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Abstract— This paper presents theorems showing how to
obtain a binary nonlinear code from a p-ary linear consta-
cyclic maximum distance separable code, where p is a prime
number, by using a representation of GF(p) as binary p-
tuples. Two asymptotically optimum classes of binary constant-
weight codes are constructed. Binary cyclic codes are derived
for a representation of GF(p) as (p-1)-tuples. It is shown for
Mersenne primes p greater than 3 that all p-ary codewords
of these codes have full constacyclic order. An applicationof
some of the cyclically permutable codes constructed is given
as an example of the construction of protocol sequences for
the M-active-out-of-T users collision channel without feedback
introduced by Massey.
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I. I NTRODUCTION

This paper presents theorems showing how to obtain a
binary nonlinear code from ap-ary linear constacyclic [1]
maximum distance separable code, wherep is a prime
number, by using a representation of GF(p) as binary
p-tuples. Two asymptotically optimum classes of binary
constant-weight codes are constructed, one of them is op-
timum with respect to the Johnson bound while the other
is optimum with respect to the Plotkin low-rate bound [2].
Binary nonlinear cyclic codes are constructed fromp-ary
constacyclic codes by using a representation of GF(p) as
binary (p− 1)-tuples. For a positive odd integerm, such
that p= 2m−1> 3 is a Mersenne prime, we show that all
p-ary codewords of these codes have full cyclic order. A
cyclically permutable code is a binary code the codewords
of which are cyclically distinct and have full cyclic order.
An application of some of the cyclically permutable codes
constructed is given as an example of the construction of
protocol sequences for theM-active-out-of-T users collision
channel without feedback introduced by Massey [3].

II. p-ARY CODE CONSTRUCTION

Let p denote a prime number,p> 3. It is a known fact [4],
[5] that the roots ofxp+1−a belong to GF(p2) and have the
form α1+(p−1)i, for 0≤ i ≤ p, wherea denotes a primitive
element in the multiplicative group of GF(p) andα denotes
an element of orderp2−1 in GF(p2) such thatα p+1 = a.
However, since the roots ofxp+1− a belong to conjugate

classes of cardinality 2, i.e., their exponents appear in pairs
as [1− (p−1)i, p+(p−1)i], 0≤ i ≤ (p−1)/2, it will be
convenient to denote these roots asα p+(p−1)i, for −(p−
1)/2≤ i ≤ (p+1)/2, remembering that bothp−1 andp+1
are always even numbers becausep is an odd prime.

A. Constacyclic order of codewords

Definition 1: We define the constacyclic order of a code-
word c(x) belonging to a(n,k,d) constacyclic code over
GF(p), modulo xn − a, where a 6= 0,a ∈ GF(p), as the
minimum numbert of constacyclic shifts such thatc(x) =
xtc(x) modxn−a.

Example 1:The constacyclic order of the GF(5) vectors
(2,0,1,0,3,0) and(3,2,1,0,0,0) modulox6−3 are, respec-
tively, 8 and 24.

It is known in general that the cyclic order of a root in
a (p+1,k, p−k+2) constacyclic code must dividep2−1.
We consider next a special case where all the roots of the
resulting codes are guaranteed to have full cyclic order, i.e.,
order p2−1.

Lemma 1:For a given Mersenne primep= 2m−1, where
m denotes an odd positive integer, the numbersp2−1 and
i(p−1)−1 are relatively prime, i.e., gcd[p2−1, i(p−1)−
1] = 1, for 0≤ i ≤ p2−2.

Proof: Suppose thatp = 2m − 1 is a Mersenne
prime. It follows that gcd[p2−1, i(p−1)−1] = gcd[22m−
2m+1, i(2m − 2)− 1] = gcd[2m(2m− 2), i(2m − 2)− 1] = 1
since i(2m− 2)− 1 has no common factor with either 2m

or 2m−2.
Theorem 1:For a given Mersenne primep= 2m−1> 3,

the nonzero codewords of the MDS code(p+1,k, p+1−
k), wherek is even, have full constacyclic order, i.e. order
p2−1.

Proof: As mentioned earlier, the roots of the generator
polynomial are in the set{α1+(p−1)i, 0≤ i ≤ p}, and when
p= 2m−1 is a Mersenne prime, by Lemma 1 all roots of
xp+1−a have full cyclic order. Equivalently, all the roots of
x2m

−a are primitive roots of GF(2m−1) and thusx2m
−a

belongs to the exponentp2−1=(2m−1)2−1 [7, page 161].
Suppose thatc= St(c), t 6= 0, or equivalently that

c(x) = xtc(x) mod(xp+1−a), (1)

for some positive integert. It follows from (1) that

(xt −1)c(x) = 0 mod(xp+1−a). (2)
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Equation (2) implies that all the roots ofxp+1−a are present
in (xt −1)c(x). Sincec(x) has degree at mostp it follows
that xt −1 has at least one root in common withxp+1−a,
which implies thatt must be at leastp2−1 and therefore
we conclude thatt = p2−1.

In summary,p> 3 being a Mersenne prime is a sufficient
condition for the nonzero codewords to have full consta-
cyclic order.

III. C ONSTRUCTIONS OF BINARY NONLINEAR CODES

We consider now the binary mapping ofp-ary (n,k,d)
constacyclic MDS codes from Section II, wheren= p+1,k,
and d are the blocklength, dimension and minimum Ham-
ming distance, respectively, of these codes with code digits
in GF(p). The codes produced are asymptotically optimum
with respect to the Johnson bound and the Plotkin bound,
respectively. In principle we can arbitrarily map to binary
each element of GF(p) in the codewords of ap-ary MDS
code and produce a binary nonlinear code. However, some
particular choices for the binary mapping of the elements of
GF(p) produce good codes as we show in the sequel. LetU
be a set of cardinalityp the elements of which are binaryp-
tuplesu with Hamming weightw(u), where 0≤ w(u)≤ p,
and associate one-to-one the elements ofU with the elements
of GF(p).

Definition 2: We define theU-representation of GF(p) to
be the representation in which the elementi of GF(p) is
represented by the binaryp-tupleui ∈ U, for 1≤ i ≤ p, and
denote byd(u) the minimum Hamming distance in the set
U.

We note that if thep-tuples in theU-representation of
GF(p) have the same Hamming weight then they form a
binary constant-weight code. Letd(u) denote the minimum
distance, or Hamming distance, of this code. We will call
the U-representation equidistant if the Hamming distance
between every pair of distinct codewords in this code is
equal to d(u). In the sequel we will make use of the
following three lemmas stated and proved in [2].

Lemma 2:For every prime numberp, the p-tuple u =
[1,0, . . . ,0] and its cyclic shifts yields an equidistantU-
representation of GF(p) with d(u) = 2.

Lemma 3: If p is a Mersenne prime andU consists of
a binarym-sequence of lengthp and its cyclic shifts, then
the U-representation of GF(p) is equidistant withd(u) =
(p+1)/2.

Lemma 4:For every prime numberp such that(p−1)/2
is odd, a Legendre sequenceu of length p and its cyclic
shifts yields an equidistantU-representation of GF(p) with
d(u) = (p+1)/2.

Furthermore the constant-weight codes produced in Lem-
mas 2, 3 and 4 are cyclic codes.

Theorem 2:Let p be a prime number,p> 3, and letC be
a p-ary linear constacyclic(n,k,d) code. Let each codeword
c= [c0,c1, . . . ,cn−1] in C determine a binaryN-tupleb, N =
pn, by theU-representation of GF(p), assuming allui have
the same Hamming weight, for 1≤ i ≤ p. Then the set ofpk

N-tuplesb, corresponding in this way to thepk codewords

c of C, form a binary code the codewords of which have
constant weightw= nw(u) and the minimum distancedmin
of which satisfies

dmin ≥ d d(u) (3)

with equality when the representation of the elements of
GF(p) is equidistant.

Proof: Because all vectors in theU-representation of
GF(p) have Hamming weightw(u), it follows that every
binary N-tuple b in the set has Hamming weightnw(u)
so that the set is a constant weight code. Two distinct
codewordsc and c′ in C will differ in at least d positions,
i.e., their Hamming distance satisfiesd(c,c′) ≥ d, causing
the corresponding binaryN-tuplesb and b′ to differ in at
leastd d(u) positions, with equality if theU-representation
of GF(p) is equidistant. Becaused(c,c′) ≥ d with equality
for some codewordsc andc′ in C, the theorem follows.

Construction I: Let p be an odd prime and let k be an
even integer satisfying 1< k < p+ 1. Choosing ap-ary
linear constacyclic(n,k,d) = (p+1,k, p+2−k) MDS code
and choosing theU-representation consisting of the binary
p-tuple [1,0, . . . ,0] and its distinct cyclic shifts yields by
Theorem 2 and Lemma 2 a binary constant-weight code with
pk codewords of lengthN = (p+1)p and weightw= p+1
that has minimum distancedmin = 2(p+2− k).

Construction II: Let p be a Mersenne prime and letk be
an even number. Then Construction I altered only in thatU
is chosen to be anm-sequence of lengthp yields a binary
constant-weight code withpk codewords of lengthN = (p+
1)p and weightw= (p+1)2/2 that has minimum distance
dmin = (p+2− k)(p+1)/2.

Construction III: Let p be a Mersenne prime number such
that (p− 1)/2 is odd and letk be an even number. Then
Construction I altered only in thatU is chosen to be a
Legendre sequence of lengthp yields a binary constant-
weight code with pk codewords of lengthN = (p+ 1)p
and weight w = (p+ 1)2/2 that has minimum distance
dmin = (p+2− k)(p+1)/2.

The functionA(n,d,w) is defined as the maximum num-
ber of codewords in a binary code of blocklengthn, constant
weightw, and minimum distance at leastd, and has proved
to be of considerable interest in coding theory [6, pp. 524-
534]. The codes of Construction I, by an entirely similar ar-
gument to that used in [2], are also asymptotically optimum
with respect to the Johnson bound [6, Corollary 5, p. 528].
Analogously, the codes in Construction II and Construction
III are also asymptotically optimum with respect to the
Plotkin low-rate bound [2].

IV. A CYCLIC REPRESENTATION OFGF(p)

Our code constructions so far have produced codes which
are asymptotically good however they are not cyclic, which
is an interesting property of a code for practical applications.
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In order to derive a binary cyclic code from ap-ary consta-
cylic code we need to develop an appropriate representation
of GF(p). We recall that thecyclic orderof an N-tupleb is
the smallest positive integeri such thatSi(b) = b, where the
operatorSi(∗) denotesi cyclic shifts to the right. It follows
that the cyclic order of anN-tuple must be a divisor ofN.
Let v be a binary (p−1)-tuple of cyclic orderp−1. Since
p−1 is even it follows that there will always exist a binary
(p−1)-tuple of cyclic order 2 and at least one (p−1)-tuple
of cyclic orderp−1.

Example 2:For p= 7 it follows that v = (1,0,1,0,1,0)
is a binary 6-tuple of cyclic order 2 and thatv1 =
(1,1,1,0,0,0) and v2 = (1,1,0,1,0,0) are binary 6-tuples
of cyclic orderp−1= 6.

Definition 3: We define theV-representation of GF(p)
to be the representation such that the non-zero elementai,
i = 0,1, . . . , p−2 is represented by the binary (p−1)-tuple
Si(v), thei-th cyclic shift ofv to the right, wherea denotes a
primitive element in the multiplicative group of GF(p), and
0 is represented by a binary (p−1)-tuplev′ and its distinct
cyclic shifts, and is such thatv′ 6= Si(v) for 0≤ i ≤ p−2.
In particular,v′ can be chosen as the allzero(p−1)-tuple.

Example 3:Let p = 7, a = 3, v′ = (1,0,1,0,1,0) and
v= (1,1,1,0,0,0). The followingv-representation of GF(7)
results.

0 (1,0,1,0,1,0)

0 (0,1,0,1,0,1)

30 (1,1,1,0,0,0)

31 (0,1,1,1,0,0)

32 (0,0,1,1,1,0)

33 (0,0,0,1,1,1)

34 (1,0,0,0,1,1)

35 (1,1,0,0,0,1)

V. TWO-DIMENSIONAL ARRAYS AND N-TUPLES

We develop now a correspondence betweenm× n two-
dimensional arrays andN-tuples which is quite general in
the sense that it does not require the usual assumption thatm
andn must be relatively prime, a condition that is denoted
as gcd(m,n) = 1. We prove also some properties of this
correspondence which will be useful in the next section.
We shall considerm×n arraysA, denoted as

A=











a(0,0) a(0,1) ... a(0,n−1)

a(1,0) a(1,1) ... a(1,n−1)

. . ... .

a(m−1,0) a(m−1,1) ... a(m−1,n−1)











the entries of which are in an arbitrary alphabet. For positive
integersm andn the following simple relationship specifies
a one-to-one correspondence between such arraysA andmn-
tuplesb = [b0,b1, ...,bmn−1] over the same alphabet in the
manner that

bin+ j = a(i, j), 0≤ i ≤ m−1, 0≤ j ≤ n−1. (4)

Example 4:The 3×3 arrayA

A=





a1 a2 a3

b1 b2 b3

c1 c2 c3





corresponds by relation (4) to the 9-tuple
b = [a1,a2,a3,b1,b2,b3,c1,c2,c3].

Definition 4: The column constacyclic shift operatorR
shifts the columns of anm×n arrayA as follows.

1) The operatorR cyclically shifts the columns ofA one
position to the right producing a matrixA′ and then

2) cyclically shifts downwards by one position the fur-
thest left column ofA′.

Example 5:By applyingR to matrix A from Example 1
it follows that

R(A) =





c3 a1 a2

a3 b1 b2

b3 c1 c2



 .

We notice thatR(A) corresponds to the 9-tupleS(b) =
[c3,a1,a2,a3,b1,b2,b3,c1,c2] where S denotes the cyclic
shift to the right operator onN-tuples andN = mn.

Theorem 3:A set of m× n arrays over an arbitrary
alphabet is closed under the constacyclic shift to the right
operatorR if and only if the corresponding set ofmn-tuples
is closed under the cyclic shift to the right operatorS.

Proof: Let the m× n array A correspond to themn-
tuple b. The entry a(i, j) in A is replaced inR(A) by
a(i modm, j − 1 modn), if 1 ≤ j ≤ n− 1,0 ≤ i ≤ m− 1,
and if j = 0 the entrya(i,0) in A is replaced inR(A)
by a(i − 1 modm,n− 1), 0 ≤ i ≤ m− 1, where “i modm”
denotes the remainder wheni is divided by m. In S(b),
the entrybin+ j modmn of b is replaced bybin+ j−1 modmn, for
0 ≤ j ≤ n− 1 and 0≤ i ≤ m− 1. It follows from (1) and
from the above considerations that for 0≤ i ≤ m−1

bin+ j−1 modmn = a(i, j −1), 1≤ j ≤ n−1, and that

bin−1 modmn = a(i −1 modm,n−1), j = 0

and hence thatS(b) corresponds toR(A). Therefore, the
set of m×n arrays is closed underR when the set ofmn-
tuples is closed underS. Conversely,R(A) is them×n array
corresponding to themn-tuple S(b), which guarantees that
the set ofmn-tuples is closed underS when the set ofm×n
arrays is closed underR.

VI. SOME LINEAR BINARY CYCLIC CODES

Theorem 4:Let p be a prime number,p > 3, and let
C be a p-ary linear constacyclic(n,k,d) code. Let each
codewordc= [c0,c1, . . . ,cn−1] in C determine a(p−1)×n
array A in the manner that thei-th column of A is the
transpose of the(p− 1)-tuple that is thev-representation
of the i-th component ofc, and let b be the binaryN-
tuple, whereN = (p−1)×n, that corresponds to the array
A by the relation in (4). Then the set ofpk binary N-tuples
b corresponding in this way to thepk codewordsc of C
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form a binary cyclic code the codewords of which have
constant weightw= nw(v) and the minimum distancedmin
of which satisfiesdmin ≥ d d(v) with equality when the
v-representation of GF(p) is equidistant.

Proof: We first show that the set ofpk binary N-
tuples b is closed under cyclic shifting. Letc and A be
the codeword inC and the corresponding(p−1)×n array,
respectively. BecauseC is a linear constacyclic code, the
constacyclic shift to the right ofc is also inC and hence,
the corresponding array, denoted asR(A), is another array
in the set. Thus, the set ofpk arrays A is closed under
the R operator. It now follows from Theorem 3 that the
corresponding set ofpk binary N-tuplesb is closed under
cyclic shifting, i.e., it is a binary cyclic code.

We shall omit the rest of the proof because it is identical
to the corresponding proof in Theorem 3 when we consider
here thev-representation instead of theu-representation.

By combining the results of Theorem 1 and Theorem 4
we obtain the following corollary.

Corollary 1: Let n = p = 2m − 1, where p > 3 is a
Mersenne prime. Thepk − 1 nonzero binary codewords
produced by Theorem 4 have full cyclic orderN = p2−1.

VII. PROTOCOL SEQUENCES

The binary cyclic codes produced from MDS constacyclic
codes in the previous section may be used to construct
cyclically permutable codes (CPC) [2] and thus have their
codewords considered as protocol sequences for the users of
a collision channel without feedback [2]. Following [2], the
set {s1,s2, . . . ,sT} of binary sequences of lengthN is said
to be a(T,M,N,σ) protocol sequence setif, when these
sequences are used as protocol sequences for theT users
and provided that at mostM of the users are active in each
received frame, each frame-active user can be identified by
the receiver and at leastσ of the packets transmitted by each
frame-active user are sent without collision. The following
theorem was proved in [2] and shows how constant-weight
cyclically permutable codes can be used as(T,M,N,σ)
protocol sequence sets.

Theorem 4 in Reference [2]: For any integerσ with
1≤σ ≤w, a binary constant-weightw cyclically permutable
code CPC(N,Mc = T,dc) is a (T,M,N,σ) protocol se-
quence set for

M =min{T,⌊(w−1)/(w−dc/2)⌋,⌊(w−σ)/(w−dc/2)⌋+1}.
(5)

The strictly binary constant-weight codes that we derived
from constacyclic codes did not produce efficient protocol
sequences, therefore we have resorted to subsets of binary
codewords having a constant weight. Since the constacyclic
codes considered in this paper are MDS codes, their weight
distribution is well known [8, p.189]. In particular, the
number of weight-j codewords of ap-ary (p+1,k,d) MDS
code is is given by

A j =
(

p+1
j

)

(p−1)
j−d

∑
i=0

(−1)i
(

j−1
i

)

p j−i−d. (6)

Example 6:Let v be a binary 30-tuple of weight
1 in the V-representation of the nonzero elements of
GF(31). By Theorem 4 the binary mapping of theA32 =
297600 distinct non-zero codewords of weight 32 of the
31-ary (32,4,29) constacyclic code produces the binary
(N,Mc,dc) = (960,310,58) CPC code for whichw = 32.
Consideringσ = 5 in (5) it follows that.

⌊(w−1)/(w−dc/2)⌋ = ⌊(32−1)/(32−58/2)⌋

= ⌊31/3⌋= 10

⌊(w−σ)/(w−dc/2)⌋+1 = ⌊(32−5)/(32−58/2)⌋+1

= ⌊27/3⌋+1= 10.

In other words, provided that at mostM = 10 out of the
T = 310 users are active in each received frame ofN =
960 slots, each frame-active user will be guaranteed at least
σ = 5 collision-free packet transmissions among thew= 32
packets that he sends in a frame.

VIII. C OMMENTS

We have presented some nonlinear binary code construc-
tions derived from linearp-ary constacyclic codes, enlarging
the range of available choices [2]. Some of our constructions
were expressed in terms of a general blocklengthn, which
can be chosen as a divisor ofp+1 and still produce MDS
codes [2], [4], [9]. The use of MDS constacyclic codes
does not require the presence of the all-ones codewords in
their respective codebooks when mapping their codewords
to binary. Further investigations are being carried out by
the authors concerning possible construction of families
of protocol sequences for the collision channel without
feedback.
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