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Speech Recognition Based on
Discriminative Classifiers

Aldebaro Klautau, Nikola Jevtić and Alon Orlitsky

Abstract— This work focuses on techniques for using dis-
criminative classifiers such as the support vector machine
(SVM) in speech recognition. We review previously pro-
posed architectures and perform experiments with one of
them. The results show that using SVMs instead of Gaus-
sian mixtures can bring significant improvements in accu-
racy, but the computational cost is very high. To circumvent
this problem, we propose a new architecture that achieves
higher accuracy with a reasonable cost. Preliminary results
for a spelling task indicate a decrease of 24% in word error
rate over a generative HMM-based system.

Keywords— Speech recognition, discriminative training,
support vector machines.

I. Introduction

This work concerns the automatic speech recognition
(ASR) problem, which roughly speaking, consists in con-
verting digitized speech into text. More specifically, we
study acoustic modeling, which together with the front-
end, language modeling and decoder, constitute a typical
ASR system.

The hidden Markov model (HMM) is the predomi-
nant technique in ASR systems [1], [2]. Learning HMMs
with maximum likelihood estimation (MLE) corresponds to
learning a generative sequence classifier [3]. An alternative
that often improves accuracy (but increases computational
cost) is to adopt discriminative learning techniques. Some
examples of discriminative learners that have been used in
ASR are artificial neural network (ANN) [4], [5], SVM [6],
[7] and relevance vector machine (RVM) [8]. Another alter-
native to the generative HMM system consists in training
HMMs in a discriminative way through, e.g., maximum
mutual information estimation (MMIE) [9], [10].

In this work, we investigate efficient ways to incorporate
discriminative classifiers such SVM [11] to ASR. These clas-
sifiers achieved state-of-art results in many pattern recog-
nition applications, but early experiments in ASR have ex-
posed some difficulties. One of them is that the classifier’s
input in ASR is a variable-length vector. A second issue
is that SVM (and similar kernel classifiers) is restricted to
binary (two-classes) problems. Another point is that the
computational cost of training discriminative classifiers can
be prohibitive, given that relatively large datasets are used
in ASR. We address all these three issues.

We adopt a hybrid framework in which discriminative
classifiers are combined to HMM models, such that the
system is able to cope with a variable-length input. We
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investigate issues with an architecture that has been pre-
viously used but has high computational cost. We also
propose a new architecture that brings improved accuracy
with relatively small computational cost. The proposed ar-
chitecture allows for adopting distinct features when trying
to distinguish different classes of sounds. Hence, we auto-
matically select a heterogeneous set of suitable features us-
ing a recently proposed algorithm based on boosting [12].
The results show that the proposed system outperforms
conventional HMM-based ones in preliminary experiments
with continuous speech (spelling task) using a small cor-
pora.

The work is organized as follows. In Section II we re-
view three architectures for using discriminative classifiers
in ASR. Section III discusses one of them in more details,
and shows some experimental results. In Section IV we
present a new architecture and show preliminary results
for continuous speech recognition. Section V presents our
final considerations.

II. Architectures for using classifiers in ASR

Different architectures have been recently proposed for
using discriminative classifiers in ASR. We start by briefly
discussing three of them, which are called here: phone-
based, frame-based and sequential.

We want to be able to use classifiers that are restricted to
binary problems. However, in ASR the classes can be vow-
els [13], phones [6] or HMM states [7]. Therefore, all three
architectures use an error-correcting output code (ECOC)
matrix M ∈ {−1, 0, 1}Q×B to decompose the multiclass
into binary problems (see, e.g., [14], [15], [16]). The bi-
nary classifier fb is trained according to column M(·, b). If
M(q, b) = +1, all examples of class q are considered posi-
tive, if M(q, b) = −1, all examples of class q are negative,
and if M(q, b) = 0, none of the examples of class q partici-
pates in the training of classifier fb.

Two ECOC matrices have been used in ASR: all-pairs [7]
and one-vs-rest [6]. The one-vs-rest matrix induces B = Q
binary classifiers f1, . . . ,fQ, where fi is trained to distin-
guish between positive class i and all other negative classes.
The all-pairs matrix induces B =

(
Q
2

)
binary classifiers

fi,j , 1 ≤ i < j ≤ Q, where fi,j is trained to distinguish
between positive class i and negative class j. For example,
when Q = 4, the one-vs-rest and all-pairs matrices are,
respectively,[

+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1

]
and

[
+1 +1 +1 0 0 0
−1 0 0 +1 +1 0

0 −1 0 −1 0 +1
0 0 −1 0 −1 −1

]
.
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We now point out the specific aspects of each archi-
tecture. The frame-based architecture is very similar to
the traditional hybrid approach that integrates ANN and
HMM [17]. Instead of having an ANN providing the acous-
tic scores, we use binary classifiers combined through an
ECOC matrix. Note that the frame-based relies only on
binary classifiers, a characteristic that is not shared with
the other two architectures.

The phone-based architecture used, e.g., in [18], requires
a baseline system (based on HMMs, for example) to per-
form a first pass through the training data. The goal of
this first pass is to generate a set of possible segmentations
per utterance, where each segmentation indicates the end-
points of the basic units (e.g., phones) associated to the
given transcription. These segmentations are organized as
N-best lists or lattices (see, e.g., [2], for definitions), which
can then be re-scored by the binary classifiers in a second
pass. The key point is that, based on the segmentation
provided by the first pass, one can convert each segment
(corresponding to a basic unit) into a fixed-length vector,
and then use conventional classifiers such as SVM. For ex-
ample, Ganapathiraju [18] used a linear warping to obtain
a fixed-length vector from all frames associated to a phone
by the segmentation.

When compared to the frame-based, the phone-based
architecture has the advantage of a smaller number N of
training examples. According to statistics from the TIMIT
corpus [19], American English has an average of 7.2 frames
per phone (assuming a frame rate of 100 Hz). Hence, deal-
ing with phones instead of frames can significantly reduce
the training time of kernel methods that scale with O(N2)
or O(N3). Another aspect is that, similarly to the situa-
tion in segmental modeling [20], segmental features can be
used when adopting the phone-based architecture.

An advantage of the frame-based over the phone-based
architecture is that the former does not require two passes
(so there is no need for using a HMM system in addition),
and it is easier to implement in real-time applications. We
note that, as done for systems based on segmental model-
ing [20], it is possible to implement efficient decoders that
segment speech on-the-fly (see, e.g., [21]).

The sequential architecture was adopted in [7]. Simi-
lar to the phone-based, the sequential architecture uses a
baseline HMM system to provide an N-best list. During
decoding, only the classifiers associated to states that are
active according to the N-best list are used. In [7], the clas-
sifiers were SVMs, and they were organized according to an
all-pairs ECOC matrix. A strategy equivalent to Hamming
decoding (see, e.g, [16]) is adopted, i.e., the SVM scores are
quantized and the multiclass decision is based on “voting”.
The results in terms of word error rate were not as good
as frame classification. We note the sequential architecture
requires training all the binary classifiers specified by the
ECOC matrix, even if only a subset of them will be used
for each frame during decoding.

III. Frame-based architecture

Among these three architectures, we chose the frame-
based to perform preliminary experiments. Our goal was
to investigate some issues related to using SVM in ASR, as
discussed below.

A. Design issues

The main problem when adopting the frame-based archi-
tecture is the high computational cost during both training
and test stages. One simple work-around is to select only a
subset of frames when training the system. Unfortunately,
our experiments indicate that this strategy implies in a de-
crease of accuracy [22]. The computational cost of decoding
at the test stage depends primarily on the number of sup-
port vectors and, as predicted in theory [23], this number
increases linearly with N . On the other hand, the accuracy
decreases when we unadvisedly throw away frames to use
smaller subsets of the training data.

The frame-based architecture requires the specification
of a Q×B ECOC matrix M, where Q and B are the number
of shared states and binary classifiers, respectively. One
issue is the selection of the number of states per phone. For
example, one can keep the same left-right HMM topology
with three states, or use only one state per phone. We note
that these two alternatives were tested in the ANN / HMM
framework, and the latter led to better results [17]. We
note that ANN / HMM systems typically use an extended
input vector x obtained by concatenating the features of
several (e.g., 9) frames. This way, each input vector x
contains contextual information, which alleviates the fact
that only one state is used to model a phone.

Another aspect of the architecture is how to deal with bi-
nary learners that are not probabilistic. For example, while
RVM returns probabilities that can be readily used, SVM
returns real numbers as scores. Hence, for non-probabilistic
learners, we have to convert the binary scores into proba-
bilities, otherwise the results are very poor.

Finally, we need to convert the B probabilities into an
estimate P (q|xt) of the posterior probability of state q =
1, . . . , Q given the input features xt of frame t.

Once we have P (q|xt), we can use the techniques adopted
for hybrid ANN / HMM systems. For example, as ex-
plained in [17], the posterior P (q|xt) is normalized by the
prior P (q), and by Bayes’ rule this leads to a normalized
likelihood P (q|xt)/P (xt). This likelihood is used to feed the
decoder, substituting the likelihoods obtained from mix-
ture of Gaussians in typical HMM-based systems.

As in ANN / HMM systems, the system can be trained
using a segmental K-means algorithm [24]. In summary,
the segmental K-means uses a pre-existing system to per-
form, for each utterance, a forced-alignment associating
each frame to one state. For training binary classifier fb,
one uses the frame associated to the states q for which
M(q, b) �= 0. After all binary classifiers are trained, they
are used to obtain a new forced-alignment and the pro-
cess is repeated until convergence or a maximum number
of iterations is reached.
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The next subsection shows experimental results that ad-
dress the issues involved in the design of an ASR system
using the frame-based architecture.

B. Results of classification using SVMs

In this section we show results that are related to the
following aspects: training of binary classifiers, conversion
of their scores into binary probabilities, estimation of a
multiclass probability given these binary probabilities, and
comparison of systems based on SVM and Gaussian mix-
tures.

We used subsets of TIMIT to perform frame and phone
classification. The datasets consisted of five highly con-
fusable pairs of phones from TIMIT, belonging to differ-
ent phonetic classes, such as vowels, nasals, etc. We used
context-independent models (without state sharing) and
one state per phone.

In all experiments we used SVM with Gaussian kernel
as the binary learner, which is well-known for its high ac-
curacy. The SVM kernel parameters were selected through
cross-validation (CV) using the training data, as described
in [22]. We used a conventional PLP front-end [25], which
generates L = 39 features (we added estimates of the first
two derivatives of 12 PLP coefficients and energy) at a
frame rate of 100 Hz. We note that, differently than what
is typically done for ANN / HMM, we did not concate-
nate several frames to include contextual information when
composing the input vector x. This way we can directly
compare the performance of SVMs and Gaussian mixtures,
because the latter are typically used with a single frame as
input.

Table I shows the results obtained with the SVMs when
considering frame classification, i.e., classifying xt for each
frame t. We used two different methods to select the kernel
parameters. The first consists in using CV on the train-
ing set to find the best set of parameters for performing
multiclass classification with all 10 phones we are dealing
using an all-pairs ECOC matrix. In the second method,
we also did CV on the training set, but for each dataset
individually, finding the best set of parameters for each bi-
nary problem. The results show that the performance is
substantially increased when the kernel is tuned for each
binary classifier. We note that during the test stage, we
want to share kernel computations among binary classifiers
to save computations, and the fact that we can have differ-
ent kernel parameters requires a careful implementation of
the decoder.

We now investigate methods to convert the SVM scores
into probabilities using phone classification. We used the
same set of parameters for all SVMs (column “same” in
Table I) and compared two methods: fitting a sigmoid and
isotonic regression, as proposed in [26] and [27], respec-
tively. Table II shows the results. When training the con-
verters, there is a concern with overfitting, given that in the
test set, the scores can have different statistics than in the
training set. Hence, we compared the conversion methods
using the training set to learn the converters and also used
3-fold CV on the training set. The sigmoid outperformed

TABLE I

Error rate for SVMs performing frame classification using

two different methods to select the kernel parameters.

The first uses the same parameters for all SVMs, while the

second uses parameters tuned to each dataset individually.

same individual
Dataset train test train test
d-t 3.0 10.8 7.0 10.0
iy-ih 2.4 11.6 4.1 6.5
m-n 3.4 19.1 0.0 14.6
v-f 1.7 4.5 0.8 1.3
z-s 7.2 17.4 4.0 10.2

TABLE III

Error rate (train / test) for phone classification using

mixture of Gaussians and SVMs.

Dataset mixture SVM
d-t 10.5 / 16.0 5.8 / 9.2
iy-ih 7.25 / 9.4 3.8 / 5.4
m-n 11.8 / 17.8 0.0 / 14.4
v-f 4.2 / 3.6 0.5 / 1.1
z-s 13.3 / 15.5 3.2 / 8.2

the isotonic method in this domain, and the numbers in-
dicated that using CV, which increases the computational
cost, was not necessary. As expected, we can see that the
phone classification results improved upon the associated
results for frame classification in Table I.

Table III shows the results comparing SVM and the con-
ventional mixtures of Gaussians. For SVM, we used dif-
ferent kernel parameters per binary problem (column “in-
dividual” in Table I) and the sigmoid method (without
CV) to convert scores into probabilities. For training the
mixtures (i.e., the HMMs), we used the Baum-Welch algo-
rithm. We used 3-state left-right HMMs with 20 Gaussians
per mixture. It can be seen that SVM significantly outper-
forms HMM in this setup of binary phone classification.

Our final experiment was to perform phone classifica-
tion using the whole TIMIT. We did not use the phone [q]
(glottal stop) and collapsed the remaining 60 phones into
39 classes, as conventionally done [28]. The 3-state HMM-
based system with 20 Gaussians per mixture achieved a
test error of 24.0%.

We used a SVM-based system with the same configu-
ration adopted for obtaining the results in Table III. We
used an all-pairs ECOC matrix because it leads to a shorter
training time when compared to one-vs-rest. We also lim-
ited the number of frames per class to 10 thousand. An
extra issue is the conversion of B probabilities from binary
classifiers into Q state probabilities. We tested two meth-
ods for this task: the coupling method1 proposed in [30]
and a method that simply sums the probabilities of all bi-
nary classifiers associated to a class and normalize. The
coupling method achieved 19.1% of test error, while the
second led to 20.2%. We note that, while the HMM sys-
tem takes less than a day to train using MLE (i.e., Baum-
Welch), the SVM-based system takes more than a week.

1We note that this method was extended to support an arbitrary
ECOC matrix in [29].
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TABLE II

Error rate (train / test) for phone classification for different methods of converting scores into probabilities.

Dataset isotonic (CV) isotonic sigmoid (CV) sigmoid
d-t 1.9 / 10.3 1.8 / 15.0 2.3 / 8.8 1.8 / 7.7
iy-ih 1.8 / 8.5 1.9 / 11.2 1.5 / 8.1 1.5 / 8.5
m-n 1.8 / 14.5 1.6 / 14.3 1.6 / 14.3 1.6 / 14.1
v-f 1.1 / 3.6 0.6 / 6.3 0.9 / 3.1 0.8 / 3.1
z-s 4.4 / 15.3 5.5 / 13.5 4.8 / 13.9 3.9 / 13.7

In summary, the frame-based architecture allows for
achieving good results using SVMs, but suffers from an
excessive computational cost. In the next section we pro-
pose a new architecture, which achieves improvements in
accuracy with less computations than the frame-based.

IV. Continuous speech recognition with

hot-spot architecture

In this section we propose an architecture for using bi-
nary classifiers in ASR that builds upon the sequential ar-
chitecture. The main motivation is the same: to improve
discrimination only when the decoding process is facing
problems to distinguish acoustic events. These situations
are called here hot-spots.

In the hot-spot architecture, we use a baseline system
composed, for example, by HMMs with shared Gaussian
mixtures. We also use a set H of binary classifiers h that
try to detect H = |H| hot-spots at each frame. Once a hot-
spot is detected, the acoustic scores of the baseline system
are modified according to the outputs of classifiers g ∈ G.
A hot-spot i is associated to a subset Gi of G such that,
when detected, the hot-spot fires only a specialized set of
classifiers. Alternatively, one can use G = H, and ask the
classifiers h to do both the job of detecting hot-spots and
indicating how the state scores should be modified.

The input vector of a classifier is not restricted to be the
same as the input vector x used by the baseline system.
For example, we can use the probabilities2 P (x|q) provided
by states q = 1, . . . , Q as additional features. Besides, we
allow for a heterogeneous set of features, i.e., each classifier
g and h can have its own set of features [12]. We write
hi(zi) and gj(vj) in case classifiers hi and gj have their
own features zi and vj , respectively.

We illustrate the motivation for adopting the hot-spot
architecture with an experiment using the TIDIGITS cor-
pus [19] (as typically done, the utterances from kids were
excluded). The vocabulary is composed by digits 0-9 and
oh, and we adopted a word-loop grammar, i.e., we do not
assume any knowledge about the number of digits in an
utterance. We used 6-state left-right context-independent
HMMs with 8 Gaussians per mixture (the silence model
used the same configuration), and 39 features from a con-
ventional MFCC [32] front-end. Using beam-pruning with
a relative threshold of 200, allows operation at 0.3 times
real-time (on a 1.0 GHz Pentium machine) and the word-

2Because we use Gaussians, these are not probabilities. Also, to
avoid numerical problems, the acoustic score is the log of P (x|q) in
some base, such as 1.0001 [31].
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Fig. 1. Senogram for decoding without pruning. The y-axis indicates
the HMM model associated to each state, and for each digit, from top
to bottom we transverse the 6-state HMM from the leftmost to the
rightmost state.

error-rate (WER) was 1.2% (147 substitutions, 139 inser-
tions and 54 deletions), with a sentence accuracy of 96.4%.

Our architecture tries to exploit the structure of the de-
coding process. One can visualize such structure by plot-
ting the evolution of the scores along the decoding process.
For doing that, we used a representation similar to a spec-
trogram [2], which was called senogram3 It consists in using
a color map to show the evolution of acoustic scores along
time (x-axis), ordering the Q states on the y-axis. Fig-
ure 1 shows the senogram for an utterance with transcrip-
tion “three oh seven”, and for which the decoder did not
use any pruning. It can be seen that all states are active
over time. However, this is not what happens in a normal
decoding process, where we use pruning to speed-up the
search (or even to make it feasible).

Figure 2 shows a more realistic situation, which corre-
sponds to using the pruning adopted for the baseline sys-
tem (a threshold of 200). We also show a spectrogram that
facilitates tracking the behavior of the system as it decodes
the three digits. For example, Figure 2 shows that, when
the system is decoding the end of digit “three”, the last
states of digits “four, two, one, oh and nine” are not active.
On the other hand, the first state of all models are often
active, as the decoder hypothesizes the beginning of a new

3The shared states have been called senones along the development
of CMU’s Sphinx system [33].
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Fig. 2. Spectrogram and senogram based on decoding with normal
beam-pruning. The utterance is “three oh zero”.

word. Of course, the senograms are hard to interpret when
one adopts sub-unit (e.g., triphones) models with shared
states. Nonetheless, machine learning techniques can still
be used to automatically discover the structure imposed by
the decoding process.

We now describe our implementation of the hot-spot ar-
chitecture. For that we need the following definitions. For
each utterance n = 1, . . . , N in the training set, let T ′

n

be the correct transcription. Define the utterance margin
m(T ) = s(T ′) − s(T ) as the difference between the to-
tal scores s of T ′ and transcription T . For simplicity, we
assume that given a transcription, the score s is obtained
with the state alignment that leads to the largest score. Let
T ∗ �= T ′ be the transcription associated to the hypothesis
with largest total score among the ones that survived prun-

ing but do not correspond to T ′. Clearly, if m(T ∗) < 0,
the system incurred in at least one error, and the magni-
tude of m indicates the level of confidence on the decisions.
Recall that each utterance is represented by a L × Tn ma-
trix Xn, where Tn is the number of frames. Hence, for the
transcriptions T ′ and T ∗, the decoder can provide the se-
quences q′ and q∗, respectively, each with Tn state indices.
Similarly, we define the state margin v(t) of frame xt, as
the differences in acoustic scores of states q′t and q∗t . Note
that the state margin is zero if q′t = q∗t .

We train the system as follows. First we design a base-
line using only HMMs (with shared-state triphones in this
case). We adopt SVMs as the hot-spot detectors h, and
specify their number |H| beforehand. Each classifier hi

tries to detect difficulty in discriminating between a pair of
states (q−i , q+

i ), where q−i and q+
i are associated to “nega-

tive” and “positive” labels, respectively. Whenever hi re-
turns a positive score, another binary classifier gi (also a
SVM) is used to indicate whether the example is negative
or positive. Note that in this case |G| = |H|.

For choosing (q−i , q+
i ), we generate lattices using the

HMM baseline system and keep only the Nh utterances
with smallest utterance margin. We go over these Nh ut-
terances, accumulating the state margin for all

(
Q
2

)
pairs.

The |H| pairs with smallest accumulated state margin cor-
respond to the hot-spots. In our simulations, we selected
appropriate features for each classifier using the method
proposed in [12]. Besides the 39 MFCC features used by the
baseline, we generated 39 PLP features and let the acoustic
scores of all states be used as features as well. For example,
the digits recognition system with 6-state HMMs used to
plot senograms, would lead to a pool of 2×39+12×6 = 150
features to choose from.

To train hi, we select frames (at most 10000) from the
list with Nh utterances as “positive” examples, and frames
are randomly picked until we have the same number of
“negative” examples.

We tested some alternatives for combining the original
acoustic scores of states q−i and q+

i (provided by the two
Gaussians mixtures) with the score provided by the SVM
gi. One method that is computationally simple and worked
well consists in converting the score gi into the range [0, 1]
using a sigmoid Si, then calculate r = Si(gi(zt)) − 0.5 and
add νr and −νr to the acoustic scores of q+

i and q−i , re-
spectively, where ν is an empirical constant chosen through
experiments with a validation set.

We validated the hot-spot architecture with the follow-
ing experiment. As baseline system we used the HMM
models provided by CMU [33], which were trained using
the Wall Street Journal (WSJ) corpus [19]. These models
are cross-word context-dependent triphones, with a total
of 4147 shared states. The front-end for the baseline sys-
tem uses MFCCs and generates 39 features. For training
the SVMs, we used the training part of the TIMIT cor-
pus. The TIMIT utterances were converted to 39 MFCC-
based features and decoded using the WSJ models (we used
HTK [34] for generating the lattices). We selected 200 hot-
spots based on the pairs with smallest state margin. The
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features for classifiers h and g were selected from a pool ob-
tained by augmenting the baseline features with the ones
described in [12] (we did not use the “duration” feature, so
we had a total of 759 features) plus 4147 acoustic scores
of states for each frame t. The states that are not active
at frame t receive the minimum score at t among all active
states. The pool has a total number of 759 + 4147 = 4906
features per frame, from which we selected only 100 per
classifier.

For computational reasons, we used only linear SVMs
(while non-linear SVMs often lead to better results), which
can be converted to perceptrons. We tested the system us-
ing 288 utterances from the “spelling” part of the AN4 cor-
pus, which is described in [35] and freely available at [33].
In summary, the task consists in recognizing the 26 alpha-
bet letters. In this task, the baseline HMM system leads to
a WER of 18.1%. Our proposed hot-spot architecture de-
creased the WER to 13.7%, with the additional overhead of
computing the outputs of the perceptrons corresponding to
200 linear SVMs hi every frame, and the output of gi when
hot-spot i is detected. We also use more CPU cycles for cal-
culating the 759 features, instead of only the MFCC-based.
If we do not use the 4147 acoustic scores as features, we
reduce the training time but the WER increases to 14.5%.

V. Conclusion

This work focus on alternatives to using classifiers such
as SVM in speech recognition systems. We review differ-
ent architectures, pointing out pros and cons. We per-
form several experiments with the frame-based architecture
and show that it outperforms HMMs with Gaussian mix-
tures. However, its computational cost can be prohibitive
for large corpora. To circumvent this problem, we proposed
the new hot-spot architecture, which was able to achieve
significant improvements over the conventional generative
HMM-based systems in our preliminary experiments.

Some future work includes exploring the several degrees
of freedom in the the new architecture, evaluating the im-
pact of each. For example, we used only a linear kernel,
while a Gaussian kernel often brings higher accuracy ac-
cording to the SVM literature. We also compared our sys-
tem using a limited task. Using larger corpora and com-
paring the results with HMMs trained in a discriminative
way using MMIE are among the next steps.
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