
XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’03, 05-08 DE OUTUBRO DE 2003, RIO DE JANEIRO, RJ

A new algorithm for training RBF networks
Aldebaro Klautau

Abstract— The radial basis function (RBF) network is the
main practical alternative to the multi-layer perceptron for
non-linear modeling. This work presents a new discrimina-
tive algorithm for the first training-stage of classifiers con-
sisting of RBF networks with diagonal covariance Gaussians
as basis functions. The experimental results show that the
algorithm leads to improved performance when compared
to the conventional expectation-maximization algorithm.

Keywords— Pattern recognition, radial basis function, dis-
criminative training.

I. Introduction

The RBF network is the main practical alternative to the
multi-layer perceptron (MLP) for non-linear modeling [1].
One attraction of RBF networks is that there is a two-
stage training procedure that is considerably faster than
the methods used to train MLPs.

Typically, the basis functions are given in terms of a
radial distance ||x − x′||. The most popular choice is the
Gaussian function, which is assumed throughout this work.
The output of the network is then given by

zr(x) =
G∑

g=1

wrgN (x|µ,Σ) + wr0,

where wrg are the output layer weights and N (·|µ,Σ) rep-
resents a Gaussian.

In the first stage, the parameters of the basis functions
are set so that they model the evidence P (x). The second
stage of training determines the weights in the output layer,
and this is a quadratic optimization problem, which can be
solved efficiently using methods from linear algebra [1].

In the first stage of training, one needs to determine
the set of parameters Θ associated to the Gaussians
(means and variances). The conventional way of estimat-
ing Θ is through maximum likelihood estimation (MLE).
More specifically, RBFs are typically trained using the
expectation-maximization (EM) algorithm [2] in the first
stage of learning. Therefore, the first stage of training an
RBF network is almost identical to learning a Gaussian
mixture model (GMM) classifier. We note that alterna-
tives to the EM-based initialization have been proposed in
the literature, e.g., [3].

In this paper, we present a new algorithm for training
RBF networks, which increases the accuracy at the expense
of a higher computational cost. The algorithm assumes a
conventional classification scenario and that the Gaussians
have diagonal covariance matrices.

The paper is organized as follows. In Section II we dis-
cuss two learning techniques and establish the notation. In

The author is with the ECE Department, UCSD, 9500 Gilman
Drive, La Jolla, CA 92093, USA. E-mail: a.klautau@ieee.org.

A. Klautau was supported by CAPES, Brazil.

Section III we present the discriminative EM algorithm.
Section IV presents the simulations results and is followed
by our conclusions.

II. Generative and discriminative learning

In this section we make a connection between the first
stage of training an RBF network and training Bayes clas-
sifiers. For more details, see, e.g., [1].

We assume a conventional classification problem, where
one is given a training set {(x1, y1), . . . , (xN , yN)} contain-
ing N examples, which are independently and identically
distributed (iid) samples from an unknown but fixed distri-
bution P (x, y). Each example (x, y) consists of an instance
x ∈ X and a label y ∈ {1, . . . ,Y }. The input x is a vector of
dimension L. A classifier is a mapping F : X → {1, . . . ,Y }.

Throughout this work, we adopt the nomenclature used
in [4], where1 P (y|x), P (x|y), P (y) and P (x) are called
posterior, likelihood, prior and evidence, respectively, and
are related through Bayes’ rule

P (y|x) =
P (x|y)P (y)

P (x)
. (1)

Bayes classifiers implement

F = arg max
y=1,...,Y

P̂ (x|y)P̂ (y).

Training a Bayes classifier consists in estimating the pa-
rameters Θ of all its likelihood functions P̂ (x|y).

The conventional way of estimating Θ for both RBF and
Bayes classifiers is through maximum likelihood estimation
(MLE). MLE-based classifiers seek Θg = arg maxΘ Rg(Θ),
where

Rg(Θ) =
N∏

n=1

P̂ (xn|yn).

Such classifiers are called generative [5] or informative [6].
The term generative is used because if the estimated

P̂ (x, y) is “close” to the true distribution P (x, y), we could
use P̂ (x, y) to generate samples with statistics similar to
the ones of our original training set. However, for the sake
of classification, we do not need to keep Θ. In such cases,
the term informative seems more appropriate.

By contrast, discriminative Bayes classifiers (and RBF
networks trained with the method proposed in this work)
seek Θd = arg maxΘ Rd(Θ), where

Rd(Θ) = P̂ (y|x).

1We use P to denote both probability mass functions and densities.

XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’03, 05-08 DE OUTUBRO DE 2003, RIO DE JANEIRO, RJ

Note that

Rd(Θ) =
N∏

n=1

P̂ (xn|yn)P̂ (yn)
P̂ (xn)

=
N∏

n=1

(
1 +

∑
j �=yn

P̂ (xn|j)P̂ (j)

P̂ (xn|yn)P̂ (yn)

)−1

.

It follows that discriminative procedures try not only to
maximize the likelihood of examples (x, y), but, at the same
time, minimize the likelihood of competing classes j �= y.

Discriminative is often harder than generative training.
There are no closed-form solutions and iterative optimiza-
tion algorithms are needed. Roughly speaking, if the mod-
eling assumptions are correct, adopting a generative clas-
sifier is more appropriate [7], [6], [5].

The key idea of this paper is that, similarly to Bayes clas-
sifiers, we can improve the performance of RBF networks
using a discriminative leaning technique in the first stage of
training. The next section presents such technique, which
we call discriminative expectation-maximization (DEM) al-
gorithm.

III. The discriminative EM algorithm

The next subsections briefly describe DEM training.
More information can be found at [8].

A. EM applied to mixture of Gaussians with diagonal co-
variances

We now review how EM is used for learning, for each
class, a mixture of Gaussians with diagonal covariance ma-
trices as the likelihood model. Hence, we want to learn the
parameters Θ = {µjgl, σjgl, wjg}, where |Θ| = 2M(L + 1).
The indices (j, g, l) specify the class, the mixture compo-
nent (Gaussian) and the dimension, respectively. We model
each class without taking in account the examples from
other classes. Hence, to simplify the notation, we drop the
index j along this initial discussion.

To understand the application of EM,2 we first identify
that the “missing information” in this problem is the in-
dex of the Gaussian that should be associated to a given
example xn. Let us assume that some oracle had given
us such information as a “hard” assignment of examples
to one among the G Gaussians of a mixture. This as-
signment can be represented through an indicator function
I(Gn = g), g = 1, . . . , G, which is one for the Gaussian
with the “correct” index Gn provided by the oracle, and 0
for other Gaussians. For example, when learning a mixture
with G = 3 Gaussians, the indicator function would return
(0, 1, 0) when an example xn should be assigned to the
Gaussian with index g = 2. Having this hard assignment
for all training examples, the maximization step (M-step)
of EM obtains a new Gaussian simply taking the sample
mean and sample covariance of all examples associated to
that Gaussian by the oracle.

2Here we are mainly interested on defining the notation that is
needed to describe the discriminative EM. For a very readable dis-
cussion of EM as applied to GMM see, e.g., [9]. For a more rigorous
and complete treatment of EM see, e.g., [10].

The expectation step (E-step) of EM plays the role of
the oracle but, instead of the hard assignment, it provides
a probabilistic “soft” assignment P (g|xn) of examples to
all G states (i.e., a discrete distribution over states for
each xn). For example, assuming G = 3, we could have
P (g|xn) = (0.1, 0.7, 0.2). This would indicate to the M-
step that xn should be taken in account in the reestima-
tion of all three Gaussians, but influencing more strongly
the second one. This contrasts with the previous example
of a hard assignment, where each example is associated to
only one Gaussian. More specifically, for each example, the
E-step calculates

P (g|xn) =
N (xn|µg,Σg)wg∑G

g′=1N (xn|µg′ ,Σg′)wg′
.

The distribution P (g|xn) is all that we need to apply the
reestimation equations associated to the maximization step
(M-step) of EM. The new values for the mixture weights,
means and variances can be written as

w̃g =
C(1)g∑G

g′=1 C(1)g′
,

µ̃gl =
C(x)gl

C(1)g

and

σ̃gl =
C(x2)gl

C(1)g
− µ̃2

gl,

where the occupation counts C(x)gl, C(x2)gl and C(1)g,
which are statistics for calculating the new set of parame-
ters, are given by

C(x)gl =
∑
n′

P (g|xn)xn(l),

C(x2)gl =
∑
n′

P (g|xn)x2
n(l)

and
C(1)g =

∑
n′

P (g|xn).

In these equations we used x(l) to indicate the l-th compo-
nent of vector x, and the summation over n′ includes only
the examples of the specific class in consideration. The al-
gorithm can then be efficiently implemented, as shown in
Figure 1.

Note that the number of computations in each epoch is
O(N), i.e., increases linearly with the number of training
examples, and the memory requirements is very small: we
only need space for the set Λ = {C(x)jgl, C(x2)jgl, C(1)jg}
of counts, where |Λ| = |Θ|.
B. DEM applied to mixture of Gaussians with diagonal co-

variances

The main purpose of the previous section was to establish
the notation for the DEM algorithm, which is shown in
Figure 2. The E-step of DEM is similar to the one in

XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’03, 05-08 DE OUTUBRO DE 2003, RIO DE JANEIRO, RJ

1) Initialization
• Pick the initial parameters Θ and set the iteration
counter i = 1
2) Do:
• Set the total log-likelihood log Rg(i) = 0, reset all counts
• E-step: for n = 1, . . . , N (one epoch)
– For all Gaussians of mixture j = yn, calculate
N (xn|µjg ,Σjg)
– Calculate

P (g|xn, yn = j) =
N (xn|µjg ,Σjg)wjg∑Gj

g′=1
N (xn|µjg′ ,Σjg′)wjg′

, ∀g of class j

– Update log Rg(i)← log Rg(i) + log PΘ(xn|yn)
– Accumulate counts:
C(x)jgl ← C(x)jgl + P (g|xn, yn = j)x(l)
C(x2)jgl ← C(x2)jgl + P (g|xn, yn = j)x2(l)
C(1)jg ← C(1)jg + P (g|xn, yn = j)
• M-step: calculate a new set of parameters
– Mixture weight w̃jg = C(1)jg∑G

g′=1 C(1)jg′

– Mean element µ̃jgl = C(x)jgl

C(1)jg

– Covariance element σ̃2
jgl = C(x2)jgl

C(1)jg
− µ̃2

jgl

• Update for next iteration Θ← Θ̃ and increment i
Until convergence based on log Rg(i) and / or maximum
number of iterations
3) Calculate (optional) the total log-likelihood
log Rg(i + 1) =

∑N
n=1 log PΘ(xn|yn) of the final model

Fig. 1. EM algorithm as applied to learning a mixture of Gaussians
for each class.

the EM algorithm, and the M-step uses different equations
based in the procedure described in [11] (see [8]).

When implementing the DEM algorithm, it is convenient
to create for each iteration, a model that would output the
evidence P (x) of Equation (1) (the denominator of Rd). In
other words, we deal with the marginal distribution

P (x) =
Y∑

y=1

P (x|y)P (y)

as one mixture with all G =
∑Y

y=1 Gy Gaussians, namely

P (x) =
Y∑

y=1

Gy∑
g=1

N (x|µyg,Σyg)w′
yg,

where w′
yg = P (y)wyg is the original weight scaled by the

associated prior. We conceptually treat this mixture as
modeling a fictitious class associated to the denominator
of Rd, and call it denominator model. This fiction is con-
venient when writing the equations and also when imple-
menting the code, because it allows using methods created
for dealing with mixtures.

The DEM algorithm uses two sets of occupation counts:

Λnum = {C(x)numjgl , C(x2)numjgl , C(1)numjg }

1) Initialization
• Pick the initial parameters Θ and set the iteration
counter i = 1. Calculate the influence of the prior proba-
bilities p =

∑N
n=1 log P (yn)

2) Do:
• Set the total log-posterior log Rd(i) = p, reset all counts
• E-step: for n = 1, . . . , N (one epoch)
– For all Gaussians j = 1, . . . , G, calculate
N (xn|µjg ,Σjg)
– Calculate P (g|xn, yn), ∀g of class yn

– Calculate P (g|xn), ∀g (i.e., for the Gaussians of the
denominator model)
– Update

log Rd(i)← log Rd(i) + log PΘ(xn|yn)− log PΘ(xn)
– Accumulate counts for the correct class j = yn (numer-

ator): C(x)numjgl , C(x2)numjgl , C(1)numjg , and for the denominator
j = 1, . . . , G: C(x)denjgl , C(x2)denjgl , C(1)denjg

• M-step: calculate a new set of parameters

w̃jg =
C(1)numjg − C(1)denjg + Dwjg∑Gj

g′=1

(
C(1)numjg′ − C(1)denjg′

)
+ D

µ̃jgl =
C(x)numjgl − C(x)denjgl + Dµjgl

C(1)numjg − C(1)denjg + D

σ̃2
jgl =

C(x2)numjgl − C(x2)denjgl + D(σ2
jgl + µ2

jgl)
C(1)numjg − C(1)denjg + D

− µ̃2
jgl

• Update for next iteration Θ← Θ̃ and increment i
Until convergence based on log Rd(i) and / or maximum
number of iterations
3) Calculate (optional) the total log-posterior
log Rd(i+1) =

∑N
n=1 log PΘ(xn|yn)+p−∑N

n=1 log PΘ(xn)
of the final model

Fig. 2. DEM algorithm as applied to learning a mixture of Gaussians
for each class.

and
Λden = {C(x)denjgl , C(x2)denjgl , C(1)denjg },

associated to the numerator and denominator of Rd, re-
spectively.

Similarly to the EM algorithm, in the E-step of DEM,
each example is used to update the counts in Λnum that cor-
respond to the correct class yn. However, DEM also up-
dates the counts in Λden, independent of the label yn (one
can think of it as if an instance x belongs to both “denomi-
nator class” and yn). In other words, we compute P (g|xn)
for the denominator model using all G Gaussians and up-
date all counts in Λden, while P (g|xn, yn = j) (associated
to the numerator) is computed using only the Gaussians of
the correct class yn. Hence, in the end of each epoch, the
counts in Λnum are exactly the same as the ones that would
be obtained with EM.

An example can clarify the role of Λden in the E-step of

XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’03, 05-08 DE OUTUBRO DE 2003, RIO DE JANEIRO, RJ

DEM. Let us say that there are Y = 2 classes and each
class is associated to a mixture of G1 = G2 = 3 Gaus-
sians. We assume that, when presented to an instance xn

belonging to class yn = 1, the iteration of the E-step cal-
culated the distribution (0.1, 0.7, 0.2) for the Gaussians of
this class. This distribution is then used to update the
counts in Λnum associated to class 1. Assume that the first
three Gaussians of the mixture associated to the denom-
inator model correspond to class 1, and the other three
to class 2. If the distribution associated to the denomina-
tor is (0.05, 0.35, 0.1, 0.5, 0, 0), we can infer that the first
Gaussian of class 2 outputs a relatively high value when
presented to xn. This is the kind of problem that the dis-
criminative training procedure will try to correct.

In the maximization step, the discrete distributions as-
sociated to the mixture weights are reestimated according
to

w̃jg =
C(1)numjg − C(1)denjg + Dwjg∑Gj

g′=1

(
C(1)numjg′ − C(1)denjg′

)
+ D

,

where D is an empirical constant related to the learning
rate [8].

The means and variances are reestimated according to
the equations derived in [12], respectively:

µ̃jgl =
C(x)numjgl − C(x)denjgl + Dµjgl

C(1)numjg − C(1)denjg + D

and

σ̃2
jgl =

C(x2)numjgl − C(x2)denjgl + D(σ2
jgl + µ2

jgl)
C(1)numjg − C(1)denjg + D

− µ̃2
jgl.

In our implementation we use a different Djg for each
Gaussian, which depend on a learning rate η that varies
over time. If the last step resulted in an improvement of Rd,
η is increased. If Rd decreases (a negative improvement),
η is decreased. The value of Djg also depends on the fact
that we want the variances to be positive.

We note that DEM spends most of the CPU cycles com-
puting the values of the G Gaussians for each instance xn.
In order to alleviate this effort, we propose using a K-d
tree.

C. Reducing the computational cost of DGMM with a K-d
tree

In [13], Bentley proposed a data structure to speed up
database search and called it K-d tree. The K-d tree has
been used, for example, in vector quantization (VQ) to
reduce the computational cost of encoding (see, e.g., [14]).

We now briefly describe the K-d tree, which is based on
hyperplanes that are orthogonal to one of the axes. Con-
sider the input space being split into two half spaces by
means of a hyperplane orthogonal to one of the L coordi-
nate axes (recall that L is the number of features). This
hyperplane requires storing only two scalar quantities: the
index i of the coordinate axis and the location hi of the
plane on this axis. It is possible to locate any vector point

x with respect to this hyperplane by a single scalar com-
parison xi > hi of the i-th element of x. The root of the
K-d tree is associated to the whole input space, and succes-
sive divisions of the subregions by hyperplanes orthogonal
to the coordinate axis result into terminal regions, known
as leafs or buckets. In VQ, only the codewords associated
to the leaf that x falls in are considered for representing
(quantizing) x.

In [15], the K-d tree data structure was used to speed
up the calculations related to the Gaussians in ASR sys-
tems. Instead of splitting based on Voronoi regions as in
VQ, Fritsch and Rogina established a multidimensional box
around each Gaussian mean, and this box plays a role sim-
ilar to the Voronoi region in VQ. Assuming the covariance
matrices are diagonal, the lower and upper limits, for each
dimension k of such Gaussian box can be easily calculated
as follows. Assume we want to find the box associated to
some value V , that is

V =
1√

(2π)L|Σ| exp
(
−1

2
(x− µ)′Σ−1(x− µ)

)
.

Taking the log and rearranging we have (here, xk represents
the k-th element of x)

L∑
k=1

(xk − µk)2

σ2
k

= c, (2)

where

c = − ln

[
V 2(2π)L

L∏
k′=1

σ2
k′

]
.

For each dimension k, the lower and upper limits tk of x
that obey Equation (2) are obtained when xk′ = µk′ , ∀k′ �=
k. From Equation (2), these limits are

tk = µk ± σk

√
c.

An example for which L = 2 is shown in Figure 3
(from [16]). Having the box associated to each Gaussian,
we can apply, for example, one of the algorithms proposed
in [14] to build a K-d tree.

In this work, we adopted the “relative threshold” dis-
cussed in [15] to calculate the box of each Gaussian, and
the GOC algorithm proposed in [14] to build the K-d tree.
Before each E-step of the DEM algorithm, we build a K-d
tree using all G Gaussians. Then, for each instance xn, we
assume N (x|µg,Σg) = 0 if Gaussian g does not belong to
the leaf that xn falls in.

IV. Simulation results

In this section we present experimental results comparing
RBF networks trained with EM and DEM. When MLPs
are applied to classification tasks, it is common practice to
use logistic or softmax output activation functions and the
corresponding cross-entropy error function so as to ensure
that the outputs sum to one and all lie in the interval [0, 1].
This does not add significantly to the time taken to train

XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’03, 05-08 DE OUTUBRO DE 2003, RIO DE JANEIRO, RJ

Fig. 3. Example of Gaussian box (from Srivastava’s thesis), which
plays the role of a Voronoi region.

TABLE I

Description of the datasets.

Name train test classes (Y) attributes (K)
synth 250 1000 2 2
waveform 400 4600 3 40
pima 200 332 2 7
pbvowel 599 600 10 2
0-6 (mnist) 500 1938 2 256
7-9 (mnist) 500 2037 2 256
d-t (timit) 500 300 2 118
iy-ih (timit) 500 446 2 118

an MLP since even with linear outputs, general purpose
optimization routines must be used [1].

However, an RBF network with logistic or softmax out-
puts no longer has a quadratic error surface for the output
layer. If general purpose optimization algorithms are used,
much of the speed advantage over MLPs is lost [1]. For this
reason, we used only linear output units in our simulations.

We used eight standard datasets listed in Table I. The
datasets pima and synth were made available by B. Rip-
ley3. The waveform dataset is described in [17]. The pb-
vowel dataset corresponds to a version of the Peterson and
Barney’s vowel data described in [18]. Two binary prob-
lems (digits 0 vs. 6 and 7 vs. 9) were extracted4 from
MNIST, which is a dataset of handwritten digits available
from Y. LeCun. Two other binary problems (phones d
vs. t and iy vs. ih) were were extracted from the TIMIT
speech dataset5. We converted each occurrence of these
phones into fixed-length vectors (K = 118) using a lin-
ear warping procedure. MNIST and TIMIT are relatively
large datasets. Hence, we used only 500 examples of each
of their class. The datasets synth and waveform are toy
examples, for which we know the Bayes errors are 8% and
14%, respectively.

We standardized each attribute to have zero mean and
unit variance. We selected the number of Gaussians using
ten-fold cross-validation on the training set. These prelim-
inary results show that DEM outperforms EM in terms of

3http://www.stats.ox.ac.uk/pub/PRNN.
4We subsampled MNIST to obtain images with 16×16 pixels using

Matlab’s function imresize.
5http://www.ldc.upenn.edu/.

TABLE II

Error rate for RBF networks trained using EM and DEM.

Gaussians.

Dataset RBF / EM RBF / DEM
synth 8.1 8.1
waveform 16.2 14.2
pima 18.3 17.8
0-6 2.5 2.1
7-9 8.3 8.1
d-t 16.2 15.1
iy-ih 15.2 13.1
pbvowel 19.8 18.9

accuracy.
We note that, as other non-linear optimization ap-

proaches, running DEM is always susceptible to conver-
gence problems. Figure 4 shows an example of the con-
vergence of the algorithm, illustrating the behavior of the
simple mechanism we used to adaptively adjust the learn-
ing rate. This is a case where the adaptation heuristic was
too aggressive, and the value of Rd abruptly decreased on
the third iteration, after the learning rate was increased to
around 0.7.

0 2 4 6 8 10 12 14 16 18 20
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

to
ta

l l
og

 p
os

te
rio

r

Iteration
0 2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

le
ar

ni
ng

 r
at

e

Fig. 4. Convergence of the DEM algorithm for the dataset sd-t
(note that 0 is the upper-bound on log Rd). The plot also shows the
evolution of the learning rate.

Figure 5 shows the same simulation as in Figure 4, but we
added three plots corresponding to a fixed learning rate of
η=0.1, 0.01 and 0.001. It can be seen that 0.1 does not lead
to convergence, while 0.001 leads to a steady but very slow
convergence. When using η=0.01, the algorithm converges
to almost the same value of Rd as the one obtained with the
adaptive heuristic. The problem is that this “reasonable”
fixed value of η is problem-dependent, i.e., requires tuning
for each problem.

V. Conclusions

We described a new algorithm for training RBF net-
works, which is based on the extended Baum-Welch algo-
rithm. The experimental results indicate that the accuracy
is improved when compared to an RBF trained with EM.
Future works include comparing RBF trained with DEM

XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’03, 05-08 DE OUTUBRO DE 2003, RIO DE JANEIRO, RJ

0 2 4 6 8 10 12 14 16 18 20
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Iteration

to
ta

l l
og

 p
os

te
rio

r

adaptive
0.001
0.01
0.1

Fig. 5. Comparison of convergence with fixed and adaptive learning
rates.

to MLP networks, and eliminating the restriction of using
diagonal covariance matrices.

References

[1] I. Nabney. Netlab algorithms for pattern recognition. Springer,
2002.

[2] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal
Statistical Society (B), 39:pp. 1–22, 1977.

[3] T. Kaylani and S. Dasgupta. A new method for initializing radial
basis function classifiers. In IEEE International Conference on
Systems, Man, andCybernetics. Human, Information and Tech-
nology, volume 3, pages 2584–7, 1994.

[4] R. Duda, P. Hart, and D. Stork. Pattern classification. Wiley,
2001.

[5] A. Ng and M. Jordan. On discriminative vs. generative classi-
fiers: A comparison of logistic regression and naive bayes. In
NIPS, 2002.

[6] Y. Rubinstein and T. Hastie. Discriminative vs informative
learning. In Knowledge Discovery and Data Mining, pages 49–
53, 1997.

[7] A. Nádas, D. Nahamoo, and M. Picheny. On a model-robust
training method for speech recognition. IEEE Trans. on ASSP,
36:1432–6, 1988.

[8] A. Klautau. Speech Recognition Using Discriminative Classi-
fiers. PhD thesis, UCSD, 2003.

[9] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[10] G. McLachlan and T. Krishnan. The EM algorithm and exten-

sions. Wiley, 1997.
[11] L. Baum and J. Eagon. An inequality with applications to statis-

tical estimation for probabilistic functions of Markov processes
and to a model for ecology. Bulletin of the AMS, 73:360–363,
1967.

[12] Y. Normandin. Hidden Markov Models, Maximum Mutual In-
formation Estimation and the Speech Recognition Problem. PhD
thesis, McGill University, 1991.

[13] J. Bentley. Multidimensional binary search trees in database
applications. IEEE Transactions on Software Engineering,
5(4):333–340, 1979.

[14] V. Ramasubramanian and K. Paliwal. Fast K-dimensional tree
algorithms for nearest neighbor search with application to vector
quantization encoding. IEEE Trans. on Signal Processing, 40(3),
1992.

[15] J. Fritsch and I. Rogina. The bucket box intersection (BBI)
algorithm for fast approximative evaluation of diagonal mixture
gaussians. In ICASSP, pages 837–840, 1996.

[16] S. Srivastava. Fast Gaussian evaluations in large vocabulary
continuous speech recognition. Master’s thesis, Mississippi State
University, 2002.

[17] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Wadsworth, 1984.

[18] A. Klautau. Classification of Peterson and Barney’s vowels us-
ing Weka. Technical report, UFPA, http://www.deec.ufpa.br/tr,
2002.

