
the most part of practical conditions. Such situation 
has motivated the search for new methods capable to 
overcome those limitations. In that context, a new 
method (MOQA), object of this paper, has been 
developed. More details about its implementation can 
be found in [7]. 

II. HUMAN HEARING 
The most well succeeded methods of objective audio 

assessment are based on concepts extracted from 
psychoacoustics, which deals with the behavior of 
hearing. The human perception of sound can be 
roughly described through a five-stage scheme, as 
showed in Figure 1 [8]. The outer sound field is 
transmitted to the inner ear and separated into spectral 
components. The sensitivity of the ear and its spectral 
selectivity are improved by active processes, which 
normally include some kind of loop. The neural 
excitations in the inner ear are transmitted to the 
auditory areas of the brain by the auditory nerve, 
where they are translated into sensorial quantities. The 
auditory areas of the brain have several kinds of 
mechanisms that can influence the formation of 
sensorial quantities [9]. 

The first three stages of Figure 1 describe the 
translation of the outer sound field into the neural 
excitations (electrical impulses conducted by the 
neurons to the specific area of the brain cortex), and 
the two last describe the process of transformation of 
those excitation patterns into sensations. The 
translation of the outer sound field into the neural 
excitations is almost independent of personal 
preferences, and represents the part of hearing 
primarily based on the physiological structure of the 
auditory system. In a perceptual model, those steps are 
called “peripherical ear model”. In the last stages of 
the hearing process, the individual preferences cannot 



XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’03, 05-08 DE OUTUBRO DE 2003, RIO DE JANEIRO, RJ 

be clearly separated from the most common properties 
of the auditory system. Those stages, which include 
pattern recognition and hearing stream processes, are 
referred as cognitive model [8]. 
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Fig. 1 - Stages of the hearing process 

III. PERCEPTUAL MEASURES 
Figure 2 shows the basic structure common to all 

objective audio quality measures. Each block is briefly 
explained in the following. 
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Fig. 2 - Basic scheme of objective audio quality measures 

 
- Artificial or real audio source: the test signals to be 

used are usually the same musical excerpts used in the 
subjective assessment of codecs. However, in principle 
any kind of audio signal, including the artificial ones, 
can be used. 

- Simulation of test conditions: here, the test signal is 
submitted to conditions that may potentially introduce 
degradations, as several kinds of codification, bit 
errors, noise, or any other situation desired to be 
assessed; at same time, a unaltered version of the 
signal is kept for later comparison with the degraded 
version. 

- Audio quality measure: this stage is the most 
important of any method for audio quality assessment; 
here are included the time-frequency decomposition, 
the modelling of the human hearing features (among 
them, the masking, briefly described in section 3.1) 
and the cognitive subtraction, which produces the 
perceptual difference among the signals. As result, a 
quality measure of the tested signal is obtained. 

- Mapping to a subjective measure: this stage 
transforms the objective measure, represented in a 
particular objective scale, into a standard ITU 
subjective scale. This stage is optional and can be 

performed by polynomials or artificial neural 
networks.  

A. Masking Modelling 
Masking is the most important phenomenon in the 

quality perception of a signal. For that reason, its 
correct modelling is an essential factor in the 
performance of an objective method for audio 
assessment.  

The masking phenomenon is due to ear limitations in 
terms of temporal, spectral and amplitude resolution, 
combined to an also limited dynamic range. When two 
signals are close enough to each other, in time or 
frequency domain, the weaker signal may become 
inaudible due the presence of the stronger one. 

The modelling of masking effects is a feature 
common to all perceptual methods. The simultaneous 
(spectral) masking is always modelled by applying a 
spreading function, which corresponds to the shape of 
an average masking curve. Temporal masking effects 
are frequently implicitly modelled in the expressions 
of the model, but in a crude way, due to the limited 
temporal resolution of the time-frequency 
decomposition normally used. 

IV. THE MOQA METHOD 
In this first version, the MOQA method borrowed 

several characteristics from the PEAQ method, as, for 
instance, its basic structure. As the research evolves, it 
is expected that both methods become more unrelated, 
since several new features should be implemented in 
next versions. Such novelties will include new 
strategies to calculate the model output parameters, the 
improvement of the psycho-acoustic model and some 
modification of the time-frequency decomposition. 

Nevertheless, it is important to note that the version 
presented here has its own implementation, which has 
enough peculiarities and innovations to be considered 
as an original method. Furthermore, those new features 
represent important contributions towards a more 
efficient audio assessment method. Such new features 
will be detached in the following subsections. 

A. General Structure 
The general structure of MOQA method is shown in 

Figure 3, where the input signals correspond to the 
original signal, which will be taken as reference, and 
the degraded signal, which is the original signal 
submitted to some kind of condition capable to insert 
distortions. 
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Fig. 3 - General structure of MOQA method 
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As in PEAQ, two different models for the ear were 
implemented. The main distinctive characteristic of the 
MOQA models is the strategy adopted to perform the 
time-frequency decomposition (Fast Fourier Transform 
or Filter Bank). The models will be described with 
more details in the following, as well the processings 
indicated in Figure 3. 

B. FFT-Based Model 
The main feature of this model is the low 

computational burden. Its basic scheme is shown in 
Figure 4. 
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Fig. 4 - Basic scheme of FFT-based model 

 
The inputs for this model, which are the original and 

degraded signals aligned in the time domain and 
sampled at a rate of 48 kHz, are divided into 42 
milliseconds blocks (2048 samples), with a 50% 
superposition. After that, a Hanning window is 
applied. 

Each windowed block is transformed to the 
frequency domain by a FFT algorithm. At last, each 
block is scaled to the playback level (if such level is 
unknown, it is recommended the adoption of 92 
dBSPL). A weighting function is applied to the spectral 
coefficients in order to model the frequency response 
of outer and middle ears. 

The weighted spectral coefficients are grouped into 
critical bands and an offset is added to simulate the 
internal noise of the auditory system. The next step is 
to submit the signals to two spreading functions, the 
first one modeling the frequency domain masking and 
the second one modeling the time domain masking 
(see Figure 4). Such processing results in the so-called 
excitation patterns, which are submitted to some 
additional processing, as described latter. 

In addition to the excitation patterns, another 
parameter, the error signal, is extracted at this stage. It 
is obtained after the weighting to model the frequency 
response of outer and middle ears, by calculating the 
difference between the power spectrums of the original 
and degraded signals. This difference is mapped into a 
perceptual scale by grouping into critical bands. This 
signal will play an important role in the calculation of 
the variables from which the objective measure is 
obtained through an artificial neural network. 

There are some fundamental differences between the 
model here implemented and the one adopted by the 
PEAQ method. Among them, two are detached: 

1- Use of a more efficient algorithm to the time-
frequency decomposition, which reduces the needs for 

storage by 90%, making the program faster and more 
efficient; 

2- The PEAQ method employs a normalization 
factor in order to keep the frame energies constant 
after the spreading performed in the frequency domain. 
However, such factor does not play its role efficiently 
and was replaced by a simpler procedure, where the 
relation between the energies before and after the 
spreading is computed for each frame. Then, the 
correspondent relation will multiply each frame 
submitted to the spreading. Furthermore, this 
procedure is computationally simpler. 

C. Filter Bank-Based Model 
The main feature of this model is its good temporal 

resolution, which allows one to obtain, theoretically, 
more precise results. On the other hand, the 
computational effort demanded is higher. Figure 5 
shows the basic scheme adopted for this model. 
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Fig. 5 - Basic scheme of the filter bank-based model 

 
The original and degraded signals at the input of this 

model are adjusted to the playback level and are sent 
through a high-pass filter to remove DC and subsonic 
components. Then, the signals are decomposed into 40 
bands by linear-phase FIR filters, which are equally 
distributed across the perceptual scale. A frequency-
dependent weighting is applied to the decomposed 
signal, in order to model the spectral features of outer 
and middle ears. The level-dependent spectral 
resolution of the input components to the auditory 
filters is modeled by a frequency-domain convolution 
of the outputs with a level-dependent spreading 
function. 

The envelopes of the signals are calculated using the 
Hilbert-transform of the band pass signals 
(rectification) and a time domain convolution with a 
window function is computed in order to model 
backward masking. Then, a frequency dependent 
offset is added to take into account the internal noise in 
the auditory system and to model the threshold in 
silence. Finally, a second time-domain convolution is 
carried out using an exponential spreading function 
that take into account the forward masking. 
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The implementation of this model in the MOQA 
method also presents two major differences when 
related to that one used in the PEAQ. The first of them 
is the use of more efficient routines, in order to reduce 
the time required to execute the program. The second 
one, more important, is related to the implementation 
of the auditory filters. In PEAQ, the FIR filters are 
implemented recursively. This approach inserts a pole 
in the equations of the filters that must be canceled by 
a correct allocation of zeros. Therefore, although the 
filters still present a finite impulse response, their 
implementation is quite related to those ones used in 
IIR filters and reduces considerably the computational 
burden required. 

Such approach led to very slow runs in Matlab. 
Thus, the development of a structure able to limit the 
use of loops and better adapted to the peculiarities of 
the simulation environment was strongly 
recommended. After several attempts, a very efficient 
structure, which uses only matrix operations, was 
created [10]. This technique was at least five times 
faster than any other strategy tried here. 

D. Pre-Processing of Excitation Patterns 
This stage consists of four procedures aiming to 

prepare the excitation patterns for an adequate 
extraction of the output parameters: 

1-  Level and pattern adaptation: the average levels 
of the original and degraded signals are adapted to 
each other by filters and correction factors, in order to 
compensate level disparities and linear distortions. 

2- Modulation: filters and weighting factors are 
applied in order to calculate a measure for the 
modulation of the envelope at each filter output. The 
resulting patterns are used to calculate the output 
parameters 1 and 2 in Section 4.5. 

3- Loudness: this processing aims to determine the 
loudness of the resulting excitation patterns, in 
agreement to Zwicker’s expression for the specific 
loudness [11]. The resulting patterns are also used in 
the calculation of some output parameters. 

4-  Masking threshold: it is obtained by the 
appropriate weighting of the excitation patterns, and it 
is used in the calculation of one output parameter. 

E. Model Output Parameters 
The model output parameters are submitted to an 

artificial neural network that produces a quality 
measure. Such parameters are described next, divided 
into groups in agreement to their purpose. Some of 
them were inspired in the PEAQ method, while others 
are completely new. 

1- Modulation difference: it is calculated from the 
temporal envelopes of original and degraded signals. 
This group is composed by four parameters, three 
related to the FFT-based model and one related to the 
filter bank-based model. 

2- Noise loudness: the parameters belonging to this 
group estimate the partial loudness of distortions added 
to the original signal. This group is composed by three 
output parameters, two from the filter bank-based 
model and one from the FFT-based model. 

3- Bandwidth: the two parameters resulting from 
this stage provide an estimation of the average 
bandwidth of the original and degraded signals, in 
terms of FFT lines. 

4- Noise-to-mask ratio: this group is composed by 
two parameters, one from each model, consisting on 
the relationship between the noise and masking 
patterns levels, in dB. 

5- Relative number of disturbed frames: it is 
composed by only one output parameter deriving from 
the FFT-based model, and is given by the number of 
frames whose mask-to-noise ratio exceeds determined 
value in dB. 

6- Detection probability: this group estimates the 
probability that a listener will detect a given 
disturbance. In PEAQ, it is composed by two 
parameters, both related to the FFT-based model. One 
of them was eliminated because its results are very 
poor. Furthermore, the other parameter was modified, 
leading to much better results than those ones obtained 
by the corresponding variable in PESQ. 

7- Correlation between the stereo channels: the two 
output parameters of this group are new, and they are 
not found in any other objective quality assessment 
method. Their calculation is performed only for the 
filter bank-based model. The motivation derives from 
the observation that eventual phase shifts between the 
channels can be very annoying to the listener. Those 
shifts can be revealed by low correlation values. 

8- Perceptual streaming and informational masking: 
these two concepts were published in [12] and were 
not used in the PEAQ algorithm. Here, they were 
combined to result in a new output parameter, which is 
derived from the filter bank-based model. The 
perceptual streaming is a central cognitive feature of 
the human auditory system that separates distinct 
auditory events and groups them into distinct streams. 
If the codec distorts the input signal in such a way that 
the output signal is separated into two pieces by the 
auditory system, the original signal and the distortion, 
then the disturbance caused by such distortion is more 
intense than if both parts (signal and distortion) are 
integrated in only one perception. The informational 
masking is a central cognitive feature of the human 
auditory system in which distortions that should be 
audible, become inaudible due the informational 
content (complexity) of the masker signal. 

9- Loudness of the difference signal using Lp norms: 
this parameter uses a strategy adopted by the method 
PESQ [13] for quality assessment of speech signals. 
Some averages are calculated applying different 
norms, in order to emphasize determined features of 
the difference between the signals. Firstly, an 
averaging at the frequency domain using a L3 norm is 



XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’03, 05-08 DE OUTUBRO DE 2003, RIO DE JANEIRO, RJ 

performed, what means that the spectral components 
are raised to 3, summed, and then a cube root is 
extracted. The same procedure is conducted at the time 
domain using a L6 norm. As result, a value 
representing the loudness of the difference signal is 
obtained. This is also a new original parameter. 

The mapping of all those parameters to a subjective 
quality estimation was performed using a multi-layer 
perceptron neural networks (MLPNN) with one hidden 
layer. The activation functions used for the hidden 
layer were hyperbolic tangents. For the output layer, 
the activation function was linear. The training was 
carried out using a Levenberg-Marquardt second-order 
optimization method [14], with an optimization 
criterion based on the least squares. 

V. TESTS AND RESULTS 
The features of the tests and the results obtained are 

presented in the following. 

A. Databases 
Among the ten databases used in the validation of the 

PEAQ method [6], only three were available for this 
research, totalizing 239 pairs of files. 

The files available contain a large number of distinct 
distortion patterns and a wide range content. 
Therefore, despite this is not a large set of files, it is 
representative enough to allow the extraction of 
consistent results and conclusions. 

B. Tests Description 
Firstly, the parameters were individually tested, and 

those ones judged not appropriated to be used as inputs 
of the artificial neural network were eliminated. From 
this selection, seven parameters from the FFT-based 
model and four parameters from the filter bank-based 
model remained. 

Several configurations for the neural network were 
tested. The configurations were obtained changing two 
parameters: number of inputs for the neural network 
and number of neurons in the hidden layer, as 
described next. 

- Parameters used as inputs to the neural network: 
the strategy to test the importance and contribution of 
each parameter consisted, initially, of tests using all the 
eleven remaining parameters as input to the net; then, 
they were gradually eliminated and, after each 
removal, the performance was computed. The 
parameters with lower individual correlation with the 
subjective scores were eliminated first. Tests showed 
that for four inputs or less, the performance of the 
method drops quickly. The best results were reached 
using 7 parameters. More studies will be necessary to 
turn the rest of parameters useful to train the neural 
network. 

- Number of neurons in the hidden layer: the number 
of neurons was varied from 2 to 25; such tests revealed 

that, above six neurons, the correlations do not present 
a significant improvement. 

Finally, two-thirds of the files were used in the 
trainings and one-third in the tests. 

C. Results 
The criterion used to validate the method was the 

correlation between the objective and subjective 
measures. The average correlation obtained for the 
three databases was 0.86. This can be considered an 
excellent result, especially if one considers that the 
best mean correlations reached by the PEAQ did not 
exceed 0.84 [6]. Figure 6 illustrates the performance of 
the MOQA method. A high concentration of points 
around the mapping line indicates good results. 

Although the training and test sets for PEAQ and 
MOQA are different, the above comparison are 
meaningful because the databases used with MOQA 
have a range of conditions almost as wide as that one 
found in the ten databases used in PEAQ tests. 
Therefore, MOQA was tested in circumstances similar 
to that faced by PEAQ. 

On the other hand, although the set used in this work 
contains a wide range of conditions, the set of data 
available to train the artificial neural network of the 
MOQA method was significantly smaller than that one 
available for the PEAQ tests. Therefore, the PEAQ 
method was much better trained and, consequently,  
was able to generate better mapping surfaces. In other 
words, the PEAQ had available more representatives 
examples of each condition were available to PEAQ, 
in such a way to provide more information and, 
consequently, more precise results. 

 

 
Fig. 6 - Mapping from objective to subjective values 

 
Therefore, it is possible to say with a high degree of 

confidence that the MOQA reached a better 
performance than PEAQ. Additionally, if the complete 
set of data was available to the MOQA, it is very likely 
that it would reach even better results, since it could be 
better trained. 
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Finally, it is important to emphasize that the 
improvement reached by the MOQA is very 
significant, despite the little difference between the 
correlations of both methods. Most of the effort spent 
in the last years resulted in modest improvements [6]. 
Moreover, as the correlation gets closer to 1, it is more 
difficult is to get better results. In this context, even the 
slightest improvements are relevant. 

VI. CONCLUSIONS 
The paper presented a new method for objective 

audio quality assessment. This method is a first result 
of a research project aiming to improve the 
performance of the PEAQ method, currently the ITU 
standard for such kind of assessment.  

This first proposal performs better than the PEAQ. 
However, although the achieved improvement be 
significant, its almost sure that it could be better if it 
was possible to train and test the new method with the 
same databases employed to adjust the PEAQ method. 

New proposals to get further improvements are under 
test and efforts have been spent to acquire the PEAQ 
databases. 

VII. BIBLIOGRAPHY 
[1]  T. V. Thiede, E. Kabot, “A New Perceptual Quality Measure 

for Bit Rate Reduced Audio”, Contribution to the 
100th AES Conv., preprint 4280, Copenhagen, 1996. 

[2] K. Brandenburg, “Evaluation of Quality for Audio Encoding 
at Low Bit Rates”, Contribution to the 82nd AES Convention, 
preprint 2433, London, 1987. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[3] J. G. Beerends, J. A. Stemerdink, “A Perceptual Audio 
Quality Measure Based on a Psychoacoustic Sound 
Representation”, Journal Audio Eng. Soc., v. 40, pp. 963-978, 
Dec. 1992. 

[4] B. Paillard, P. Mabilleau, S. Morisette, J. Soumagne, 
“Perceval: Perceptual Evaluation of the Quality of Audio 
Signals”, J. Audio Eng. Soc., v. 40, pp. 21-31, Jan. 1992. 

[5] C. Colomes, M. Lever, J. B. Rault, Y. F. Dehery, “A 
Perceptual Model Applied to Audio Bit-Rate Reduction”, J. 
Audio Eng. Soc., v. 43, pp. 233-240, April 1995. 

[6]  ITU-R Recommendation BS-1387, Method for Objective 
Measurements of Perceived Audio Quality, 1998. 

[7] J. G. A. Barbedo, A. Lopes, “Innovations on the Objective 
Assessment of Audio Quality”, Contribution to the VII 
National AES Convention, May 2003. 

[8] T. V. Thiede, Perceptual Audio Quality Assessment Using a 
Non-Linear Filter Bank, Ph.D. Thesis, Berlin, 1999. 

[9]  M. Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. 
Akagiri, H. Fuchs, M. Dietz, J. Herre, G. Davidson, Y. 
Oikawa, “ISO/IEC MPEG-2 Advanced Audio Coding”, 
Journal of the AES, v. 45, pp. 789-814, October 1997. 

[10] J. G. A. Barbedo, 1st Technical Report, Fapesp - Process no. 
01/04144-0, Campinas, July 2002. 

[11]  E. Zwicker, H. Fastl, Psychoacoustics, Facts and Models, 
Springer Verlag, Berlin, 1990. 

[12] J. G. Beerends, W. A. C. van den Brink, “The Role of 
Informational Masking and Perceptual Streaming in the 
Measurement of Music Codec Quality”, Contribution to the 
100th Convention of the Audio Engineering Society, Preprint 
4176, Copenhagen, May 1996. 

[13] ITU-T Recommendation P.862, Perceptual evaluation of 
speech quality (PESQ), an objective method for end-to-end 
speech quality assessment of narrow-band telephone networks 
and speech codecs, 2001. 

[14]  M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear 
programming, John Wiley & Sons, New York, 1993. 


