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Abstract— This paper presents theorems showing how to
obtain a binary nonlinear code from a p-ary linear consta-
cyclic maximum distance separable code, where p is a prime
number, by using a representation of GF(p) as binary p-
tuples. Two asymptotically optimum classes of binary consint-
weight codes are constructed. Binary cyclic codes are degd
for a representation of GF(p) as (p-1)-tuples. It is shown fo
Mersenne primes p greater than 3 that all p-ary codewords
of these codes have full constacyclic order. An applicatiomf
some of the cyclically permutable codes constructed is gike
as an example of the construction of protocol sequences for
the M-active-out-of-T users collision channel without fedback
introduced by Massey.
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I. INTRODUCTION

This paper presents theorems showing how to obtain
binary nonlinear code from @-ary linear constacyclic [1]
maximum distance separable code, whegrds a prime
number, by using a representation of (®F as binary

classes of cardinality 2, i.e., their exponents appear irspa
as[l—(p—1)i,p+(p—1)i], 0<i<(p— 1){2, it will be
convenient to denote these roots @&t (P~ for —(p—
1)/2<i<(p+1)/2, remembering that both— 1 andp+1
are always even numbers becaysis an odd prime.

A. Constacyclic order of codewords

Definition 1: We define the constacyclic order of a code-
word ¢(x) belonging to a(n,k,d) constacyclic code over
GF(p), modulo x" — a, where a # 0,a € GF(p), as the
minimum numbett of constacyclic shifts such tha{x) =
xc(x) modx" — a.

Example 1: The constacyclic order of the Gb) vectors
(2,0,1,0,3,0) and(3,2,1,0,0,0) modulox® — 3 are, respec-
tively, 8 and 24.

It is known in general that the cyclic order of a root in
a (p+ 1,k p—k+2) constacyclic code must dividg? — 1.
We consider next a special case where all the roots of the
gesulting codes are guaranteed to have full cyclic order, i.
order p> — 1.

Lemma 1:For a given Mersenne primg=2"—1, where
m denotes an odd positive integer, the numhg#s- 1 and

p-tuples. Two asymptotically optimum classes of binaryi(p— 1) —1 are relatively prime, i.e., gép? — L,i(p—1) —
constant-weight codes are constructed, one of them is og =1, for 0<i < p?—2.

timum with respect to the Johnson bound while the other
is optimum with respect to the Plotkin low-rate bound [2].

Binary nonlinear cyclic codes are constructed frgrary
constacyclic codes by using a representation of BRas
binary (p— 1)-tuples. For a positive odd integen, such

thatp=2"-1> 3 is a Mersenne prime, we show that all

Proof: Suppose thatp = 2™ -1 is a Mersenne
prime. It follows that gcfb? — 1,i(p— 1) — 1] = ged22™ —
2MLi(2Mm —2) — 1] = ged2M(2™ - 2),i2"-2) -1 =1
sincei(2™—2) — 1 has no common factor with eithef"2
or 2"-2, ]
Theorem 1:For a given Mersenne primg=2"-1> 3,

p-ary codewords of these codes have full cyclic order. Athe nonzero codewords of the MDS cofe+ 1.k, p+1—
cyclically permutable code is a binary code the codeword), wherek is even, have full constacyclic order, i.e. order

of which are cyclically distinct and have full cyclic order.

An application of some of the cyclically permutable codes

2
p-—1.
Proof: As mentioned earlier, the roots of the generator

constructed is given as an example of the construction opolynomial are in the sefa’*(P~1i, 0 <i < p}, and when

protocol sequences for thd-active-out-ofT users collision
channel without feedback introduced by Massey [3].

Il. p-ARY CODE CONSTRUCTION

Let p denote a prime numbep,> 3. It is a known fact [4],
[5] that the roots okP*1 —a belong to GEp?) and have the
form al+(P~Di for 0<i < p, wherea denotes a primitive
element in the multiplicative group of Gp) anda denotes
an element of ordep? — 1 in GHp?) such thataP! = a.
However, since the roots of’*1 —a belong to conjugate

p=2"—-1is a Mersenne prime, by Lemma 1 all roots of
xP+1 _ a have full cyclic order. Equivalently, all the roots of
x2" —a are primitive roots of GR™ — 12 and thus®" —a
belongs to the exponept — 1= (2™ —1)>—1[7, page 161].
Suppose that = S(c), t # 0, or equivalently that

c(x) = Xc(x) mod (xP+1 — a), (1)
for some positive integetr. It follows from (1) that
(* —1)c(x) = 0 mod(xP*! —a). 2)
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Equation (2) implies that all the roots Bt —a are present ¢ of C, form a binary code the codewords of which have
in (X —1)c(x). Sincec(x) has degree at mogt it follows ~ constant weightv=nw(u) and the minimum distanag,i,
that X — 1 has at least one root in common with*! —a,  of which satisfies

which implies thatt must be at leasp?— 1 and therefore

we conclude that = p?— 1. dmin = d d(u) 3)

In summary,p > 3 being a Mersenne prime is a sufficient . . .
condition forytﬁe nonzergo codewords IE[)0 have full consta—WIth equality when the representation of the elements of

- GF(p) is equidistant.
cyclic order. " Proof: Because all vectors in thg-representation of
[1l. CONSTRUCTIONS OF BINARY NONLINEAR CODES GF(p) have Hamming weightv(u), it follows that every
We consider now the binary mapping efary (n,k,d) binary N-tuple b in the set has Hamming weighmtw(u)

constacyclic MDS codes from Section II, where- p+1,K so that the set is a constant weight code. Two distinct
andd are the blocklength, dimension a,nd minimum7l-|,am—.C°deW°.rdsc andp’ In C will d|ffer_|n_ at leastd positions,
ming distance, respectively, of these codes with codesdigit"e" their Hamming distance satisfieéc,c’) > d, causing

. . f . ;
in GF(p). The codes produced are asymptotically optimumthe corresponding binari-tuplesb andb’ to differ in at

: ; d d(u) positions, with equality if théJ-representation
with respect to the Johnson bound and the Plotkin boundeaSt : P ) .
respectively. In principle we can arbitrarily map to binary ?f GF(p) is ngdlsdtant. ngc_augm%(t(r:], C/t)hz d W'tr; ﬁquallg/
each element of Gfp) in the codewords of g-ary MDS or some codewords andc In &, the theorem 1ollows.
code and produce a binary nonlinear code. However, some ~qn«iryction 1 Let p be an odd prime and let k be an

particular choices for the binary mapping of the elements o}, a1, integer satisfving & k < 1. Choosing ap-ar

GF(p) produce goo_d codes as we show ir_l the seq_uelu_et linear con%tacyclicﬁ;),/k,%) _ (p+2j|r<7 p+2-K) MgDSpcod):e

be a set of cardinality the elements of which are binay 5,4 choosing theJ-representation consisting of the binary

tuplesu with Hamming weightw(u), where 0= w(u) <P, typle [1,0,...,0] and its distinct cyclic shifts yields by

g?dG'a:?;)mate one-to-one the elements with the elements Theorem 2 and Lemma 2 a binary constant-weight code with
Definition 2: We define thdJ-representation of Gfp) to g]a?%iiwazg?motjnlqeg?sttﬂgmﬂgsf i) g(ﬂzw,e |kg>htw P+l

be the representation in which the elemeérdf GF(p) is In '

represented by the binagytupleu; € U, for 1<i < p, and Construction Il Let p be a Mersenne prime and letbe

denote byd(u) the minimum Hamming distance in the set an even number. Then Construction | altered only in that

uU. is chosen to be am-sequence of lengtp yields a binary
We note that if thep-tuples in theU-representation of constant-weight code witp* codewords of lengtiN = (p+

GF(p) have the same Hamming weight then they form a1)p and weightw = (p+ 1)2/2 that has minimum distance

binary constant-weight code. Ldfu) denote the minimum din = (P+2-K)(p+1)/2.

distance, or Hamming distance, of this code. We will call

the U-representation equidistant if the Hamming distance Construction It Let p be a Mersenne prime number such

between every pair of distinct codewords in this code isthat (p—1)/2 is odd and lek be an even number. Then

equal tod(u). In the sequel we will make use of the Construction | altered only in that) is chosen to be a

following three lemmas stated and proved in [2]. Legendre sequence of lengthyields a binary constant-

Lemma 2:For every prime numbep, the p-tupleu =  weight code withp¥ codewords of lengtiN = (p+ 1)p
[1,0,...,0] and its cyclic shifts yields an equidistaht- and weightw = (p+ 1)2/2 that has minimum distance
representation of Gfp) with d(u) = 2. dmin= (P+2—-K)(p+1)/2.

Lemma 3:If p is a Mersenne prime and consists of
a binarym-sequence of lengtlp and its cyclic shifts, then
the U-representation of Gp) is equidistant withd(u) =
(p+1)/2.

Lemma 4:For every prime nhumbep such thatp—1)/2
is odd, a Legendre sequenaeof length p and its cyclic

The functionA(n,d,w) is defined as the maximum num-
ber of codewords in a binary code of blocklengtfconstant
weightw, and minimum distance at leadt and has proved
to be of considerable interest in coding theory [6, pp. 524-
534]. The codes of Construction I, by an entirely similar ar-
shifts yields an equidistaid-representation of Gfp) with \?V?t??ggé()eé??; l:ﬁnggnhLzslér?rs Oilﬁg ?Gsyggrtgltlg:rayllyé'ogtlrsnzug

d(u) = (p+1)/2. Analogously, the codes in Construction Il and Construction
Furthermore the const_ant-welght codes produced in Leml-” are also asymptotically optimum with respect to the
mas 2, 3 and 4 are cyclic codes. Plotkin low-rate bound [2]
Theorem 2:Let p be a prime numbep > 3, and letC be '
a p-ary linear constacycli¢n,k,d) code. Let each codeword
c=|co,C1,...,Cn-1] in C determine a binarN-tupleb, N =
pn, by the U-representation of Gfp), assuming all; have Our code constructions so far have produced codes which
the same Hamming weight, fordli < p. Then the set op*  are asymptotically good however they are not cyclic, which
N-tuplesb, corresponding in this way to thg¢ codewords s an interesting property of a code for practical applirasi

IV. A CYCLIC REPRESENTATION OFGF(p)
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In order to derive a binary cyclic code frompaary consta- Example 4:The 3x 3 arrayA
cylic code we need to develop an appropriate representation

of GF(p). We recall that thesyclic orderof an N-tupleb is a % &
the smallest positive integésuch thatS (b) = b, where the A= | by by bs
operatorS (x) denotes cyclic shifts to the right. It follows C1 C C3

that the cyclic order of alN-tuple must be a divisor of.
Let v be a binary p— 1)-tuple of cyclic orderp— 1. Since
p—1 is even it follows that there will always exist a binary
(p—1)-tuple of cyclic order 2 and at least ong 1)-tuple

of cyclic orderp— 1.

corresponds by relaton (4) to the 9-tuple
b = [ay,az,a3,b1,b2, b3, ¢1,C2, C3).

Definition 4: The column constacyclic shift operat&
shifts the columns of amx n array A as follows.

Example 2:For p =7 it follows thatv = (1,0,1,0,1,0) 1) The operatoR cyclically shifts the columns of one
is a binary 6-tuple of cyclic order 2 and that, = position to the right producing a matriX and then
(1,1,1,0,0,0) and v, = (1,1,0,1,0,0) are binary 6-tuples 2) cyclically shifts downwards by one position the fur-
of cyclic orderp—1=6. thest left column ofA.

Definition 3: We define theV-representation of Gfp) Example 5:By applyingR to matrix A from Example 1

to be the representation such that the non-zero eleaient it follows that
i=0,1,...,p—2 is represented by the binarp ¢ 1)-tuple

S(v), thei-th cyclic shift ofv to the right, where denotes a G a &
primitive element in the multiplicative group of Gp), and R(A)=| a b1 b
0 is represented by a binarp { 1)-tuplev’ and its distinct b3 & C

cyclic shifts, and is such that # S (v) for 0<i < p—2. :
: We notice thatR(A) corresponds to the 9-tupl§(b) =
InEpartlcullar,Sv’chtan be ;:hosengas the (alllée(;p 0. 11)(—)t)uple(.j [c3, a1, 82,83, b1 bz(b; C1,C2) \I/)vhere S denotes {)he( gyclic
Xampe Le p: ,a=3, VvV = ,0,1,0,1, an ) ALy &2, 43, M1, M2, M3, Ml
- : shift to the right operator ol-tuples andN = mn
V:(ll’ 1,1,0,0,0). The followingv-representation of G¥) Theorem 39:’A sgt of mxn ;F;rrays over an arbitrary
results. alphabet is closed under the constacyclic shift to the right

denotes the remainder whenis divided by m. In S(b),
the entrybin | j modmn Of b is replaced bybinyj_1 modmn, for
0<j<n—-1and 0<i<m-1. It follows from (1) and
from the above considerations that fokd < m-—1

1,0,0,0,1,1
3> (1,1,0,0,0,1
V. TWO-DIMENSIONAL ARRAYS AND N-TUPLES o _
We develop now a correspondence betweer n two- Bintj-1 modmn = a(i,j—1), 1<j<n-1, and that
dimensional arrays and-tuples which is quite general in Bin-1 modmn = a(i—1modmn-1), j=0
the sense that it does not require the usual assumptiomthat
andn must be relatively prime, a condition that is denotedand hence thaS(b)_ corresponds tdR(A). Therefore, the
set of mx n arrays is closed undd® when the set omn

as gcdn,n) = 1. We prove also some properties of this ; ;
correspondence which will be useful in the next sectionUPIes is closed und&. ConverselyR(A) is them x n array

; corresponding to thenntuple S(b), which guarantees that
We shall considemx n arraysA, denoted as the set ofmn-tuples is closed unde3 when the set omx n

0 (1,0,1,0,1,0) operatoR if and only if the corresponding set afntuples
0 (0,1,0,1,0,1) is closed under the cyclic shift to the right opera®r

0 ama Proof: Let the mx n array A correspond to thenn-
3" (1,1,1,0,0,0) tuple b. The entrya(i,j) in A is replaced inR(A) by
3t (0,1,1,1,0,0) a(imodm,j —1modn), if 1<j<n-10<i<m-1,
2 (001110 and if j =0 the entrya(i,0) in A is replaced inR(A)
(0,0,1,1,1,0 by a(i —1 modmn—1), 0<i<m-1, where T modn’

3% (0,0,0,1,1,1)

( )

)

a(0,0) a(0,1 . aon-1) arrays is closed undeR. ]
A | L0 a1y .. alln-1) VI. SOME LINEAR BINARY CYCLIC CODES
‘ : : Theorem 4:Let p be a prime numberp > 3, and let
am-10) am-11) .. am-1n-1) C be a p-ary linear constacycliqn,k,d) code. Let each

codewordc = [cp,C1,...,Ch-1] in C determine & p—1) x n
array A in the manner that théth column of A is the
transpose of thép— 1)-tuple that is thev-representation
of the i-th component ofc, and letb be the binaryN-
tuple, whereN = (p— 1) x n, that corresponds to the array
A by the relation in (4). Then the set pF binary N-tuples
bintj=a(i,j), 0<i<m-1,0<j<n-1 (4) b corresponding in this way to thgX codewordsc of C

the entries of which are in an arbitrary alphabet. For pasiti
integersm andn the following simple relationship specifies
a one-to-one correspondence between such afaysimn-
tuplesb = [bg, b1, ...,bmn-1] Over the same alphabet in the
manner that
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form a binary cyclic code the codewords of which have Example 6:Let v be a binary 30-tuple of weight
constant weightv=nw(v) and the minimum distanad,;; 1 in the V-representation of the nonzero elements of
of which satisfiesdyy,j, > d d(v) with equality when the GF(31). By Theorem 4 the binary mapping of th; =
v-representation of Gfp) is equidistant. 297600 distinct non-zero codewords of weight 32 of the
Proof: We first show that the set op* binary N- 3l-ary (32,4,29) constacyclic code produces the binary
tuples b is closed under cyclic shifting. Let and A be  (N,Mc,d;) = (960,310,58) CPC code for whichw = 32.
the codeword irC and the correspondingp— 1) x n array,  Consideringo =5 in (5) it follows that.
respectively. Becaus€ is a linear constacyclic code, the

constacyclic shift to the right of is also inC and hence, [w—1)/(w=de/2)] = [(32—1)/(32—-58/2)]
the corresponding array, denoted R@\), is another array = [31/3]=10

in the set. Thus, the set gi* arraysA is closed under |(w—o)/(w—de/2)|+1 = [(32—5)/(32—58/2)|+1
the R operator. It now follows from Theorem 3 that the 127/3] +1=10.

corresponding set op* binary N-tuplesb is closed under
cyclic shifting, i.e., it is a binary cyclic code. In other words, provided that at mokt = 10 out of the
We shall omit the rest of the proof because it is identicalT = 310 users are active in each received frameNo&
to the corresponding proof in Theorem 3 when we consideB60 slots, each frame-active user will be guaranteed at leas
here thev-representation instead of therepresentation®m o =5 collision-free packet transmissions amongthe 32
By combining the results of Theorem 1 and Theorem 4packets that he sends in a frame.
we obtain the following corollary.
Corollary 1: Let n=p=2"—1, wherep > 3 is a VIl COMMENTS
Mersenne prime. TheX — 1 nonzero binary codewords We have presented some nonlinear binary code construc-
produced by Theorem 4 have full cyclic ordér= p? — 1. tions derived from lineap-ary constacyclic codes, enlarging
the range of available choices [2]. Some of our construstion
VIl. PROTOCOL SEQUENCES were expressed in terms of a general blocklengtiwvhich
The binary cyclic codes produced from MDS constacycliccan be chosen as a divisor pf+1 and still produce MDS
codes in the previous section may be used to constru&odes [2], [4], [9]. The use of MDS constacyclic codes
cyclically permutable codes (CPC) [2] and thus have theidoes not require the presence of the all-ones codewords in
codewords considered as protocol sequences for the userstBeir respective codebooks when mapping their codewords
a collision channel without feedback [2]. Following [2]eth to binary. Further investigations are being carried out by
set{s1,s,...,sr} of binary sequences of length is said the authors concerning possible construction of families
to be a(T,M,N,0) protocol sequence sét, when these of protocol sequences for the collision channel without
sequences are used as protocol sequences fof thegers  feedback.
and provided that at mo#t of the users are active in each
receir\)/ed frame, each frame-active user can be identified by IX.' ACKNQWLEDGEMENT .
the receiver and at leastof the packets transmitted by each ~ This work received partial support from the Brazilian Na-
frame-active user are sent without collision. The follogvin tional Council for Scientific and Technological Developrhen
theorem was proved in [2] and shows how constant-weight CNPd, Project 306612/2007-0.
cyclically permutable codes can be used (@sM,N, o)
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