Conjuntos de Seqüências para Sistemas QS-CDMA com Detecção Multiusuário Sujeitos a Desvanecimento Multipercurso

André S. R. Kuramoto, Taufik Abrão e Paul Jean E. Jeszensky

Resumo-Neste trabalho são comparados os conjuntos de seqüências de espalhamento Walsh-Hadamard, seqüências QS, PN Ótima, LCZ-GMW e ZCZ. A comparação é realizada analizando-se o desempenho do receptor convencional (Rake) e multiusuário do tipo cancelador de interferência paralelo utilizando cada um dos conjuntos de seqüências sujeitos a canal Rayleigh multipercurso, carregamentos similares e condição de quase sincronismo.

Palavras-Chave—DS/CDMA, quase-síncrono, seqüência de espalhamento, cancelador de interferência paralelo.

Abstract-In this work Walsh-Hadamard, QS-sequence, Optimum PN, LCZ-GMW, ZCZ, PS and SP sequence sets are compared. The comparison is accomplished analyzing the conventional receiver (Rake) and a parallel interference canceller receiver performance using each one of these sequence sets in a multipath Rayleigh fading channel and similar system loads in quasi-synchronous condition.

Keywords-DS/CDMA, quasi-synchronous, spreading sequence, parallel inteference cancelator.

I. INTRODUÇÃO

A limitação de desempenho nos sistemas CDMA é resultado principalmente da interferência de múltiplo acesso (MAI), devido ao fato de múltiplos usuários estarem dividindo a mesma faixa de freqüência. Esta interferência é resultado dos atrasos aleatórios τ entre os sinais dos usuários ativos, tornando impossível a manutenção da ortogonalidade entre todas as formas de onda de códigos de espalhamento. A MAI pode ser controlada através da escolha adequada de seqüências de espalhamento e através do controle de potência de todos os sinais recebidos dos usuários ativos no sistema.

Em canais com desvanecimento multipercurso, a interferência presente à saída de um correlacionador do detector Rake é composta pela MAI e pela auto-interferência (SI). A SI, por sua vez, é composta de auto-interferência intersimbólica (SII), provocada por componentes multipercurso correspondentes ao símbolo anterior, e auto-interferência de um mesmo símbolo (SCI), provocada por componentes correspondentes ao símbolo corrente. Um detector multiusuário (MuD), utiliza informações dos demais usuários ativos além de outras estimativas para cancelar a MAI e a SII presentes no sinal recebido. A SCI pode ser utilizada beneficamente na etapa de combinação e decisão do símbolo. Dessa forma, há um aumento na capacidade dos sistemas de comunicação comparado à detecção convencional; porém com aumento na complexidade de implementação. O MuD do tipo cancelador de interferência paralelo (PIC) [1] [2] [3] estima e subtrai a interferência paralela e simultaneamente para todos os usuários. O PIC com decisão abrupta (PIC-HD) emprega a função sign(.) na decisão do bit estimado em todos os estágios canceladores intermediários.

Devido à impossibilidade do sistema Quase-Síncrono DS/CDMA (QS-CDMA) sincronizar perfeitamente os sinais recebidos de todos os usuários ativos, os atrasos entre estes sinais estarão distribuídos, de forma independente e uniforme, sobre o intervalo $[0, \tau_{max}]$, onde τ_{max} representa o erro máximo de sincronismo inerente ao sistema. Desta forma, no QS-CDMA todas as seqüências de espalhamento estarão quase sincronizadas e portanto a MAI pode ser reduzida escolhendo-se conjuntos de següências com boas propriedades de correlação.

Na maioria dos trabalhos publicados tem-se investigado apenas as propriedades de correlação cruzada par das seqüências (ECC). Entretanto, para uma análise completa de desempenho dos sistemas DS/CDMA, deve-se considerar também as propriedades de correlação cruzada ímpar das seqüências (OCC), [4] e [5]. A função de OCC afeta a saída do filtro casado quando o símbolo de informação do usuário interferente muda dentro do intervalo de integração, enquanto a função ECC afeta a saída quando o símbolo de informação não muda. Admitindo-se razoável a hipótese de que os símbolos de informação sejam equiprováveis, a influência da OCC é tão importante quanto a da ECC no desempenho do sistema.

Neste trabalho, foram comparados os desempenhos de sistemas QS-CDMA com detecção convencional e MuD PIC-HD em canal Rayleigh multipercurso utilizando conjuntos de seqüências de espalhamento Walsh-Hadamard, seqüências QS [6] [7], PN Ótima [8], LCZ-GMW[9] [10] e ZCZ [11] [12] com carregamentos semelhantes.

Inicialmente, a seção II trata das definições utilizadas nas seções seguintes. Na seção III são descritas as principais propriedades dos conjuntos de seqüências acima mencionados. O modelo do sistema adotado para a avaliação do desempenho considerando cada um dos conjuntos de seqüências de espa-Taufik Abrao, Departamento de Engenharia El etrica, Universidade Estadual lhamento é descrito em IV. A seção V descreve os parâmetros utilizados, bem como os resultados de desempenho obtidos via deste estudo são sintetizadas na seção VI.

de Londrina, Londrina, Brasil, E-mail: taufik@uel.br.

Andr'e S. R. Kuramoto e Paul Jean E. Jeszensky, Departamento de Engenharia El étrica, Escola Polit écnica da Universidade de S^{*}ao Paulo, S^{*}ao simulação Monte Carlo. Finalmente, as principais conclusões Paulo, Brasil, E-mails: kuramoto@lcs.poli.usp.br, pjj@lcs.poli.usp.br.

II. DEFINIÇÕES

As seqüências \mathbf{c}_i , são definidas como: $\mathbf{c}_i = \{c_{i,0} c_{i,2} \dots c_{i,N-1}\}$, onde *i* representa a *i*-ésima seqüência do conjunto; *N* o comprimento da seqüência de espalhamento; e $c_{i,j}$ é o chip *j* da *i*-ésima seqüência.

O carregamento do sistema $Load = \frac{U}{N}$ relaciona o número de usuários ativos U no sistema com o comprimento das seqüências N utilizadas.

A função de correlação cruzada par (ECC) é definida por:

$$R_{i,j}(\tau) = \begin{cases} C_{i,j}(\tau) + C_{j,i}(N-\tau), & 0 \le \tau < N\\ C_{i,j}(\tau) + C_{j,i}(-N-\tau), & -N < \tau < 0 \end{cases}$$
(1)

e a função de correlação cruzada ímpar (OCC) por:

$$\tilde{R}_{i,j}(\tau) = \begin{cases} C_{i,j}(\tau) - C_{j,i}(N-\tau), & 0 \le \tau < N\\ C_{i,j}(\tau) - C_{j,i}(-N-\tau), & -N < \tau < 0 \end{cases}$$
(2)

onde $C_{i,j}(\tau)$ é a função de correlação aperiódica, dada por:

$$C_{i,j}(\tau) = \begin{cases} \sum_{l=1}^{N-\tau} c_{i,l} c_{j,l+\tau}, & 0 \le \tau < N\\ \sum_{l=1}^{N+\tau} c_{i,l-\tau} c_{j,l}, & -N < \tau < 0 \end{cases}$$
(3)

onde $i \neq j$; τ representa o atraso entre as seqüências de espalhamento, expresso em unidades de tempo de chip T_c . Em (1) e (2), quando i = j, define-se a função de autocorrelação par e ímpar (EAC and OAC), respectivamente.

III. CONJUNTOS DE SEQÜÊNCIAS DE ESPALHAMENTO

A. Seqüências de Walsh-Hadamard

O carregamento máximo do sistema utilizando o conjunto Walsh-Hadamard (WH) é $Load_{max} = 1$, pois as seqüências são obtidas das linhas da matriz quadrada de Hadamard H_n .

A função ECC para este conjunto assume valor zero quando $\tau = 0$, pois quaisquer duas linhas ou colunas de H_n são ortogonais. Isso implica que, em um sistema CDMA síncrono (S-CDMA) em canal AWGN utilizando o conjunto WH a interferência interusuários é virtualmente zero. No entanto, quando $\tau \neq 0$, as funções ECC e OCC podem assumir valores diferentes de zero e elevados, implicando na elevada interferência interusuários em um sistema CDMA assíncrono (A-CDMA).

A função EAC do WH apresenta picos quando $\tau \neq 0$. Se neste caso, o sistema permitir um erro de sincronismo máximo $\tau_{max} \geq 1T_c$, ocorrerão problemas na etapa de sincronismo, inviabilizando a recuperação da informação.

B. Seqüências QS

Os conjuntos de seqüências QS [6] [7] são compostos de seqüências de Gold, com fases adequadamente escolhidas resultanto em ECC mínima para pequenos τ . Em [6] foi mostrado que a distribuição da OCC para seqüências de Gold é semelhante a uma distribuição Gaussiana, cuja a variância torna-se mínima, quando o valor da ECC também for mínimo (-1). Portanto, para o conjunto de seqüências de Gold na condição de quase-sincronismo (QS), é razoável ajustar suas fases de acordo com a ECC. Em [7], definiu-se a característica de quase-ortogonalidade em uma faixa τ (QOQS(r)) para as seqüências QS, resultando em $R_{i,j}(\tau) = -1$, para $\tau =$

 $0, \pm 1, ..., \pm \frac{r-1}{2}$. O número de seqüências em um conjunto com propriedades QOQS(r) varia com o comprimento N das seqüências [7].

Como o conjunto de seqüências QS é composto por seqüências de Gold, os valores de ECC possíveis para um conjunto QS de comprimento $N = 2^n - 1 \operatorname{com} n$ ímpar são: $-1 \operatorname{e} \pm 2^{\frac{n+1}{2}} - 1$; com n par ($\neq 0 \mod 4$) são: $-1 \operatorname{e} \pm 2^{\frac{n+2}{2}} - 1$.

Conjuntos de seqüências QS de mesmo N, r e tamanho podem ter propriedades de OCC diferentes. Por exemplo, para N = 31 e r = 5 existem 2 conjuntos com 4 seqüências cada, extraídas do conjunto Gold $Gold(45,73)^1$. Verifica-se a maior ocorrência de valores de OCC de maior magnitude em um dos conjuntos para $0 \le \tau \le 1$ e também para $0 \le \tau \le 2$. Portanto, neste caso, a escolha do conjunto de seqüências QS com menor ocorrência de picos de OCC resultará em melhor desempenho, considerando um sistema QS-CDMA com $\tau_{máx} \le 2T_c$ [13].

C. Seqüências PN Ótima

O conjunto de seqüências PN Ótima, proposto por [8], possui propriedades de "balanço" e correlação cruzada similares às seqüências de uma subclasse das seqüências GMW [14] [15]. Pode-se considerar que as seqüências PN Ótima são uma generalização das seqüências GMW.

Dado um polinômio primitivo de grau $n \in K = \frac{\binom{2^m-1}{2^m-1}}{2^m-1}$ seqüências sementes balanceadas de comprimento $2^m - 1$, com m fator de n, obtém-se uma família de K seqüências PN Ótima balanceadas distintas e de comprimento $N = 2^n - 1$. Esta família é maior que a subclasse de seqüências GMW de propriedades de correlação cruzada similares com $\frac{\phi(2^m-1)}{2^m-1}$ seqüências distintas, onde $\phi(x)$ denota a função de Euler Para $0 < |\tau| < \frac{2^n-1}{2^m-1}$ ou $|\tau| \neq (0 \mod \frac{2^n-1}{2^m-1})$, todos os

Para $0 < |\tau| < \frac{2^{n}-1}{2^{m}-1}$ ou $|\tau| \neq (0 \mod \frac{2^{n}-1}{2^{m}-1})$, todos os valores de ECC para um conjunto de seqüências PN Ótima de uma mesma família são mínimos e iguais a -1. Porém, dentro da mesma faixa τ os valores de OCC não são mínimos.

Existe um compromisso entre a faixa de atrasos τ em que a função de ECC assume valor -1 e o tamanho do conjunto de seqüências distintas na família [8]. Portanto, para obtermos um carregamento máximo com o conjunto PN Ótima adota-se n = 2m, reduzindo, em conseqüência, a faixa de atrasos onde a função de ECC assume valor -1.

A função ECC assume um valor elevado quando $\tau = 0$. Isso implica em alta interferência interusuário quando existirem sinais de usuários sincronizados ou quase sincronizados com τ confinados em pequenas frações de chip. Fora da condição QS, quando $|\tau| \ge \frac{2^n-1}{2^m-1}$, a função ECC para um conjunto PN Ótima pode também assumir valores elevados.

Na condição de $\tau \neq 0$, o valor da função EAC para seqüências PN Ótima geradas a partir de seqüências do tipo SMC (seqüências de máximo comprimento) reduz-se a -1, pois neste caso a seqüência gerada é uma seqüência GMW [8] [14] [15]. Quando as seqüências sementes não são SMC a função de autocorrelação da PN Ótima apresenta outros picos de menores magnitudes.

¹conjunto constru'i do a partir dos polin^omios primitivos⁵x+ x^2 + 1 e x^5 + x^4 + x^3 + x + 1, ou seja, 45 e 73 em octal, respectivamente.

D. Seqüências LCZ baseadas nas GMW

A função de correlação cruzada par para as seqüências de um conjunto LCZ (*Low Correlation Zone*) baseadas nas seqüências GMW (LCZ-GMW) [9] [10] assume valor mínimo para a faixa de atrasos $|\tau| < L_{CZ}$. Em [10] foi definido o conceito de LCZ.

Definição 1: Sejam \mathbf{a}_1 e \mathbf{a}_2 seqüências sobre GF(p) de comprimento N pertencentes ao conjunto A, onde $\mathbf{a}_1 = \{a_{1,0} \ a_{1,1} \ \dots \ a_{1,N-1}\}, \ \mathbf{a}_2 = \{a_{2,0} \ a_{2,2} \ \dots \ a_{2,N-1}\}$ e C uma constante, então a zona de baixa correlação (LCZ) é definida como $L_{CZ} = \max\{\mathcal{Z} | |R_{1,\hat{2}}(\tau)| \leq C$ onde $(|\tau| < \mathcal{Z} \in \mathbf{a}_1 \neq \mathbf{a}_2)$ ou $(0 < |\tau| < \mathcal{Z} \in \mathbf{a}_1 = \mathbf{a}_2)\}$ com $\mathbf{a}_{\hat{1}} = \exp\left(j\frac{2\pi}{p}\mathbf{a}_1\right) \in \mathbf{a}_{\hat{2}} = \exp\left(j\frac{2\pi}{p}\mathbf{a}_2\right).$

 $\exp\left(j\frac{2\pi}{p}\mathbf{a}_{1}\right) \mathbf{e} \mathbf{a}_{2} = \exp\left(j\frac{2\pi}{p}\mathbf{a}_{2}\right).$ A função EAC e ECC assument valor -1 para $0 < |\tau| < T$ e $|\tau| < T$, respectivamente, onde $T = \frac{p^{n}-1}{p^{m}-1}$, $m \in n$ são inteiros os quais representam o grau dos polinômios primitivos utilizados na construção das seqüências GMW que originam o conjunto LCZ. O comprimento das seqüências LCZ-GMW é dado por $N = p^{n} - 1$. Neste trabalho considerou-se apenas o caso de p = 2 (seqüências binárias) e $\mathcal{C} = -1$, resultando em $N = 2^{n} - 1$ e $L_{CZ} = T = \frac{2^{n}-1}{2^{m}-1}$.

De acordo com [16], para um conjunto LCZ-GMW composto de seqüências de comprimento N existe um compromisso entre o tamanho K do conjunto e o valor de L_{CZ} : $\frac{KL_{CZ}}{N+1} \leq 1$. Quanto maior o valor de L_{CZ} menor é o valor de K. Assim, o carregamento máximo para um conjunto de seqüências LCZ de comprimento N é obtido quando n = 2m, condição em que L_{CZ} é mínimo.

E. Seqüências ZCZ

A função de correlação cruzada par para as seqüências de um conjunto ZCZ (*Zero Correlation Zone*) assume valor zero para a faixa de atrasos $|\tau| < Z_{CZ}$. Define-se o conceito de ZCZ como [11] [12]:

Definição 2: Sejam \mathbf{a}_1 e \mathbf{a}_2 seqüências binárias de comprimento N pertencentes ao conjunto A, onde $\mathbf{a}_1 = \{a_{1,0} \ a_{1,1} \ \dots \ a_{1,N-1}\}$, $\mathbf{a}_2 = \{a_{2,0} \ a_{2,2} \ \dots \ a_{2,N-1}\}$, então a zona de correlação nula (ZCZ) Z_{CZ} é definida como $Z_{CZ} = \max\{\mathcal{Z} | |R_{1,2}(\tau)| = 0$, onde $(|\tau| < \mathcal{Z} \text{ e } \mathbf{a}_1 \neq \mathbf{a}_2)$ ou $(0 < |\tau| < \mathcal{Z}$ e $\mathbf{a}_1 = \mathbf{a}_2)\}$

Neste trabalho considerou-se o método de construção III propostos em [11]. Dado m, n, e t, obtém-se um conjunto ZCZ composto de $K = 2^{n+1}$ seqüências de comprimento $N = 2^{2n+m-t+1} e Z_{CZ} = \frac{2^{n+m-t}}{2} + 1$. Dessa forma, sistemas que utilizem este conjunto ZCZ terão carregamento dado por $Load = \frac{2^{n+1}}{2^{2n+m-t+1}} = \frac{1}{2^{n+m-t}}$.

Existe um compromisso entre a faixa em que as funções EAC e ECC são ideais ($|\tau| < Z_{CZ}$) e o número de seqüências K de comprimento N disponíveis no conjunto, sendo que a relação $KZ_{CZ} \leq N$ é verificada [16].

IV. MODELO DO SISTEMA

O sinal transmitido para o k-ésimo usuário é dado por:

$$s_k(t) = \sqrt{2P_k} \sum_i b_k^{(i)} a_k(t) \cos(\omega_c t) \tag{4}$$

onde P_k representa a potência do sinal transmitido do késimo usuário; $b_k^{(i)}$ o i-ésimo símbolo de informação com período T_b ; ω_c a freqüência da portadora; $a_k(t)$ corresponde à seqüência de espalhamento definida no intervalo $[0, T_b)$ e zero fora: $a_k(t) = \sum_{i=0}^{N-1} c_{k,i} p_{T_c}(t - iT_c)$, onde $c_{k,i} \in \{1, -1\}$ representa os chips da seqüência empregados nos intervalos definidos por i; $p_{T_c}(.)$ é a formatação de pulso retangular de amplitude unitária definida no intervalo $[0, T_c)$ e zero fora. O ganho de processamento, $G = \frac{T_b}{T_c}$, será igual a N.

A resposta impulsiva do cana^c em banda base complexa é dada por $h_k(t) = \sum_{\ell=1}^{L} \alpha_{\ell,k} e^{j\phi_{\ell,k}} \delta(t - \tau_{\ell,k})$, onde L é o número de caminhos resolvíveis; $\alpha_{\ell,k}, \tau_{\ell,k} \in \phi_{\ell,k}$ representam o coeficiente do canal, o atraso e a fase, respectivamente, para o ℓ -ésimo componente multipercurso do k-ésimo usuário; $\tau_{\ell,k}$ é distribuído uniformemente no intervalo $[\Delta_{\ell}; \Delta_{\ell} + \tau_{máx}]$, onde Δ_{ℓ} é o atraso do ℓ -ésimo componente multipercurso, dado um perfil atraso-potência específico. Considerando que o desvanecimeto de pequena escala segue uma distribuição Rayleigh, a função densidade de probabilidade (*Probability Density Function*, PDF) para a amplitude dos coeficientes de canal, $\alpha_{\ell,k}$, é dada por $f(\alpha) = \frac{2\alpha}{\rho} e^{-\frac{\alpha^2}{\rho}}$, onde α é o módulo do coeficiente de canal e ρ é a potência média do componente multipercurso $\rho = E [\alpha^2]$.

O sinal em banda passante que chega ao receptor pode ser escrito como:

$$r(t) = \sum_{k=1}^{U} \sum_{\ell=1}^{L} \left[\sqrt{2P_k} \alpha_{\ell,k} (t - \tau_{\ell,k}) b_k (t - \tau_{\ell,k}) a_k (t - \tau_{\ell,k}) \cos(\omega_c t + \varphi_{\ell,k}) \right] + n(t)$$
(5)

onde n(t) é o ruído branco aditivo Gaussiano (*Additive Gaussian Noise Channel*, AWGN) com densidade espectral bilateral $\frac{N_0}{2}$ e $\varphi_{\ell,k} = \phi_{\ell,k} - \omega_c \tau_{\ell,k}$.

Considerando recepção coerente, a saída do ℓ -ésimo filtro casado ao respectivo componente multipercurso (*finger*) do *k*-ésimo usuário referente ao *i*-ésimo bit recebido será composta pelos termos [3]:

$$\hat{z}_{\ell,k}^{(i)}(0) = \sqrt{\frac{P_k}{2}} T_b \alpha_{\ell,k}^{(i)} b_k^{(i)} + SI_{\ell,k}^{(i)} + I_{\ell,k}^{(i)} + n_{\ell,k}^{(i)}$$
(6)

onde o primeiro termo representa o sinal de interesse, o segundo e o terceiro, $SI_{\ell,k}^{(i)}$ e $I_{\ell,k}^{(i)}$, a auto-interferência e a MAI sobre o ℓ -ésimo componente multipercurso do k-ésimo usuário e o último, $n_{\ell,k}^{(i)}$, o ruído AWGN filtrado.

O termo auto-interferência [3], $SI_{\ell k}^{(i)}$, pode ser escrito como:

$$SI_{\ell,k}^{(i)} = \begin{cases} \sqrt{\frac{P_{k}}{2}} \sum_{\mathcal{L} \neq \ell}^{L} \left[b_{k}^{(i-1)} \mathcal{R}_{k,k}(\tau_{\mathcal{L},k} - \tau_{\ell,k}, -1) \right] \\ \alpha_{\mathcal{L},k}^{(i-1)} e^{j\varphi_{\mathcal{L},k}^{(i-1)}} + b_{k}^{(i)} \mathcal{R}_{k,k}(\tau_{\mathcal{L},k} - \tau_{\ell,k}, 0) \\ \alpha_{\mathcal{L},k}^{(i)} e^{j\varphi_{\mathcal{L},k}^{(i)}} \right] e^{-j\varphi_{\ell,k}^{(i)}}, \qquad \tau_{\mathcal{L},k} \geq \tau_{\ell,k}; \\ \sqrt{\frac{P_{k}}{2}} \sum_{\substack{\mathcal{L} \neq \ell}}^{L} \left[b_{k}^{(i)} \mathcal{R}_{k,k}(\tau_{\ell,k} - \tau_{\mathcal{L},k}, 0) \right] \\ \alpha_{\mathcal{L},k}^{(i)} e^{j\varphi_{\mathcal{L},k}^{(i+1)}} + b_{k}^{(i+1)} \mathcal{R}_{k,k}(\tau_{\ell,k} - \tau_{\mathcal{L},k}, -1) \\ \alpha_{\mathcal{L},k}^{(i+1)} e^{j\varphi_{\mathcal{L},k}^{(i+1)}} \right] e^{-j\varphi_{\ell,k}^{(i)}}, \qquad \tau_{\mathcal{L},k} < \tau_{\ell,k}. \end{cases}$$
(7)

onde $\mathcal{R}_{u,k}(\tau,i) = \int_0^{T_b} a_u(t) a_k(t+iT_b+\tau) dt$ é a correlação cruzada parcial normalizada.

A MAI, $I_{\ell,k}^{(i)}$, pode ser escrita como:

$$I_{\ell,k}^{(i)} = \begin{cases} \sum_{u,u\neq k}^{U} \sum_{\mathcal{L}=1}^{L} \left\{ \sqrt{\frac{P_{u}}{2}} \left[\alpha_{\mathcal{L},u}^{(i-1)} e^{j\varphi_{\mathcal{L},u}^{(i-1)}} b_{u}^{(i-1)} \right] \\ \mathcal{R}_{u,k}(\tau_{\mathcal{L},u} - \tau_{\ell,k}, -1) + \alpha_{\mathcal{L},u}^{(i)} e^{j\varphi_{\mathcal{L},u}^{(i)}} b_{u}^{(i)} \\ \mathcal{R}_{u,k}(\tau_{\mathcal{L},u} - \tau_{\ell,k}, 0) \right] e^{-j\varphi_{\ell,k}^{(i)}} \\ \sum_{u,u\neq k}^{U} \sum_{\mathcal{L}=1}^{L} \left\{ \sqrt{\frac{P_{u}}{2}} \left[\alpha_{\mathcal{L},u}^{(i)} e^{j\varphi_{\mathcal{L},u}^{(i)}} b_{u}^{(i)} \right] \\ \mathcal{R}_{k,u}(\tau_{\ell,k} - \tau_{\mathcal{L},u}, 0) + \alpha_{\mathcal{L},u}^{(i+1)} e^{j\varphi_{\mathcal{L},u}^{(i+1)}} b_{u}^{(i+1)} \\ \mathcal{R}_{k,u}(\tau_{\ell,k} - \tau_{\mathcal{L},u}, -1) \right] e^{-j\varphi_{\ell,k}^{(i)}} \\ \end{cases}, \tau_{\mathcal{L},u} < \tau_{\ell,k}. \end{cases}$$
(8)

O PIC-HD multiestágio analisado aqui remove a interferência a partir das estimativas da auto-interferência intersimbólica (SII) e da MAI em S estágios [3]. No primeiro estágio, s = 1, as estimativas são obtidas das saídas dos correlacionadores, estágio s = 0. A estimativa para a SII [3], obtida no s-ésimo estágio de cancelamento, pode ser escrita como:

$$\widehat{SII}_{\ell,k}^{(i)} = \sqrt{\frac{\hat{P}_{k}}{2}} \begin{cases} \sum_{\mathcal{L}\neq\ell}^{D} \left[\hat{b}_{k}^{(i-1)} \widehat{\mathcal{R}}_{k,k} (\hat{\tau}_{\mathcal{L},k} - \hat{\tau}_{\ell,k}, -1) \\ \hat{\alpha}_{\mathcal{L},k}^{(i-1)} e^{j \hat{\varphi}_{\mathcal{L},k}^{(i-1)}} \right] e^{-j \hat{\varphi}_{\ell,k}^{(i)}}, \quad \hat{\tau}_{\mathcal{L},k} \geq \hat{\tau}_{\ell,k}; \\ \sum_{\mathcal{L}\neq\ell}^{D} \left[\hat{b}_{k}^{(i+1)} \widehat{\mathcal{R}}_{k,k} (\hat{\tau}_{\ell,k} - \hat{\tau}_{\mathcal{L},k}, -1) \\ \hat{\alpha}_{\mathcal{L},k}^{(i+1)} e^{j \hat{\varphi}_{\mathcal{L},k}^{(i+1)}} \right] e^{-j \hat{\varphi}_{\ell,k}^{(i)}}, \quad \hat{\tau}_{\mathcal{L},k} < \hat{\tau}_{\ell,k}. \end{cases}$$
(9)

onde *D* representa o número de correlacionadores do receptor para cada usuário, também chamado de diversidade Rake. Os parâmetros a serem estimados para todos os usuários em um sistema real incluem: coeficiente de canal, $\hat{\alpha}$, potência, \hat{P} , atrasos, $\hat{\tau}$, (e portanto correlações, $\hat{\mathcal{R}}$), fase, $\hat{\varphi}$, e os bits obtidos no estágio de cancelamento anterior, $\hat{b}(s-1)$.

A estimativa para a MAI, $\hat{I}_{\ell,k}^{(i)}(s)$, obtidas no *s*-ésimo estágio de cancelamento pode ser escrita como (8) porém trocando *L* por *D* e os parâmetros do sistema por seus estimados $\hat{\alpha}$, \hat{P} , $\hat{\tau}$, $\hat{\mathcal{R}}$, $\hat{\varphi}$ e $\hat{b}(s-1)$.

A saída do *s*-ésimo estágio PIC, considerando o ℓ -ésimo componente multipercurso do *k*-ésimo usuário para o *i*-ésimo bit é dado por: $\hat{z}_{\ell,k}^{(i)}(s) = \hat{z}_{\ell,k}^{(i)}(0) - \widehat{SII}_{\ell,k}^{(i)}(s) - \hat{I}_{\ell,k}^{(i)}(s) = \sqrt{\frac{P_k}{2}} \alpha_{\ell,k}^{(i)} b_k^{(i)} + SI_{\ell,k}^{(i)} - \widehat{SII}_{\ell,k}^{(i)}(s) + I_{\ell,k}^{(i)} - \hat{I}_{\ell,k}^{(i)}(s) + n_{\ell,k}^{(i)}$. Finalmente, realiza-se a combinação de máxima relação

Finalmente, realiza-se a combinação de máxima relação (*Maximum Ratio Combined*, MRC) para os sinais dos *D* correlacionadores, $\hat{y}_{k}^{(i)}(s) = \sum_{\ell=1}^{D} \operatorname{Re}\left\{\hat{z}_{\ell,k}^{(i)}(s)\hat{\alpha}_{\ell,k}^{(i)}\right\}$, seguida da decisão abrupta, $\hat{b}_{k}^{(i)}(s) = \operatorname{sign}\left(\hat{y}_{k}^{(i)}(s)\right)$.

V. SIMULAÇÕES

Os conjuntos de seqüências utilizados posteriormente nas simulação Monte-Carlo foram escolhidos de forma a obter carregamentos equivalentes. Para o conjunto PN Ótima, foi adotado m = 3, n = 2m, n = 6. O polinômio primitivo utilizado para a construção do corpo $GF(2^6)$ foi $x^6 + x^5 +$ $x^2 + x + 1$. No cálculo de desempenho, sorteiam-se quatro seqüências dentre as cinco disponíveis em cada iteração. No conjunto LCZ-GMW, adotou-se p = 2, n = 6, m = 3 e os polinômios primitivos $x^6 + x^5 + x^2 + x + 1$ e $x^3 + x^2 + 1$ para a construção do corpo $GF(2^6)$ e $GF(2^3)$, respectivamente. Para o conjunto ZCZ foi adotado m = 4, n = 1 e t = 1, resultando em um conjunto de 4 seqüências de comprimento N = 64 e $Z_{CZ} = 9$. O conjunto de seqüências QS escolhido é derivado do conjunto Gold(203, 277). Deste conjunto de Gold, derivam-se 4 subconjuntos compostos de 8 seqüências QS de comprimento N = 127 com propriedade QOQS(5). Arbitrariamente escolheu-se o subconjunto Q_1 [7]. Para o WH foi adotado N = 64 sendo que no cálculo de desempenho através de simulação sorteiam-se 4 seqüências dentre as disponíveis em cada iteração.

A tabela I sintetiza os principais parâmetros dos conjuntos de seqüências previamente escolhidos: o ganho de processamento N, o número de usuários ativos U no sistema, os valores máximos de $R_{i,j}(\tau) \in \tilde{R}_{i,j}(\tau) \mod 0 \le \tau < N$, o intervalo em que a ECC é mantida mínima e o máximo erro de sincronismo, $\tau_{máx}$, sem ocorrer problemas de sincronismo.

A tabela II mostra o perfil atraso-potência adotado para análise de desempenho em canal com desvanecimento Raylegh multipercurso. Este perfil, para ambiente urbano típico, foi baseado no estudo COST207 [17] e possui um número reduzido de componentes multipercurso, visando amenizar a complexidade e tempo de processamento computacional das simulações. Nas simulações foi considerado controle perfeito

TABELA II Perfil atraso-potência baseado no modelo COST207.

ℓ	Atraso (Δ_ℓ)	$\bar{\gamma}_{\ell} = \frac{E_b}{N_0} E\left[\alpha_{\ell}^2\right]$
3	$0T_c = 0s$	0, 189
1	$1T_c = 0,260 \mu s$	0,379
2	$2T_c = 0,520 \mu s$	0,239
4	$6T_c = 1,562\mu s$	0,095
5	$9T_c = 2,343 \mu s$	0,061
6	$19T_c = 4,947 \mu s$	0,037

de potência ($P_1 = P_2 = ... = P_U$). Os parâmetros fase, amplitude, atraso e coeficiente de canal para todos os sinais que chegam ao receptor foram assumidos conhecidos exatamente. Considerou-se freqüência da portadora $f_c = 2GHz$, velocidade do móvel v = 110km/h e diversidade Rake D = 4, pois com 4 *fingers* é possível capturar mais de 90% da energia total do sinal recebido.

A figura 1 apresenta os resultados de desempenho $\overline{BER} \times \frac{E_b}{N_0}$ obtidos por simulação Monte-Carlo. Para as seqüências de comprimento N = 63 e N = 64, considerou-se $\tau_{m \acute{a} x} = 2T_c$ e, para a seqüência de comprimento N = 127, considerou-se $\tau_{m \acute{a} x} = 4T_c$, resultando em atrasos máximos relativos praticamente iguais para todas as simulações. O atraso máximo relativo é definido em função do comprimento das seqüências: $\tau_{\max \%} = \frac{\tau_{\max}}{N} \times 100$ [%], e permite comparar o efeito do assincronismo de sistemas com seqüências de espalhamento de comprimento N distintos.

Para efeito de comparação, foi incluído nos gráficos de resultados o desempenho analítico considerando um único usuário no sistema e receptor Rake MRC com diversidade

XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT'03, 05-08 DE OUTUBRO DE 2003, RIO DE JANEIRO, RJ

CARACTERÍSTICAS DOS CONJUNTOS DE SEQÜÊNCIAS DE ESPALHAMENTO ANALISADOS.							
lonjunto	N	U	$Load \simeq$	$\max R_{i,j}(au) $	$\max \left \tilde{R}_{i,j}(\tau) \right $	$\tau au \min R_{i,j}(au) $	$\tau_{m\acute{a}x}$
LTI I	C A	4	0 0695	C A	20	0	

TABELA I

Conjunto	N	U	$Load \simeq$	$\max R_{i,j}(\tau) $	$\max \left R_{i,j}(au) \right $	$\tau \tau \min R_{i,j}(\tau) $	$\tau_{m\acute{a}x}$ $[T_c]$
WH	64	4	0,0625	64	32	0	< 1
Seqüência QS	127	8	0,063	17	45	$ au \in [0,2]$	< 127
PN Ótima	63	4	0,063	33	33	$ au \in [1, 8]$	< 63
LCZ-GMW	63	4	0,063	33	29	$ au \in [0,8]$	< 63
ZCZ	64	4	0,0625	32	32	$ au \in [0,8]$	< 64

 $D \text{ (single user bound, SUB), dado por [18] } BER_{SUB} = \frac{1}{2} \sum_{\ell}^{D} \left\{ \left[1 - \sqrt{\frac{\bar{\gamma}_{\ell}}{\bar{\gamma}_{\ell}+1}} \right] \prod_{i, i \neq \ell}^{D} \frac{\bar{\gamma}_{\ell}}{\bar{\gamma}_{\ell}+\bar{\gamma}_{i}} \right\}.$

Tanto em ambiente AWGN quanto com desvanecimento multipercurso, os sistemas QS-CDMA com detecção multiusuário PIC-HD apresentam considerável melhoria de desempenho em relação à detecção convencional (filtro casado simples e conjunto de filtros casados seguido de combinador MRC, respectivamente).

Nos sistemas QS-CDMA com detector Rake MRC aqui analisados, o melhor desempenho é obtido com o conjunto ZCZ, seguido pelos desempenhos obtidos com o conjunto LCZ-GMW e com o conjunto de seqüências QS. Já com o conjunto PN Ótima, o desempenho do Rake é insatisfatório e próximo ao desempenho obtido com o conjunto WH.

O melhor desempenho do detector PIC-HD é obtido com o conjunto ZCZ, seguido pelo desempenho obtido com o conjunto LCZ-GMW. Observe-se ainda os desempenhos semelhantes para o PIC-HD obtidos com os conjuntos PN Ótima e de seqüências QS. Isto indica que o incremento na complexidade do algoritmo de detecção do MuD PIC-HD, operando em canal com desvanecimento multipercurso, reduz ou mesmo elimina pequenas diferenças de desempenho observadas com o Rake MRC associado a esses dois conjuntos de seqüências. Finalmente, verifica-se que mesmo com a utilização do detector PIC-HD o desempenho obtido com o conjunto WH é insatisfatório.

Devido ao baixo carregamento utilizado nas simulações, limitado pelo conjunto LCZ-GMW, seção III, um único estágio PIC-HD é suficiente para a obtenção de uma significativa melhoria de desempenho em relação ao receptor Rake MRC. Nas simulações realizadas, não foi observada uma significativa melhoria de desempenho do sistema com mais de 1 estágio PIC-HD.

A figura 2 apresenta o desempenho médio em função do nível de assincronismo dos usuários em um receptor Rake MRC considerando os cinco conjuntos de seqüências com carregamentos similares, tabela I. O conjunto ZCZ resultou em melhor desempenho relativo. Praticamente para todo intervalo de atrasos analisado, o desempenho médio manteve-se muito próximo ao desempenho SUB(D = 4), indicando uma relativa robustez do sistema contra erros de sincronismo (pelo menos 16%), mesmo em canal com grande número de multipercursos.

Degradações progressivas no desempenho do receptor Rake MRC são atingidas com a utilização dos conjuntos LCZ-GMW e QS, tanto em relação ao conjunto ZCZ quanto com o aumento do erro de sincronismo. O conjunto WH resulta no pior desempenho relativo, mantendo-se praticamente constante

Fig. 1. Desempenho $\overline{BER} \times \frac{E_b}{N_0}$ do receptor Rake MRC e receptor Rake associado ao MuD PIC-HD com 1 est´agio e diversas seq`u^encias de espalhamento.

com o aumento do erro de sincronismo.

Ao contrário do comportamento dos demais conjuntos, o PN Ótima apresenta melhoria de desempenho médio com o aumento do $\tau_{\max\%}$, tendendo ao desempenho obtido com o conjunto QS. Isto é explicado através da característica não ótima para a correlação cruzada do conjunto PN Ótima em torno da origem ($|\tau| < 1$) [8].

Ao contrário do observado em canal AWGN, a figura 2 indica um desempenho médio não ótimo para o receptor Rake MRC com o conjunto WH na condição de perfeito sincronismo, $\tau_{\max \%} = 0$, pois a característica do canal multipercurso impossibilita a manutenção da ortogonalidade entre os sinais recebidos. Problema similar ocorre com a utilização do conjunto de seqüências QS. Por exemplo, a boa característica de ECC mínima, quando $|\tau| \leq 2T_c$, para o conjunto com propriedade QOQS(5), utilizado nas simulações, são evidenciadas nos resultados de desempenho em canal AWGN [13]. No entanto, nos resultados em canal com desvanecimento multipercurso, esta boa característica é insuficiente devido aos diversos componentes multipercurso com atrasos elevados.

Finalmente, a figura 3 apresenta os resultados de desempenho do receptor PIC-HD com 1 estágio de cancelamento em função do erro de sincronismo percentual para os cinco conjuntos de seqüências. Verifica-se que, para a mesma diversidade Rake, D = 4, as diferenças de desempenhos com IC são minimizadas e, adicionalmente, as respectivas \overline{BER} resultam

Fig. 2. Desempenho $\overline{BER} \times \tau_{mdx\%}$ para o receptor Rake MRC; $\frac{E_b}{N_0} = 16dB$ e diversos conjuntos de seqüencias de espalhamento.

Fig. 3. Desempenho $\overline{BER} \times \tau_{m \acute{a} x \%}$ para o receptor MuD PIC-HD com 1 est'agio; $\frac{E_b}{N_0} = 16 dB$ e diversos conjuntos de seq'u^encias de espalhamento.

mais próximas do limite SUB com diversidade D = 4. Note-se que mesmo com o aumento de $\tau_{max\%}$, não houve degradação do desempenho.

VI. CONCLUSÕES

Foram analisadas e comparadas as principais características de cinco conjuntos de seqüências de espalhamento aplicáveis a sistemas QS-CDMA propostos recentemente na literatura. As principais propriedades de correlação destes conjuntos foram investigadas na condição de quase sincronismo. O desempenho do sistema QS-CDMA com detecção convencional e multiusuário em canal com desvanecimento multipercurso, obtido via simulação Monte-Carlo, foi utilizado para a comparação dos conjuntos. Tanto com detecção convencional como com detecção MuD, observou-se um relativo ganho de desempenho com a utilização de seqüências do conjunto ZCZ. Com a escolha adequada do conjunto de seqüências para sistemas QS-CDMA, um único estágio PIC-HD é suficiente para uma significativa melhoria de desempenho em relação ao obtido com o receptor Rake MRC. Tal ganho de desempenho, acompanhado de um pequeno incremento na complexidade do receptor, viabiliza a implementação do MuD subtrativo do tipo PIC-HD.

REFERÊNCIAS

- Mahesh K. Varanasi and Behnaam Aazhang. Multistage detection in asynchronous code-division multiple-access communications. *IEEE Transactions on Communications*, 38(4):509–519, April 1990.
- [2] Taufik Abr^ao. Canceladores de Interfer^encia Multiusuário Aplicados a Sistemas DS/CDMA de Múltipla Taxa. PhD thesis, Escola Polit^ecnica da Universidade de S^ao Paulo, Març o 2001.
- [3] Jianfeng Weng, Guoqiang Xue, Tho Le-Ngoc, and Sofi`ene Tahar. Multistage interference cancellation with diversity reception for asynchronous QPSK DS/CDMA systems over multipath channels. *IEEE Journal on Selected Areas in Communications*, 17(12):2162–2180, December 1999.
- [4] So Ryoung Park, Iickho Song, Seokho Yoon, and Yun Hee Kim. New polyphase sequences with good even and odd crosscorrelation properties. *Proc. 19th IEEE Military Communications Conference*, pages 17.5.1– 17.5.5, October 2000.
- [5] M. B. Pursley. Performance evaluation for phase coded spread spectrum multiple-access communication - part i: System analysis. *IEEE Transaction on Communications*, 25:795–599, 1977.
- [6] Seiji Kuno, Takaya T. Yamazato, Massaki Katayama, and Akira Ogawa. A study on quasisynchronous CDMA based on selected PN signature sequences. Proceedings IEEE International Symposium of Spread Spectrum Techniques and Applications, pages 479 – 483, September 1994.
- [7] Masato Saito, Takaya Yamazato, Hiraku Okada, Masaaki Katayama, and Akira Ogawa. Generation of sets of sequences suitable for multicode transmission in quasi-synchronous CDMA systems. *IEICE Transactions* on Communication, E84-B(3):576–580, March 2001.
- [8] Xu Duan Lin and Kyung Hi Chang. Optimal PN sequence design for quasisynchronous CDMA communication systems. *IEEE Transactions* on Communications, 45(2):221–226, February 1997.
- [9] Biqi Long, Ping Zhang, and Jiandong Hu. A generalized QS-CDMA system and the design of new spreading codes. *IEEE Transactions on Vehicular Technology*, 47(4):1268 – 1275, November 1998.
- [10] Xiaohu H. Tang and Pingzhi Z. Fan. A class of pseudonoise sequences over GF(P) with low correlation zone. *IEEE Transactions on Information Theory*, 47(4):1644–1649, May 2001.
- [11] P. Z. Fan, N. Suehiro N. Kuroyanagi, and X. M. Deng. Class of binary sequences with zero correlation zone. *Electronics Letters*, 35(10):777– 779, May 1999.
- [12] Xinmin Deng and Pingzhi Fan. Spreading sequence set with zero correlation zone. *Electronics Letters*, 36(11):993–994, May 2000.
- [13] Andr´e S. R. Kuramoto, Taufik Abr˜ao, and Paul Jean E. Jeszensky. A compared framework on spreading sequences for QS-CDMA systems. submetido ao IEICE Transactions on Communications.
- [14] R. A. Scholtz and Lloyd R. Welch. GMW sequences. *IEEE Transaction on Information Theory*, IT-30(3):548–553, 1984.
- [15] Marvin K. Simon, Jim K. Omura, Robert A. Scholtz, and Barry K. Levitt. Spread Spectrum Communications Handbook. McGraw-Hill, revised edition, 1994.
- [16] X. H. Tang, P. Z. Fan, and S. Matsufuji. Lower bounds on correlation of spreading sequences set with low or zero correlation zone. *Electronics Letters*, 36(6):551–552, March 2000.
- [17] Gordon L. Stuber. Principles of Mobile Communication, Second Edition. Kluwer Academic Publisher, Norwell, Massachusetts, second edition, 2001.
- [18] John G. Proakis. *Digital Communications*. Electrical and Computer Engineering. Communications and Signal Processing. McGraw-Hill, third edition, 1995.