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Adaptive Minimum BER Interference Suppression
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Multipath Fading Channels
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Resumo— Neste trabalho é investigado o uso de algoritmos de
mı́nima taxa de erro combinados com métodos de ”averaging”no
projeto de receptores multiusuário lineares em sistemas DS-
CDMA. Os algoritmos propostos buscam minimizar a taxa de
erro de bits (BER) a partir do conjunto de treinamento conhecido
pelo receptor utilizando estruturas de deteção multiusuário
lineares. Uma análise comparativa de receptores lineares, usando
algoritmos que minimizam o erro médio quadrático, algoritmos
encontrados na literatura que minimizam a BER e os algorit-
mos propostos é realizada. Alguns experimentos em simulação
mostram que as técnicas propostas são superiores à outros algo-
ritmos analisados e podem operar com seqüências de treinamento
mais curtas.

Palavras-Chave— detecção multiusuário, CDMA, supressão
de interferência, algoritmos adaptativos, métodos ”averaging”,
mı́nima taxa de erro.

Abstract— We investigate the use of adaptive minimum bit
error rate (MBER) algorithms with averaging methods in the
design of linear multiuser receivers (MUD) for DS-CDMA
systems. The proposed algorithms minimise the bit error rate
(BER) cost function from training data using linear multiuser
detection structures. A comparative analysis of linear MUDs,
employing minimum mean squared error (MMSE), previously
reported MBER and the proposed MBER algorithms is carried
out. Simulation experiments show that the MBER techniques
with averaging outperform other analysed algorithms and can
operate with shorter training sequences.

Keywords— multiuser detection, CDMA, interference suppres-
sion, adaptive algorithms, averaging methods, minimum BER
appoach.

I. INTRODUCTION

Adaptive linear MUDs employing the MMSE criterion pro-
vide simple adaptive implementation and an attractive trade-
off between performance, complexity and the need for side
information [1]-[2]. However, it is well known that the mean
squared error (MSE) cost function is not optimal in digital
communications applications, and the most appropriate cost
function is the BER [3],[4]. The approximate minimum bit
error rate (AMBER) [3] and the least bit error rate (LBER)
[4] are two of the most successful and suitable algorithms for
adaptive implementation. However, these MBER algorithms
usually require long training sequences to converge to lower bit
error rates than those achieved by the techniques that employ
the MSE cost function.
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In this work we investigate MBER based algorithms that
can speed up the convergence of the receiver due to averaging
methods and that require shorter training data. We perform a
comparative analysis of linear MUDs using these algorithms in
multipath fading channels. This paper is organised as follows.
Section II briefly describes the DS-CDMA system model.
Stochastic gradient (SG) algorithms are presented in Sections
III. Section IV and V are dedicated to the Newton based
and the averaged adaptive algorithms. Section VI shows and
discusses the simulation results and Section VII gives the
conclusions of this work.

II. DS-CDMA SYSTEM MODEL

Let us consider the downlink of a synchronous DS-CDMA
system with � users, � chips per symbol and �� propagation
paths. The signal broadcasted by the base station intended for
user � has a baseband representation given by:
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where ����� � ���� denotes the �-th symbol for user �, the
real valued spreading waveform and the amplitude associated
with user � are ����� and 	�, respectively. The spreading
waveforms are expressed by ����� �
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where 
���� � �������, ���� is the chip waverform, �
is the chip duration and � � �� is the processing gain.
Assuming that the receiver is synchronised with the main
path and the users forming the composite signal experiment
the same channel conditions in the downlink, the coherently
demodulated composite received signal is
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where ����� and �� are, respectively, the channel coefficient
and the delay associated with the �-th path. Assuming that
�� � �� and that the channel is constant during each symbol
interval, the received signal ���� after filtering by a chip-pulse
matched filter and sampled at chip rate yields the received
vector
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where the Gaussian noise vector ���� � ������ � � � �������

with �������� ���� � ���, the user bit vector is given by
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���� � ������ � � � ������� , the user signature sequence matrix
is described by � � ��� � � � �� �, where �� � �
�	� � � � 
�	� �� ,
the diagonal user signal amplitude matrix is represented by
� � ��
��	� � � � 	��, and the � � ��
 ��� matrix H is
expressed by
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The multiple access interference (MAI) is originated from the
non-orthogonality between the received signature sequences.
The intersymbol interference (ISI) span �
 depends on the
length of the channel response, which is related to the length
of the chip sequence. For �� � �� �
 � � (no ISI), for
� � �� � ���
 � �, for � � �� � ����
 � � and so on.
Consider a one-shot MUD, whose observation vector is ����,
the detected symbols for this MUD and user � are expressed
by:
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�

where ����� � ��� � � � �� �� is the receiver weight vector
and ����� is the estimated symbol for user � and symbol � in
a system with � users.

III. STOCHASTIC GRADIENT (SG) ALGORITHMS

A. The LMS algorithm

The adaptive solution for the linear MUD via the LMS
algorithm [6] is based on the MMSE error criterion formed
by the error signal ����� � ��������

� �������, and is :

����	 �� � ����� 	 ���������� �
�

where ����� is the desired signal for the �-th user taken from
the training sequence and � is the algorithm step size.

B. The AMBER algorithm

The AMBER [4] SG update equation for the linear MUD
is expressed by:
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In practice, a modified error indicator function ������ �
�
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�������������� � ��� is employed, where the threshold � is
responsible for increasing the algorithm rate of convergence.
This algorithm updates when an error is made and also when
an error is almost made, becoming a smarter choice for
updating the filter coefficients.

C. The LBER algorithm

The MUD BER depends on the distribution of the decision
variable �����, which is a function of ��. The sign-adjusted
decision variable for the linear receiver �
� ��� � ����������
is drawn from a Gaussian mixture, described by:
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where the first term of (8) is the noise free sign-adjusted MUD
output. The LBER algorithm for the linear MUD is:
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where � the radius parameter, related to the noise standard
deviation �.

IV. GRADIENT-NEWTON ALGORITHMS

Gradient-Newton (GN) algorithms [6] incorporate second-
order statistics of input signals, increasing their convergence
rate. They usually have a faster convergence rate than SG
techniques, although they require a higher computational com-
plexity. In practice, estimates of the autocorrelation matrix
and the gradient vector are used to converge to the desired
solution. In addition, to avoid the inversion of the autocorre-
lation matrix, the matrix inversion lemma is also employed.
The update equation of Newton´s method is ���� 	 �� �
������ �

�
	
�����

���, where 	 is the autocorrelation matrix
of the observation vector � and ���

��� is the gradient vector. In
practice, only estimates of 	 and ���

��� are available. These
estimates can be applied to Newton´s formula to devise an
update rule give by:

����	 �� � ������ Æ �	���������
��� ����

The convergence factor Æ is introduced to protect the algorithm
from divergence, which is originated by the use of noisy
estimates of 	 and ���

���. To obtain an unbiased estimate of
the observation matrix 	�, we employ the following weighted
sum:
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where ! is a small factor chosen in the range � � ! � ��� and
���� is the observation vector. To avoid the required inversion
of �	���, we use the matrix inversion lemma:
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where �, 
, � and � are matrices with appropriate di-
mensions and � and � are non-singular. Choosing 	 �
�� � !� �	�� � ��, 
 � �

� � ���� and � � !, it can be
shown that:
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The resulting equation for the computation of �	����� is
less complex to update ("�#$��) than its direct inversion
("�#$��).

A. LMS-Newton algorithm

The LMS-Newton [6] algorithm employs the error signal
���� � ���������������, which corresponds to the MMSE
solution. Thus, the estimate of the gradient ����

��� is replaced
by �������� to yield the expression of the LMS-Newton algo-
rithm for the linear MUD as given by:

����	 �� � ����� 	 Æ �	�������������� ����

where ���� is the desired signal taken from the training
sequence, ���� is the observation vector for the MUD and �
is the algorithm step size.
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B. Gradient-Newton-AMBER algorithm

An approach similar to LMS-Newton can be used to devise
a Gradient-Newton based algorithm that minimises a given
objective function ��������. We chose the objective function
�������� used in the AMBER algorithm [4] as an approxi-
mation to an MBER function. Then, we use the observation
matrix �	����� to speed up the convergence rate of the
algorithm and obtain the Gradient-Newton AMBER update
equation for the MUD:

����	 �� � ����� 	 Æ �	�������������������� ����

C. Gradient-Newton-LBER algorithm

An algorithm similar to the LMS-Newton can be devised
employing an approach analogous to the LBER algorithm
[5]. Using Newton´s update rule, the Gradient-Newton-LBER
algorithm for the linear receiver is given by:
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Note that the LMS-Newton, GN-AMBER and GN-LBER
algorithms only differ from their SG counterparts by the
addition of the inverse correlation matrix �	����� in (13).

V. AVERAGING METHODS

In this section, we describe the proposed averaged stochastic
gradient (SG) and Gradient-Newton (GN) algorithms that
adjust the parameters of the MUDs based on the minimisation
of the MSE and the BER cost functions. We have chosen
these techniques because the error surfaces of the MBER
cost functions exhibit local minima and with these approaches
one can control the rate of convergence by carefulluy tuning
the step size. The proposed algorithms are based on the
concept of accelerating the convergence by averaging [7],
which allows the use of larger step sizes. Averaged versions of
the algorithms can be developed by introducing the following
recursion:

������ �� � �� � �� ������ � ������ �� ����

where % is the averaging factor. If we consider the mean
weight vector and assume that for slow adaptation ������ ���
behaves like it ensemble average 	��� � �������� ����, i.
e. ergodicity, and ���� is assumed to be independent from
the previous ���� � ��. From the results shown in Ljung
[7], the use of (14) with an SG algorithm and for large �,
the algorithm behaves like ����� 	 �� � �� � %� ������ 	
%�������� ����������, where &���� is the gradient vector.
Note that the equation is independent of � and depends only
on %. Let ��

� denote the optimum weight vector, which is the
Wiener filter if we consider MMSE estimation and a filter that
achieves MBER for the AMBER and the LBER approaches.
'��� denotes the weight error vector between ����� and ��

�.
Thus, it follows
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Taking the expectation on both sides of (18), it was shown
in [8] that ����� converges to ��

�, i.e.,�������� �	 �
�

�, as
� 	 
, '��� 	 � and it does not depend on the eigenvalues
of 	. For the GN techniques the simulations verify that the
averaging procedure can also improve convergence.

VI. SIMULATIONS

The performance of the MUDs with the adaptive algorithms
was evaluated in a DS-CDMA system that employs Gold
sequences of length � � �� and whose carrier frequency
is ��� MHz. The sequence of channel coefficients � ���� �
 ��!����� (� � �� �� �), where !����, � � �� �� �, is a complex
Gaussian random sequence obtained by passing complex white
Gaussian noise through a filter with approximate transfer func-
tion (�

�
�� �)�)��� where ( is a normalization constant,

)� � *�+ is the maximum Doppler shift, + is the wavelength
of the carrier frequency, and * is the speed of the mobile. The
channel parameters are  � � �,  � � ��� and  � � ���. In all
situations, the MUDs operate with Gold sequences of length
#$ � ��, process ��� symbols in training mode (TR) and
then switch to the decision-directed (DD) mode.

The convergence performance of the algorithms for a system
with � � � users are shown in Figs. 1 and 2, where the
MUDs process ��� symbols in TR and ��� symbols in DD,
averaged over ��� independent experiments. We have chosen
a training sequence with ��� symbols because simulation
experiments indicated it was the minimum necessary length so
that MBER algorithms could clearly outperform MSE ones.
The criterion used to select the averaging factor % was that
it could approximate the inverse of the covariance without
making the receiver unstable. Thus, we suggest a value around
% � ���� because larger values can make the receiver unstable,
whereas smaller values result in inferior performance.

The average BER performance versus ����� is shown in
Figs. 3 and 4 for a system with a varying number of users
where each MUD processes ��� symbols averaged over 100
independent experiments. The results show that the averaged
algorithms are capable of accelerating the convergence of the
algorithms, since they allow the receivers to use larger step
sizes without the risk of losing track of the channel, saving
transmitting power and increasing system´s capacity.

For the stochastic gradient algorithms, averaging methods
considerably increase the convergence performance of the
receivers, whereas for the Newton-type algorithms the gains
in performance are less significant. The BER and convergence
results for the stochastic gradient algorithms, depicted in Figs.
1 and 3, show that the AMBER-AV technique achieves the
best performance, followed by the LBER-AV, the AMBER,
the LMS-AV , the LBER and the LMS methods. For the
Newton-type algorithms, the AMBER-AV technique achieves
the best convergence and BER performance, followed by the
LBER-AV, the AMBER, the LBER, the LMS-AV and the LMS
approaches, as shown in Figs. 2 and 4.

In terms of computational complexity, the averaging meth-
ods require �� multiplications and � 	 � additions beyond
the SG and the GN algorithms.
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Fig. 1. Convergence of the stochastic gradient algorithms with � � � users, the
mobile moves at 80 km/h in a scenario where the same power is transmitted to all users
and the desired user works at ����� � �� dB. Parameters: �� � ����� for standard
algorithms and �� � ������ for the averaged algorithms, � � ��� , � � ���� and
� � ����.
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Fig. 2. Convergence of the Gradient-Newton algorithms with � � � users, the mobile
moves at 80 km/h in a scenario where the same power is transmitted to all users and
the desired user works at ����� � �� dB. Parameters: � � ����, Æ � ������ for
standard algorithms and Æ � ����� for the averaged algorithms, � � ��� , � � ����
and � � ����.

VII. CONCLUSIONS

Averaged MBER algorithms for MUDs have been proposed
and evaluated in multipath Rayleigh fading channels. The
averaging concept has accelerated the convergence of the
algorithms and yielded a performance superior to previously
reported MBER and MMSE algorithms.
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