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Abstract— In this work we study the time invariant trellis
group codes with non abelian trellis section group B which is
the semidirect product of the additive group Z2 = {0, 1} by a
finite group S. We will show that when S is abelian then the
code has free distance limitations, and on the other hand,
when S is non abelian the code is non controllable. There-
fore, there are not convolutional codes with non abelian trel-
lis section isomorphic to the semidirect product Z2 by S.
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I. Introduction

It has been shown in [1] that the capacity of signal
sets (with AWGN) matched to abelian groups are upper
bounded by the capacity of a M-PSK signal set. Thus con-
struction of codes over non abelian groups are required as
a possibility to overcome this PSK-limit. For that, in [2] it
is presented a multilevel method based on the semidirect
product of two codes. Since this just cited method does
not allow an exhaustive search over small groups, in this
work we give an indirect method to search exhaustively non
abelian codes over small groups. We will work with con-
volutional codes over groups, defined in [3], which are ob-
servable, controllable, and time invariant group codes. The
wide-sense homomorphic encoder is an automaton based
device which, essentially, has two homomorphic mappings:
the next state mapping and the output mapping both de-
fined on an extension of the inputs group U by the group of
states S. When S is finite, the codes produced by this en-
coder are observable. Then we just need to be concerned
about the controllability. For that the next state homo-
morphism has the key role. When the extension U by S is
abelian of the type Zn2 ×Zm2 , as the standard binary convo-
lutional codes are, there are a lot of ways to map the next
state homomorphism, in such a way the resulting code is
controllable. The reason for that easyness is the nature of
the group elements, each one has order two but the iden-
tity. This fact explains why there are not considerations
on control while the standard convolutional encoders are
implemented. But in the case when U by S is non abelian,
the next state homomorphism is mostly non controllable.
That is the basis of the method presented in this work.
We will give some properties for the controllable next state
homomorphism, then we show that the majority of non
abelian groups, when split as extensions, can not give any
controllable next state homomorphism. We can refine this
search taking only the codes without parallel transitions.

We will denote by e the neutral or identity element of an
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abstract group G, but in the case of the groups Z2 and Q8,
used in the Examples, the neutral elements are denoted
by 0 and 1 respectively. The notation N / G means N
is a normal subgroup of G, while H ∼= K is the standard
notation for an isomorphism between H and K. This paper
is structured as follows.

In the section II we give a practical method to construct
one explicit extension from a given group G. This means
that given a group G which is the extension of U by S,
by using this method, any g of G can be isomorphically
decomposed as a unique ordered pair (u, s) of U × S.

In the section III we follow [1], [3], and [4] to define and
review group codes generated by a wide-sense homomor-
phic encoder, and we find one criterion for controllability
of this kind of codes. Such criterion is based on the exis-
tence of a especial normal series of subgroups of the states
group S. In the section IV we show some results about the
group code with non abelian trellis section isomorphic to
the semidirect product Z2 o S. We will show that when S
is abelian then the code will have free distance limitations
because it will have parallel transitions. When S is non
abelian we show that a code with trellis section isomorphic
to the semidirect product Z2 by S is non controllable and
therefore it can not be a convolutional code.

II. Extension of Groups

In this section we review some concepts of extension of
groups and show a method to decompose a group.

Definition 1: If U and S are groups, then an extension
of U by S is a group G having a normal subgroup N , iso-
morphic to U , with the factor group G

N isomorphic to S. �

Theorem 1: Given the groups U and S; if there are map-
pings φ : S → Aut(U) and ς : S × S → U such that

φ(s1)(ς(s2, s3)).ς(s1, s2s3) = ς(s1, s2).ς(s1s2, s3), (1)
for all s1, s2, s3 ∈ S and
φ(s1)(φ(s2)(u)) = ς(s1, s2).φ(s1s2)(u).(ς(s1, s2))−1, (2)

for all u ∈ U and for all s1, s2 ∈ S; then U × S with the
following operation

(u1, s2).(u2, s2) = (u1.φ(s1)(u2).ς(s1, s2) , s1s2) (3)
is a group extension of U by S.

Proof: See [7], [6]. �
Theorem 2: Let G be a group with a normal subgroup

N / G, let U,S be groups such that U ∼= N and S ∼= G
N .

Then there exist the mappings satisfying (1) and (2) and
U × S, with the group operation (3) is isomorphic to G.

Proof: Let υ : N → U and ψ : S → G
N be the

isomorphisms between N and U, and between S and G
N ,

respectively. For any u ∈ U and s ∈ S consider ψ(s) ∈ G
N
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and υ−1(u) ∈ N . Then, consider one lifting l : G
N → G

such that l(N) = e, where e is the neutral element of G.
Since N is normal, l(ψ(s)).υ−1(u).(l(ψ(s)))−1 ∈ N , thus
we can define the mapping φ : S → Aut(U) as being

φ(s)(u) = υ[l(ψ(s)).υ−1(u).(l(ψ(s)))−1]. (4)
On the other hand, consider s, t ∈ S then l(ψ(s)).l(ψ(t))

and l(ψ(st)) belong to the coset N ∗ l(ψ(st)). Hence
l(ψ(s)).l(ψ(t)).(l(ψ(st)))−1 ∈ N . Thus we can define the
mapping ς : S × S → U as being

ς(s, t) = υ[l(ψ(s)).l(ψ(t)).(l(ψ(st)))−1]. (5)
Now, we verify that these mappings (4) and (5) satisfy

the conditions (1) and (2);
φ(s1)(ς(s2, s3)).ς(s1, s2s3)

= υ[l(ψ(s1)).υ−1(ς(s2, s3)).l(ψ(s2s3)).(l(ψ(s1s2s3)))−1]
= υ[l(ψ(s1)).l(ψ(s2)).l(ψ(s3)).(l(ψ(s1s2s3)))−1]
= υ[l(ψ(s1)).l(ψ(s2)).(l(ψ(s1s2)))−1].
υ[(l(ψ(s1s2))).l(ψ(s3)).(l(ψ(s1s2s3)))−1]
=ς(s1, s2).ς(s1s2, s3).

On the other hand φ(s1)(φ(s2)(u))=
= φ(s1){υ[l(ψ(s2)).υ−1(u).(l(ψ(s2)))−1]}
= υ[l(ψ(s1)).l(ψ(s2)).υ−1(u).(l(ψ(s2)))−1.(l(ψ(s1)))−1]
= υ[l(ψ(s1)).l(ψ(s2)).(l(ψ(s1s2)))−1].
υ[(l(ψ(s1s2))).υ−1(u).(l(ψ(s1s2)))−1].
υ[l(ψ(s1s2)).(l(ψ(s2)))−1.(l(ψ(s1)))−1]
= ς(s1, s2).φ(s1s2)(u).(ς(s1, s2))−1

Therefore we have that U × S, with the goup operation,
(3) is a group.

Finally, we construct the isomorphism between G and
U × S. For each g ∈ G there is an unique n ∈ N such that
g = n.l(Ng), we define θ : G→ U × S as being

θ(g) = θ(n.l(Ng)) = (υ(n) , ψ−1(Ng)), (6)
Only remains to prove that θ is a homomorphism. Let

g1 = n1.l(Ng1) and g2 = n2.l(Ng2) be elements from G
and suposse θ(g1) = (υ(n1), ψ−1(Ng1)) = (u1, s1) and
θ(g2) = (υ(n2), ψ−1(Ng2)) = (u2, s2). Then g1g2 =
n1.l(Ng1).n2.l(Ng2) =
n1.l(Ng1).n2.(l(Ng1))−1.l(Ng1).l(Ng2).(l(Ng1g2))−1.
l(Ng1g2). Since N is normal, n3 = l(Ng1).n2.(l(Ng1))−1

and n4 = l(Ng1).l(Ng2).(l(Ng1g2))−1 are in N . Hence,
υ(n1.n2.n3) = υ(n1).υ(n1).υ(n1) =u1.φ(s1)(u2).ς(s1, s2).

Thus, θ(g1g2) = θ(υ(n1.n2.n3) , ψ−1(l(Ng1g2)))
=(u1.φ(s1)(u2).ς(s1, s2), s1s2) =(u1, s1)·(u2, s2) =θ(g1)θ(g2).
Therefore θ is an isomorphism. �

This group U×S with the operation (3) will be denotated
by U � S and it will be called as one explicit extension or
decomposition of G. It is clear that given a group G there
are as many decompositions as many normal subgroups G
has.

Notice that if the lifting l : G
N → G is a homomorphism

then, φ of (4) becomes a group homomorphism and for ς
of (5) we will have ς(q, r) = e, for all s, r ∈ S. Therefore
the group operation (3) will be reduced to

(u, s).(v, t) = (u.φ(s)(t) , st), (3′)

1 2 3 4 5 6 7 8
2 4 5 6 7 1 8 3
3 8 4 7 2 5 1 6
4 6 7 1 8 2 3 5
5 3 6 8 4 7 2 1
6 1 8 2 3 4 5 7
7 5 1 3 6 8 4 2
8 7 2 5 1 3 6 4

TABLE I

The quaternions group Q8

which is the semidirect product operation U o S. From
this, we conclude that the extension of groups is a gener-
alization of the semidirect product.

Example 1: Consider the non abelian group G =
{e, α, β, αβ, γ, αγ, βγ, αβγ, δ, αδ, βδ, αβδ, γδ, αγδ, βγδ, αβγδ},
generated by four elements {α, β, γ, δ} satisfying the follow-
ing relations


α2 = e
β2 = e, βα = αβ,
γ2 = α, γα = αγ, γβ = βγ
δ2 = α, δα = αδ, δβ = βδ, δγ = αγδ

Consider the normal subgroup N = {e, β}. Then N is
isomorphic to the additive group of Z2 = {0, 1} and G

N is
isomorphic to the group of symmetries of the square, Q8,
whose Cayley table is shown in Table I. We decompose G
as Z2 oQ8 following the proof of the Theorem 2;
1. We have that υ : N → Z2 is given by υ(e) = 0 and
υ(β) = 1. Whereas the isomorphism ψ : Q8 → G/N is
given by

ψ(1) = N ψ(2) = N.δ ψ(3) = N.γ ψ(4) = N.α
ψ(5) = N.αγδ ψ(6) = N.αδ ψ(7) = N.αγ ψ(8) = N.γδ

Considering the lifting l : G/N → G defined by l(N) = e,
l(N.δ) = δ, l(N.γ) = γ, l(N.α) = α, l(N.αγδ) = αγδ,
l(N.αδ) = αδ, l(N.αγ) = αγ and l(N.γδ) = γδ, the map-
pings φ and ς of (4) and (5), respectively, are defined. In
this case we have ϕ(s1, s2) = 0, for all s1, s2 ∈ Q8

For instance,
φ(7)(1) = υ[l(ψ(7)).υ−1(1).(l(ψ(7)))−1]
= υ[l(N.αγ).β.(l(N.αγ))−1]
= υ[αγ.β.(αγ)−1]
= υ[β] = 1,
and
ς(4, 2) = υ[l(ψ(4)).l(ψ(2)).(l(ψ(42)))−1]
= υ[l(ψ(4)).l(ψ(2)).(l(ψ(6)))−1]
= υ[l(N.α).l(N.δ).(l(N.αδ))−1]
= υ[α.δ.(αδ)−1]
= υ[e] = 0.
2. Since the lifting l is a group homomorphism, and in
this case we have the semidirect product Z2 o Q8, whose
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group operation is defined by (3′). The group opera-
tion for Z2 o Q8 is defined. For instance (0, 7) · (1, 3) =
(0 + φ(7)(1) , 7.3) = (0 + 1 , 1) = (0, 1). Therefore the
group G is decomposed as the semidirect product Z2 oQ8

via the isomorphism θ of (6);

θ(e) = (0, 1) θ(α) = (0, 4)
θ(β) = (1, 4) θ(γ) = (0, 3)
θ(δ) = (0, 2) θ(αβ) = (1, 1)
θ(αγ) = (0, 7) θ(αδ) = (0, 6)
θ(βγ) = (1, 7) θ(βδ) = (1, 6)
θ(γδ) = (0, 8) θ(αβγ) = (1, 3)
θ(αβδ) = (1, 2) θ(αγδ) = (0, 5)
θ(βγδ) = (1, 5) θ(αβγδ) = (1, 8).

For instance, θ(αβδ) = (1, 2) and θ(αβγδ) = (1, 8), then
θ(αβδ).θ(αβγδ)) = (1, 2).(1, 8) = (0, 3). On the other hand
θ((αβδ).(αβγδ)) = θ(γ) = (0, 3). �

III. Group Codes generated by Wide sense

encoders

In this section we review some definitions and concepts
from [3], [1], [4]. Given a group G, condider the infinite
direct product GZ = · · · ×G×G×G . . . . A group code
over the group G is a subgroup of GZ

A wide-sense homomorphic encoder is a machine M =
(U, Y, S, ω, ν), where the input alphabet U , the output al-
phabet Y , and the the state set S are groups, and the next
state map ν and the output map ω are homomorphisms
onto and into respectively defined on an extension U � S
by the following equations

ω : U � S → Y (7)

ν : U � S → S (8)
As pointed out in [3] these encoders give rise to time

invariant trellis whose section elements are transitions or
branches (s, ω(u, s), ν(u, s)) ∈ S × Y × S. The set of all
branches B = {(s, ω(u, s), ν(u, s)) ; (u, s) ∈ U � S} is the
trellis section and it is isomorphic to U�S via the following
mapping Ψ

Ψ(u, s) = (s, ω(u, s), ν(u, s)). (9)
Therefore we have

G ∼= U � S ∼= B.
Since ν is surjective, for any s0 ∈ S there are u0 ∈ U

and s−1 ∈ S such that s0 = ν(u0, s−1). We can recon-
struct one “past” of s0 by s−k = ν(u−k, s−k−1), k ∈ N,
such that s0 = ν(u0, ν(u1, . . . ν(u−k, s−k−1) . . . )). There-
fore for a given s0 ∈ S and a sequence of inputs {u′i}i∈N, the
encoder (8)-(7)responds with two sequences {si}i∈Z and
{yi}i∈Z given by;

...
...

...
s−1 = ν(u−1, s−2)
s0 = ν(u0, s−1)
s1 = ν(u1, s0)
s2 = ν(u2, s1)
...

...
...

...
...

...
y−1 = ω(u−1, s−2)
y0 = ω(u0, s−1)
y1 = ω(u1, s0)
y2 = ω(u2, s1)
...

...
...,

The subsequences {si}i∈N and {yi}i∈N are uniquely de-
termined while the subsequences {si}i=−1

−∞ and {yi}i=0
−∞ are

dependent on the choice of the past of s0. The family of
sequences {si}i∈Z is a subgroup of SZ = . . . S×S×S× . . .
while the family of sequences {yi}i∈Z is a subgroup of
Y Z = . . . Y × Y × Y × . . . therefore is a group code C
over the group Y .

If S is finite this group code C produced by (8) and (7)
is controllable if for any pair of states s and s′ there
exists a finite sequence of inputs {ui}ni=1 such that s =
ν(un, ν(un, ν(un−1, . . . , ν(u2, ν(u1, s

′)) . . . ), [1], [4].
Definition 2: A normal series of a group G is a sequence

of subgroups e = G0 / G1 / G2 / · · · / Gn = G. [6], [7]
Given an encoder defined by (8) and (7) consider the

family of state subsets {Si}, recursively defined by;

S0 = {e}
S1 = {ν(u, s) ; u ∈ U, s ∈ S0}
S2 = {ν(u, s) ; u ∈ U, s ∈ S1}
...

...
...

Si = {ν(u, s) ; u ∈ U, s ∈ Si−1}
... =

...

(10)

Proposition 1: Some properties of the family {Si};
1. S1 is normal in S
2. Si−1 is normal in Si , for all i = 1, 2, . . . .
3. If Si−1 = Si then Si = Si+1

4. If the family {Si}i is not a normal series then the group
code is non controllable

Proof:
1. Since U × {e} is a normal subgroup of U � S, then
S1 = ν(U × {e}) is normal in S.
2. In the first place we show that Si−1 ⊂ Si, for any i.
Clearly S0 ⊂ S1. Now, for i > 1, suposse Sj−1 ⊂ Sj , for all
j ≤ i. Given s ∈ Si, there are r ∈ Si−1 and u ∈ U such that
ν(u, r) = s. Since r ∈ Si−1 ⊂ Si then ν(u, r) = s ∈ Si+1.
On the other hand, clearly S0 / S1. For i > 1, suposse
Sj−1 /Sj , for all j ≤ i. Given s ∈ Si+1 and r ∈ Si, consider
s.r.s−1 = ν(u, s1).ν(v, r1).ν(u, s1)−1, where s1 ∈ Si, r1 ∈
Si−1, u, v ∈ U . Hence, s.r.s−1 = ν(u1, r1.s1.r

−1
1 ) ∈ Si,

because r1.s1.r
−1
1 ∈ Si−1.

3. Given s ∈ Si+1 there are r ∈ Si and u ∈ U such that
ν(u, r) = s. Since Si = Si−1, r ∈ Si−1. Hence ν(u, r) =
s ∈ Si.
4. Let SS be the union of the Si’s, that is, SS = ∪iSi.
Then, Si ⊂ SS for all i. If SS = S then {Si}i is a nor-
mal series. If SS 6= S, there is s ∈ S such that s 6∈ SS .
Then there is not any finite sequence {ui}ni=1 such that
s = ν(un, ν(un, ν(un−1, . . . , ν(u2, ν(u1, e)) . . . ). �

�

IV. There are no controllable group codes

without parallel transitions for semidirect

product Z2 o S

In this section we define parallel transitions of a group
code and show a result relating parallelism and the abelian-
ness of the group of states S.Then we show that there is
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not any controllable and non abelian group code with trellis
section group isomorphic to Z2 o S.

Two transitions (s1, ω(u1, s1), ν(u1, s1)) and
(s2, ω(u2, s2), ν(u2, s2)) are parallels if s1 = s2 and
ν(u1, s1) = ν(u2, s2) and ω(u1, s1) 6= ω(u2, s2)

Lemma 1: Consider the encoder of (8), (7) and suposse
U � S non abelian. Let H+ and H− subsets of U � S
such that H+ = U � {e} = {(u, e) ; u ∈ U} and H− =
Ker(ν) = {(u, s) ; ν(u, s) = e}, then;
1. Both H+ and H− are normal subgroups of U � S,
2. If H+ ∩H− 6= {(e, e)} then B has parallel transitions
3. If the states group S is abelian then B has parallel tran-
sitions

Proof:
1. Imediate.
2. There exists (u, e) ∈ H+ ∩ H−, with u 6= e such
that ν(u, e) = e with, since Ψ of (9) is bijective,
ω(u, e) 6= e. Therefore, the transitions (e, ω(e, e), ν(e, e))
and (e, ω(u, e), ν(u, e)) are parallels.
3. The states group S being abelian implies that G

H+
∼=

G
H−
∼= S are abelian factor groups. Then the commutators

subgroup (U � S)′ is a subgroup of H+ ∩H−. But U � S
is non abelian, then (U � S)′ 6= {(e, e)} . Therefore from
the above item 2, B has parallel transitions. �

�
This result resembles the Theorem 4 of [5]
Lemma 2: Let G be a group with identity e and let S be

any finite group, then;
1. If for each g ∈ G, g2 = 1e then G must be abelian.
2. Any semidirect product Z2oS becomes a direct product
Z2 × S
3. For Z2 o S, each subgroup of the family {Si} of (10) is
abelian.

Proof:
1. id = (ab)2 = abab Then a−1b−1 = ba. Hence ab = ba.
2. Since Aut(Z2) = {id}, then φ : S → Aut(Z2) of (4) is
given by φ(s)(u) = u for all s ∈ S and for any u ∈ {0, 1} =
Z2. Therefore (u1, s1).(u2, s2) = (u1 + φ(s1)(u2) , s1s2) =
(u1 + u2, s1s2) for all u1, u2 ∈ Z2 and for all s1, s2 ∈ S.
3. By induction. For S1 = {0, s} we have s2 = e. Supose
for k > 1, s2 = e for all s ∈ Sk. Now consider r ∈ Sk+1.
There exist s ∈ Sk and u ∈ Z2 such that r = ω(u, s).
Then, by the above item 2, r2 = ω((u, s)2) = ω(u+u, s2) =
ω(0, e) = e. Finally, by using the item 1 we conclude that
each Si must be abelian.

�
Thus by using the Proposition 1 and the Lemmas 1 and

2 we have the following Theorem.
Theorem 3: There is not any controllable group code

without parallel transitions for the semidirect product
Z2 o S.

Example 2: Consider the non abelian group G =
{e, α, β, αβ, γ, αγ, βγ, αβγ, δ, αδ, βδ, αβδ, γδ, αγδ, βγδ, αβγδ}
of the Example 1
For the decomposition Z2 oQ8 of G there is not any con-
trollable group code having trellis section B with inputs
group Z2 and states group Q8. The respective group code

has non controllable trellis section. Searching over all the
other Z2 o S decompositions of G, we have not found any
controllable group code.

V. Conclusions

We have shown that the semidirect product Z2oS is bad
for the construction of non abelian codes. Consequently we
need to search over other kind of extensions U �S in order
to find good groups for non abelian codes. We implemented
scripts by using the Theorem 3 and the Lemmas 1 and 2 in
the system GAP [8] to search codes over non abelian groups
such that their decomposition is different from Z2 o S.
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