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Fourier Eigenfunctions, Uncertainty Gabor Principle
And Isoresolution Wavelets

L.R. Soares, H.M. de Oliveira, R.J.S. Cintra and R.M. Campello de Souza

Abstract Shape-invariant signals under Fourier transform
are investigated leading to a class of eigenfunctions for the
Fourier operator. The classical uncertainty Gabor-Heisenberg
principle is revisited and the concept of isoresolution in joint
time-frequency analysis is introduced. It is shown that any
Fourier eigenfunction achieve isoresolution. It is shown that an
isoresolution wavelet can be derived from each known wavelet
family by a suitable scaling.

Index TermsGabor-Heisenberg inequality, Fourier
eigenfunctions, time-frequency analysis, isoresolution wavelets.

I. PRELIMINARIES

The Fourier transform is often interpreted as a linear
operator F. An interesting problem in this framework is to
find out the so called eigenfunctions in the language of
operators [1-3]. Let V be a vector space equipped with a
linear transform, T:V → V,  v |→T(v). Under the linear
transform T, eigenfunctions are solutions of T{v}=λv, which
corresponds here to F{f(t)}= λ.f(w) for some f∈L2(ℜ), λ a
scalar. They are a quite remarkable class of functions, which
preserves the shape under Fourier transform: Both the signal
and its spectrum (time and frequency representation) have
the same shape.

In joint time-frequency representation [4, 5] this feature can
represent a very good balance between the two domains. It is
well known that the Gaussian pulse is a signal whose shape
is preserved under the Fourier operator:
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This can easily be derived by writing
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. Deriving this equation and

using integral by parts, we find out F'(w)=-w.F(w). The
solution of the differential equation F'(w)+w.F(w)=0 under

the initial condition F(0)=1 is 22we)w(F −= . It follows

promptly that πλ 2= .

The question is: Are there other eigenfunctions? This matter
is addressed in the next section. It is worthwhile to bear in
mind that some results in this paper are deliberately non
nova, sed nove.

II. SHAPE-INVARIANT SIGNALS: EIGENFUNCTIONS OF THE

FOURIER OPERATOR

Let E (respectively O) denote the functional that extracts the
even (respectively odd) part of a signal.

Proposition 1. Let f(t) ↔ F(w) be an arbitrary Fourier
transform pair. Then the signal
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is invariant under Fourier transform. Furthermore,
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Proof:
It follows from the definition of h(.) that
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Taking the Fourier transform,
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and the proof follows. o

Corollary. Each even function f(t) ↔ F(w) induces a

Fourier invariant )t(F)t(f)t(h += π2 . o

For instance, the signals
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have spectra with similar shape. An extra remarkable
example is
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Proposition 2. Let f(t) ↔ F(w) be an arbitrary transform
pair. Then the signal
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is invariant under Fourier transform. Furthermore,

{ } )w(h)t(h  2 F π−= .

Proof:
Similar to proposition 1.

Corollary. Each odd function f(t) ↔ F(w) induces a Fourier

invariant )t(F)t(f)t(h −= π2 . o

Let us now focus on a particular and important class of
Fourier invariant, which generates an orthogonal and
complete set.

To begin with, let us denote by Eg a class of eigenfunctions
of the Fourier operator defined according to the following:

Proposition 3. A signal f(t) is in Eg  iff  the signal f satisfies
the differential equation f''(t)-t2f(t)=κf(t), for some scalar
κ∈C.

Proof:
(⇒)

)w(f)t(f λ↔ (hypothesis)

The properties of time and frequency differentiation for F
give:

 f''(t) ↔ (jw)2λf(w),
(-jt)2f(t) ↔ λf''(w). (5)

Adding both members1, we derive
f''(t)-t2f(t) ↔ λ[f''(w) -w2f(w)]. (6)

Thus, the signal f''(t)-t2f(t) has also its shape preserved,
provided that f itself preserves its shape. Therefore, f''(t)-
t2f(t)∈Eg, that is, we are looking for signals such that f''(t)-
t2f(t)=κf(t), since they have identical eigenvalues.

(⇐)
The signal f(t) satisfies the differential equation

f''(t)-t2f(t)=κf(t), k∈C.   (hypothesis)

By taking F,
(jw)2F(w)+F''(w)=κλF(w),         (7)

so that F''(w)-w2F(w)=κλF(w), i.e., its spectrum also obeys a
similar differential equation. Therefore, f and F have
identical shape, since they are solutions of the same
differential equation.  o

The key equation for shape-invariant signal is thus f''(t)-
t2f(t)=κf(t). Let us try solutions of the form

22te).t(p)t(f −= . (8)

                                                          
1 N.B. Subtracting: f''(t)+t2f(t) ↔ -λ[f''(w) +w2f(w)].

Therefore,
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After simple algebraic manipulations, we derive
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A standard differential equation of the above form is [6]
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Thus, for a suitable choice )n( 12 +−=κ   (eigenvalues), the

solutions p(t) are exactly Hermite polynomials (12) [6],
which form a complete orthogonal system.

)t(H)t(p n= . (12)

(H0(t)=1, H1(t)=2t, H2(t)=-2+4t2, H3(t)=-12t+8t3, H4(t)=12-
48t2+16t4, etc.)

Proposition 4. Possible eigenvalues of the Fourier transform

are the four roots of the unit (±1,±j) times π2 .

Proof:
Let us denote by F(n) the operator corresponding to iterate n
times the operator F. Let t↔w↔w'↔Ω be the Fourier
domain for the iterate Fourier transform. Observe that (∀f
∈Eg)

F(2){f(t)}=2πf(-w') and F(4){f(t)}=4π2f(Ω).     (13)

But
F(2){f(t)}=λ2f(w') and F(4){f(t)}= λ4f(Ω).  (14)

From (13) and (14) it follows that πλ 2 ∈C has order 4. o

We conclude that { }+∞
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Another interpretation can be derived evoking Rodrigues'
formula [6]:
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The 2nd-order differential equation hold by invariant signals
is

y''+(2n+1-x2)y=0.          (17)

The above differential equation is exactly the celebrated
Schrödinger equation for the harmonic oscillator [7].
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III. CONSEQUENCES ON THE TIME-FREQUENCY PLANE

Let us now investigate certain consequences of
eigenfunctions of the Fourier operator on the time-frequency
plane [4, 8].

Let f(t) be a finite energy signal E, with a transform F(w).
The time and frequency moments of f are defined by:
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By analogy to Probability Theory, the term |f(t)|2/E denotes a
"time-domain" energy density, where E is a normalising
factor so as to make the whole integral of the density be
equal to one. It is customary to deal with the energy spectral
density G(w)=|F(w)|2, whose integral over a frequency band
gives the energy content of the signal within such a band.
Let us suppose in the sequel, without loss of generality, that
E=1 (energy normalised signals).

The "effective duration" (respectively "effective frequency
width") of a signal f(t) (respectively F(w)) is originally
defined via:





 −=∆ 22 )tt(:t π

  r.m.s. duration, (18a)
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 r.m.s. bandwidth,  (18b)

∆t and ∆f correspond to the standard deviation (i.e.,
spreading measures). However, other common and much
handier definitions are
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A. Revisiting the Gabor Principle

By applying arguments from quantum mechanics [7], Gabor
[9, 10] derived an uncertainty relation nowadays called
Gabor-Heisenberg principle for signals: ∆t.∆f≥1/2, proving
that time and frequency cannot be exactly measured
(simultaneously).

The Gabor-Heisenberg uncertainty principle states a lower
bound on the product w.t ∆∆  (or wt .∆∆ )

∆t . ∆w  ≥ 
2

1
. (20)

Proposition 5. The Gabor lower bound is only achieved by
the first invariant signal (eigenfunctions of F operator).

Sketch of the proof:
From (20), the bound is achieved iff f'(t)=kt.f(t). This
condition can be interpreted as: 'Derivative in time
domain'≡'derivative in frequency domain'. Therefore

f''(t)=k[f(t)+t.f'(t)]=kf(t)+k2t2f(t)     (21)
or

f''(t)- (kt)2f(t)= kf(t).    (22)

And so f''(t)-k(1+kt2)f(t)=0. The only solutions on Eg

correspond to k=±1, i.e., f"+(1-t2)f=0 or f"-(1+t2)f=0.
  o

Proposition 6. Any real signal f(t) ↔ F(w) such that f, f', F,
F' ∈ L2(ℜ) has finite resolutions.

Proof:
Applying the Parseval-Plancherel Theorem [6], it follows
that
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∆ is therefore given by the square root of the ratio between
the energy of the signal derivative and the energy of signal
itself. Thus, the resolution for the Fourier invariant signal
sech(.) given by eqn(4) is

660.523598776 ≅=∆=∆ πwt (27)

since that
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Proposition 7. [9]. Time-frequency uncertainty of Fourier
Eigenfunctions3 { })t(nψ  reach quantized values of the

Gabor-Heisenberg lower bound, i.e.

∆t . ∆f  = 
2

1
. (2n+1),      (27a)

∆t . ∆w  = 
2

1
(2n+1).    (27b)

o

That is why Gabor functions are relevant in some problems
(e.g. [11]).

IV. THE CONCEPT OF ISORESOLUTION WAVELET

The concept of isoresolution analysis is introduced in this
section. According to the Gabor principle, if one increases
resolution in one domain, the resolution must decrease in the
other domain so as to guarantee the lower bound given by
(20). When analysing signals in joint time-frequency plane,
frequently, there is no grounds to assure a better resolution
in a domain than in the other domain. As an interesting
property, any Fourier eigenfunction achieves isoresolution as
it can be seen by:

Proposition 8. Fourier-invariant signals perform an
isoresolution, that is, ∆w=∆t.

Proof:
Supposing that f∈Eg, then F(w)=λnf(w). Therefore
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and the proof follows. o

This is an interesting property for signalling on the joint
time-frequency plane.
                                                          
3 ( ) ( )00
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It is suggested here the changing of the time-frequency
resolution by a proper scaling that allows for identical
resolution in both domains.

Proposition 9. If ψ(t) has effective duration ∆t  and effective

bandwidth ∆w, then the scaled version ( )twt ∆∆ψ
achieves isoresolution.

Proof:
Scaled versions ψ(at), a≠0, have resolutions ∆t /|a| and
|a|.∆w,, so |a| can be appropriately chosen.

o

The essential idea of isoresolution can be placed in the
wavelet structure. Normally, the basic wavelet of a family
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 holds the admissibility condition but often

does not achieve isoresolution. We propose here to redefine
the basic wavelet of a family so as to achieve isoresolution.

Take as a model the standard Mexican hat wavelet,

)t(Mhatψ , defined by

224
4

2
2 2

2

3

2
2

3
12 w

t

ew
e

)t( −
−

−↔− π
π

. (28)

The isoresolution Mexican hat wavelet can be found
applying proposition 9:
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For any isoresolution wavelet, the scaling by a>1 or a<1
corresponds to unbalance resolution in a different way.

Table 1 displays both time and frequency resolution for few
known continuous wavelets: Gaussian derivatives, Mexican
hat, Morlet, frequency B-Spline, Shannon and Haar [12].
Gaus1 is an invariant wavelet therefore it achieves
isoresolution, in accordance to proposition 8. It is valuable to
mention that compact support wavelets (in time or
frequency) cannot attain isoresolution, since no signal can
simultaneously be time and frequency limited [13].

TABLE 1. RESOLUTION OF FEW STANDARD CONTINUOUS WAVELETS.

Wavelet name
Time

resolution
∆t

Frequency
resolution

∆w

Isoresolution
factor

wt ∆∆

Gaus1 1.500000 1.500000 1.000000

Mexican hat 1.166667 2.500000 0.683130

Morlet 0.500002 25.499997 0.140028

fbsp 2-1-0.5 +∞ 14.475133 -

Shannon 1-0.5 +∞ 13.159733 -

Haar 0.333333 +∞ -
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V. PERSPECTIVES AND CLOSING REMARKS

Eigenfunctions of the Fourier operator were investigated and
the Gabor principle was revisited defining the concept of
isoresolution, i.e, a signal with the same time and frequency
resolution. The { })t(nψ  functions (see eqn(15)) turn up as a

very appealing choice for designing representations such as
wavelets. It is time to try finding new wavelets starting with
the equation (11). Since they are solutions of a wave
equation (2nd order differential equation), our approach
(Mathieu [14], Legendre [15], Chebyshev [16]) can be useful
to construct new wavelets: The Quantum Wavelets, or
Gabor-Schrödinger wavelets. The construction of new
wavelets based on these complete, orthogonal, domain
shape-invariant system is currently being investigated. The
idea is to adapt the concept of isoresolution in orthogonal
multiresolution analysis [17, 18].
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