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Resumo—Este trabalho apresenta uma análise estatística do
algoritmo ε-NLMS para sinais Gaussianos correlacionados.
Equações determinísticas recursivas foram obtidas para o
comportamento médio dos coeficientes e erro médio quadrático
para um elevado número de coeficientes. Simulações Monte
Carlo permitem verificar a concordância entre as predições do
modelo e simulações.

Palavras-Chave—Filtros adaptativos, LMS normalizado,
NLMS, modelagem analítica.

Abstract—This work presents a statistical analysis of the ε-
NLMS algorithm for correlated Gaussian input signals.
Deterministic recursive expressions are derived for the mean
weight and mean square error (MSE) behaviors for a large
number of adaptive weights. Monte Carlo simulations show the
agreement between model predictions and simulations.

Index Terms— Adaptive filters, normalized LMS, NLMS,
analytical modeling.

I. INTRODUCTION

Adaptive filtering techniques are widely employed in real
life applications such as modeling, equalization, active noise
control and echo cancellation. Stochastic gradient based
algorithms have proven to be both robust and easily-
implemented for control and on-line estimation applications.

The Least Mean Square (LMS) is the most popular
adaptive algorithm due to its robustness and low
computational complexity [1]. Among the various LMS
family members, the normalized algorithms are attractive
because of their capability of tuning the step-size to the input
power. This property renders the algorithms less sensitive to
input power variations at the cost of an increased
computational complexity.

The Normalized-LMS (NLMS) algorithm, also known as
the  projection  algorithm  [2,3], is the most  used  normalized

algorithm due to its simple form and good performance. The
NLMS weight update follows the direction of the input vector

( )nX , and the step-size normalizing factor is determined by
the squared norm of the input vector
( ( ) ( ) ( )Tn n nµ β  =  X X ). Albeit this procedure may seem

computationally intensive, the squared norm can be computed
recursively, increasing the algorithm’s cost in only two
multiplications and one division, when compared to the LMS
algorithm. In applications where a large number of
coefficients is necessary, the advantages of using the NLMS
algorithm overcome the cost of implementation [3].

Practical implementations of adaptive filters in fixed or
floating point digital signal processors require the adjustment
of the analog to digital converters’ (ADC’s) dynamic range to
cover the entire range of the input signal. Hence, small
amplitude signals are quantized to zero when their
magnitudes are smaller than the least significant level of the
ADC. Moreover, some applications can be characterized by
periods of absence of signal, such as in speech
communications. When this situation occurs, the normalizing
factor of the NLMS algorithm can become too small (even
zero), which is undesirable. To avoid divisions by zero, a
small positive constant (ε) is frequently added to the
normalizing factor yielding a step-size of the form

( ) ( ) ( )Tn n nµ β ε = + X X . This modification characterizes

the ε-NLMS algorithm, a generalization of the conventional
NLMS.

The ε-NLMS was analyzed by Bershad [4] for white
Gaussian inputs. He concluded that, under this input signal
condition, the algorithm has neither a behavior which is
independent of input data power nor a performance which is
significantly better than the LMS algorithm. Later on,
Douglas and Meng [5] studied normalized data nonlinearities
for LMS adaptation in order to improve the algorithm’s
performance. As a result, they derived an optimum form of
nonlinearity for independent input data. This nonlinearity is
optimum for independent input data samples with any even
probability density function. The resulting adaptive algorithm
is equivalent to the ε-NLMS with unit step-size. In this
algorithm, the convergence performance is controlled by the
parameter ε. The authors of [5] have shown that up to 3.6 dB
improvement can be obtained over the LMS MSE
performance when using this algorithm. However, [5] did not
provide any analysis for the correlated Gaussian input case.
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Recently, the fast affine projection algorithm was studied for
hands-free telephone applications as a generalization of the ε-
NLMS algorithm [6]. In this paper, the ε factor was used to
control the performance of the adaptive filter. These results
revived the interest on the ε-NLMS, now with ε being more
than just a regularization constant.

This work presents a statistical analysis of the ε-NLMS
algorithm for correlated Gaussian signals. To the authors’
best knowledge, there is no analytical model available in the
literature for this case. The new analysis does not require any
numerical procedure to determine the model parameters. For
the special case of 0ε = , the derived expressions become a
new model for the popular NLMS algorithm. This new
NLMS model provides a better prediction of the algorithm’s
behavior than other models available in the literature [2,3].

Deterministic recursive equations are derived for the mean
weight and MSE behaviors using the independence
assumption [7] and the averaging principle [8]. Assuming
algorithm convergence, a closed form expression is derived
for the steady-state MSE misadjustment as a limit of the
recursive model. Simulations are provided to verify the
validity of the analytical results.

II. THE ε-NLMS UPDATE EQUATION

The update equation of the ε-NLMS is given by [4]:

( ) ( ) ( ) ( ) ( ) ( )
1

1 Tn n e n n n nβ ε
−

 + = + + W W X X X (1)

where
( ) ( ) ( ) ( ) ( )T Te n n z n n n= + −oW X W X (2)

is the error signal. 0 1 1

To o o
Nw w w − =  

oW …  is the unknown

impulse response; ( )z n  is a stationary, white, zero-mean

Gaussian measurement noise with variance 2
zσ  and

uncorrelated with any other signal. β  is the step-size.

( ) ( ) ( ) ( )0 1 1

T

Nn w n w n w n−=   W …  is the adaptive weight

vector. ( ) ( ) ( ) ( )1 1
T

n x n x n x n N=  − − +  X …  is the

observed data vector; ( )x n  is stationary, zero-mean and

Gaussian. ε is a small positive constant. For 0ε =  the
algorithm becomes the popular NLMS algorithm [3]. The
choice of 1β =  leads to the optimal normalized data vector
nonlinearity [5].

III. MEAN WEIGHT BEHAVIOR

The following analysis assumes that the effects of the
statistical dependence between ( )nX  and ( )nW  on the
algorithm behavior can be neglected. This corresponds to the
use of the well known independence assumption [7].
Defining the weight error vector ( ) ( )n n= − oV W W , using (2)

in (1), taking the expected value and noting that

( ) ( ){ } 0E x n z n =  yields:

( ){ } ( ) ( )
( ) ( ) ( ){ }1

T

T

n n
E n E E n

n n
β

ε

   + = −  +    

X X
V I V

X X
(3)

Each element of the expectation within the square brackets
has a numerator given by ( ) ( )x n i x n j− −  and a denominator

given by 
1 2

0
( )

N

k
x n kε

−

=
+ −∑ . For large values of N these two

random variables can be assumed weakly correlated since
( )x n i−  and ( )x n j−  affect only two of the N terms in

( ) ( )T n nX X . For ergodic ( )x n , this assumption is equivalent

to apply the averaging principle [8], as 
1 2

0
( )

N

k
x n k

−

=
−∑  tends to

be slowly time-varying when compared to ( ) ( )x n i x n j− −  for
large N. As the samples of ( )x n  become more correlated in
time, the assumption becomes less valid. Extensive
simulation results have shown that this assumption holds very
well for N as small as 30 and for a wide range of input
eigenvalue spreads. Moreover, since ε is not always very
small [5,6] further approximation is required. Thus, the
following approximation is used:

( ) ( ) ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

1

1

T T

T T

E n n n n

E n n E n n

ε

ε

−

−

 + ≅ 

 + 

X X X X

X X X X

(4)

The second expected value in (4) is the correlation matrix
of the input signal and the first one is its trace. Using this
information, (4) becomes:

( ) ( ) ( ) ( ){ }1

2

1T T

x

E n n n n
N

ε
ε σ

−
 + ≅  + xxX X X X R (5)

with { ( ) ( )}TE n n=xxR X X . Using, (5) in (3) leads to:

( ){ } ( ){ }2
1

x

E n E n
N

β
ε σ

 
+ = − + 

xxV I R V (6)

Equation (6) determines the mean weight behavior. For
0ε = , (6) becomes the NLMS model derived in [3, Eq. 8].

IV. MSE BEHAVIOR

Squaring (2) and taking the expected value, results in:

( ) ( ){ } ( ){ }2 2
zn E e n tr nξ σ= = + xxR K (7)

where ( ) ( ) ( ){ }Tn E n n=K V V  is the weight-error correlation

matrix. Postmultiplying (1) by its transpose, taking the
expected value and neglecting the statistical dependence of

( )nX  and ( )nV  [7] leads to the recursive expression:

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ } ( )

22 2

22

1

1

1 T T
z

T T T

T T

T T

n n E n n n n

E n n n n n n n

n E n n n n

E n n n n n

β σ ε

β ε

β ε

β ε

−

−

−

−

 + = + + 

 + + 

 − + 

 − + 

K K X X X X

X X X X K X X

K X X X X

X X X X K

(8)

Since the joint probability density of ( )nW  is not known,

the second expectation value in (8) can be only approximated.
The following approximation is used:

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2T T TE n n n n n n nε
−

 + ≅ X X X X K X X
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( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }
12

   T T TE n n E n n n n nε
−

 + X X X X K X X (9)

The first expectation on the r.h.s. of (9) can be evaluated as:

( ) ( ){ } 1 12 2 2 2 4 2

0 0

2 2
N N

T
x x j i

i j

E n n N N rε ε ε σ σ
− −

−
= =

 + = + + +  ∑∑X X (10)

where ( ) ( ){ }j ir E x n i x n j− = − −  is the element ( ),i j  of xxR .

Using the Gaussian moment factoring theorem [1, pp.318]:

( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ }2

T TE n n n n n

n tr n

=

+xx xx xx xx

X X K X X

R K R R K R
(11)

Substituting (4), (5) and (9) to (11) in (8) we obtain a
recursive equation for the behavior of ( )nK :

( ) ( ) ( ) ( )

( ){ } ( ){ }
2

2 2

1 1
2 2 2 4 2

0 0

1

 2  

2 2

x

z

N N

x x j i
i j

n n n n
N

tr n n

N N r

β
ε σ

β σ

ε ε σ σ
− −

−
= =

+ = −  +  +

 + + +
+ + + ∑∑

xx xx

xx xx

xx

K K K R R K

R K I R K
R

(12)

V. MISADJUSTMENT

Assuming algorithm convergence as n →∞ , one can use
( ) ( )lim 1 limn nn n→∞ →∞+ =K K  in (12). Then, taking the trace of

the equation leads, after algebraic manipulations, to:

( ){ } { }

{ } ( ){ } ( ){ }

2 2

1 1
2 2 2 4 2

0 0

2

1 1
2 2 2 4 2

0 0

lim

2 2 2

lim 2lim

2 2 2

x z

N Nn

x x j i
i j

x
n n

N N

x x j i
i j

N tr
tr n

N N r

N tr tr n tr n

N N r

β ε σ σ

ε ε σ σ

β ε σ

ε ε σ σ

− −→∞

−
= =

→∞ →∞

− −

−
= =

   +   =
 

+ + + 
 

  + +   +
 

+ + + 
 

∑∑

∑∑

xx

xx

xx xx xx xx

R
K R

R R K R K R

Determination of an analytical expression for the
misadjustment from (13) requires further approximations. It
can be verified that:

{ } ( ){ } ( ){ }lim 2 lim
n n

tr tr n tr n
→∞ →∞

⋅ >> ⋅xx xx xx xxR R K R K R (14)

For N large the l.h.s. of (14) is N/2 times the r.h.s. for ( )x n

white ( 2
xσ= ⋅xxR I ). For colored inputs, (14) has been verified

by extensive simulations. Using (14), (13) reduces to:

( ){ }
( )

( )

2 2 2

1 1
2 2 2 4 2 2 2

0 0

lim

2 2 2

n

z x x

N N

x x j i x x
i j

tr n

N N

N N r N N

β σ σ ε σ

ε ε σ σ β σ ε σ

→∞

− −

−
= =

≅

+

 
+ + + − + 

 
∑∑

xxR K

(15)

Using (15) in (7) the following approximated expression is
determined for the misadjustment ( )min minM ξ ξ ξ∞= − :

( )
( )

2 2

1 1
2 2 2 4 2 2 2

0 0

2 2 2

x x

N N

x x j i x x
i j

N N
M

N N r N N

β σ ε σ

ε ε σ σ β σ ε σ
− −

−
= =

+
≅

 
+ + + − + 

 
∑∑

(16)

VI. SIMULATIONS

This section presents four simulation results to verify the
accuracy of the analytical models given by (7), (12) and (16):

Example 1 – Correlated signal, large number of taps and
small step-size: ( )x n  Gaussian with 2 1xσ = , generated by an

AR filter with 0 1a = , 1 0.3a = − , 2 0.8a =  and 2 0.35uσ =  (input

power to the model). The eigenvalue spread ( max minλ λ ) of

xxR  is equal to 96.53. The noise power is 2 610zσ −= . The

components of oW  correspond to a 50-tap Hanning window,

normalized for 0 0 1
T

=W W . 0.1β = , 1ε =  and ( )0 =W 0 .

Results of Monte Carlo simulations (500 runs) and theory are
shown in Fig. 1.

Example 2 – Correlated signals and large step-size: ( )x n

Gaussian with 2 1xσ =  and max minλ λ  equal to 82.98 (same AR

model as in Ex. 1); 0.1ε = ; 2 610zσ −= ; 30 taps (normalized

Hanning window); 0.9β =  and ( )0 =W 0 . Results for 1000

runs are shown in Fig. 2.
Example 3 – Comparison with Bershad’s model [4] for

white signals: ( )x n  Gaussian with 2 1xσ = . 1ε = ; 2 610zσ −= ; 10

coefficients (normalized Hanning window). 1000 runs, 1β =

and ( )0 =W 0 . Results in Fig. 3.

Example 4 – Comparison with Slock’s [2] and Costa’s
model [3] for the NLMS case ( 0ε = ) with correlated signals:
( )x n  Gaussian with 2 1xσ = . max minλ λ  equal to 68.4 (same AR

model as in Ex. 1); 0ε = ; 2 610zσ −= ; 20 coefficients

(normalized hanning window). 1000 runs, 1β =  and

( )0 =W 0 . Results in Fig. 4.

Figs. 1 and 2 show that the new model provides good
results for the correlated inputs and small step sizes. For large
step sizes, the model leads to predictions that are good in
steady-state and fair during transient. The agreement between
simulations and theoretical predictions improves for larger N.
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Fig. 1. MSE, example 1. (a) simulations; (b) theoretical model.

(13)
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Fig. 2. MSE, example 2. (a) simulations; (b) theoretical model.
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Fig. 3. MSE, example 3. (a) simulations; (b) Bershad’s model [4]; (c) the new
model.
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Fig. 4. MSE, example 4. (a) simulations; (b) Slock’s model [2]; (c) Costa’s
model [3]; (d) the new model.

Fig. 3 shows that the new model produces results which
are equivalent to those obtained with Bershad’s model for
white Gaussian inputs, even for a small number of taps.

Fig. 4 corresponds to modeling the NLMS algorithm, since
0ε = . The results are compared with those obtained using

Slock’s [2] and Costa’s [3] models. The new model clearly
provides a better prediction of the algorithm’s behavior. Note
that this example is for a small N and a large step size,
conditions which are not favorable to the assumptions used in
the new model.

Table 1 compares the steady-state MSE misadjustment
predictions obtained running (7) and using the closed form
approximation (16). It can be verified that (16) produces
estimates that are very similar to those obtained from (7) after
convergence. Both results have a very good agreement with
simulations for most design purposes.

TABLE I

COMPARISONS BETWEEN STEADY-STATE MSE PREDICTIONS

AND SIMULATIONS (DBS UNITS). N IS THE NUMBER OF TAPS, χ
IS THE EIGENVALUE SPREAD, 2 610zσ −= .

N β ε χ Simulation Eq. (7) Eq. (16)

5 1 1 21 -57.6 -58.2 -58.6

10 1 0.01 45 -56.4 -57.8 -58.3

15 0.1 15 59 -59.9 -59.9 -59.9

50 1 0.01 97 -57 -57.3 -57.6

VII. SUMMARY

This work presented a statistical analysis of the ε-NLMS
algorithm for Gaussian input signals. Deterministic recursive
expressions were derived for the mean weight and MSE
behaviors for slow learning and a large number of adaptive
weights. The new model does not require any numerical
procedure and is valid for white or correlated Gaussian input
signals. For 0ε =  the result becomes an analytical model for
the behavior of the NLMS algorithm. This model is more
accurate and robust than those previously proposed in the
literature. An approximated closed expression was derived
for the steady-state MSE misadjustment. Monte Carlo
simulations show very good agreement between model
predictions and simulation results in steady-state and fair to
good agreement during the acquisition phase, even for large
step-sizes and small number of coefficients.
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