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Abstract—This work presents a procedure for decoding BCH codes over
finite rings using Fourier transforms in a Galois ring, where the error vector
is determined as the inverse Fourier transform of the syndrome vectorS =
(S0, S1, · · · , Sn−1).
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I. I NTRODUCTION

There are many methods for decoding a given code. A choice
among several different decoding algorithms depends on certain
code parameters, such as blocklength and minimum, requiring
decoding speed and economy. Construction of procedures for
decoding BCH codes has always been one of the objetives in
coding research. Interlando, Palazzo and Elia [3] have described
an efficient decoding procedure for BCH codes over finite rings
Zm, with m a positive integer, called modified Berlekamp-
Massey algorithm. Andrade and Palazzo [2] have proposed a
construction technique of BCH codes over finite commutative
rings with identity and decoding algorithm for these codes.

Having the decoding of the BCH codes over finite rings as the
main motivation, in this work we present an alternative decod-
ing procedure for these codes using the modified Berlekamp-
Massey and Fourier transform in a Galois ring. The decoding
procedure consists of three major steps: (1) calculation of the
syndromes, (2) calculation of the error-locator polynomial, and
(3) calculation of the error magnitudes.

This work is organized as follows. In Section 2 we describe
Fourier transform in a Galois ring. In Section 3, a decoding
procedure for BCH codes defined over local finite rings using
Fourier transforms is proposed.

II. FOURIER TRANSFORM

In this section we introduce Fourier transforms over Galois
ring which is very similar to the one proposed by Blahut over
Galois field [5]. First we collect basic concepts and facts from
the Galois theory of commutative rings.

Throughout this work we assume thatA is a finite commuta-
tive local ring with identity, with maximal idealM and residue
field K = A

M
∼= GF (pm), wherem is a positive integer andp

is a prime. Letf(x) be a monic polynomial of degreeh inA[x],
such thatµ(f(x)) is irreducible inK[x], whereµ is the natural
projection. Thenf(x) also is irreducible inA[x] [4, Theorem
XIII.7]. Let R be the ringA[x]/〈f(x)〉. ThenR is a finite com-
mutative local ring with identity and is called a Galois extension
ofA of degreeh. Its residue field isK1 = R/M1

∼= GF (pmh),
whereM1 is the maximal ideal ofR, andK∗

1 is the multiplica-
tive group ofK1, whose order ispmh − 1.

LetR∗ denotes the multiplicative group of units ofR. It fol-
lows thatR∗ is an abelian group, and therefore it can be ex-

pressed as a direct product of cyclic groups. We are interested
in the maximal cyclic group ofR∗, hereafter denoted byGs,
whose elements are the roots ofxs− 1 for some positive integer
s such thatgcd(s, p) = 1. There is only one maximal cyclic
subgroup ofR∗ having order relatively prime top [4, Theorem
XVIII.2]. This cyclic group has orders = pmh − 1.

Definition II.1: Let v = (v0, v1, · · · , vn−1) be a vector over
A, wheren dividess, and letα be an element ofGs of order
n. The Fourier transform of the vectorv is the vectorV =
(V0, V1, · · · , Vn−1) definded by

Vj =
n−1∑
i=0

αi(j+1)vi, j = 0, 1, · · · , n− 1. (1)

The discrete indexi is the time, v is the time-domain function
or thesignal, the discrete indexj is thefrequencyandV is the
frequency-domain functionor thespectrum.

Fourier transforms of every blocklength do not exist in a Ga-
lois ring because elements of every order do not exist. Some-
times we represent a vectorv by a polynomialv(x) = v0 +
v1x + · · · + vn−1x

n−1. The polynomialv(x) can be trans-
formed into a polynomialV(x) = V0 + V1x + · · ·+ Vn−1x

n−1

by means of the Fourier transform. The latter polynomial is
called thespectrum polynomialor theassociated polynomialof
v(x).

Lemma II.1: If α ∈ Gs is an element of ordern, then

n−1∑
i=0

αi =
{

0 if α 6= 1
n if α = 1, (2)

wheren is interpreted as an integer modulop.
Proof: If α = 1 this sum is clearly equal ton. If α 6= 1 we have

that
n−1∑
i=0

αi =
1− αn

1− α
= 0, sinceαn = 1.

Lemma II.2: Let α ∈ Gs be an element of ordern. If v(x) =
v0 + v1x + · · ·+ vn−1x

n−1 ∈ A[x], then

nvi =
n−1∑
j=0

v(αj+1)α−i(j+1), i = 0, 1, · · · , n− 1, (3)

where the productnvi, i = 0, 1, · · · , n− 1, is interpreted mod-
ulo p.
Proof: By Lemma II.1 we have that

n−1∑
j=0

v(αj+1)α−i(j+1) =
n−1∑
j=0

(
n−1∑
k=0

vkα(j+1)k)α−i(j+1) =

=
n−1∑
j=0

n−1∑
k=0

vkα(j+1)(k−i) =
n−1∑
k=0

vk

n−1∑
j=0

α(j+1)(k−i) = nvi,



for all i = 0, 1, · · · , n− 1.
Theorem II.1: If c = (c0, c1, · · · , cn−1) ∈ An then

1. nvi = αi(n−1)V(α−i), i = 0, 1, · · · , n− 1,
2. nv = (V(1), αn−1V(α−1), · · · , α(n−1)2V(α−(n−1)),

3. nv(x) =
n−1∑
i=0

αi(n−1)V(α−i)xi,

whereV(x) = V0 + V1x + · · · + Vn−1x
n−1 and the product

nvi, i = 0, 1, · · · , n− 1, is interpreted modulop.
Proof: For the first equality we have that

αi(n−1)V(α−i) = αi(n−1)

n−1∑
j=0

Vjα
−ij =

= αi(n−1)

n−1∑
j=0

(
n−1∑
k=0

αk(j+1)vk)α−ij =

=
n−1∑
j=0

n−1∑
k=0

αin−i+kj+k−ijvk =

=
n−1∑
k=0

vk

n−1∑
j=0

α(j+1)(k−i) = nvi.

For the second equality we have that

(V(1), αn−1V(α−1), · · · , α(n−1)2V(α−(n−1))) =
= (nv0, nv1, · · · , nvn−1) = nv.

For the last equality we have that

n−1∑
i=0

αi(n−1)V(α−i)xi =

=
n−1∑
i=0

nvix
i = n

n−1∑
i=0

vix
i = nv(x).

Corollary II.1: OverA, a vector and its spectrum are related
by

Vj =
n−1∑
i=0

αi(j+1)vi and nvi =
n−1∑
j=0

α−i(j+1)Vj ,

where the productnvi, i = 0, 1, · · · , n−1, is interpreted modulo
p.
Proof: We have that

n−1∑
j=0

α−i(j+1)Vj =
n−1∑
j=0

α−i(j+1)
n−1∑
k=0

vkαk(j+1) =

=
n−1∑
k=0

vk

n−1∑
j=0

α(j+1)(k−i) = nvi.

Remark II.1: The coefficientsVj are given by
V0

V1

V2

...
Vn−1

 =


1 α · · · αn−1

1 α2 · · · α2(n−1)

...
...

...
...

1 αn−1 · · · α(n−1)2

1 1 · · · 1




v0

v1

v2

...
vn−1

 ,

where the differencesαj − αk are units for all 0 ≤ j 6= k ≤
n− 1 [1, Theorem 7].

Example II.1: Let A = Z2[i] andR = A[x]
〈x4+x+1〉 , where

f(x) = x4 + x + 1 is irreducible overA. Thuss = 15 andG15

is generated byα, whereα4 = α + 1. The elementβ = α3

has order 5. The Fourier transform of the vectorv = (11101) is
given byV = (β3, β, β4, β2, 0).

Properties of the spectrum are closely related to the zeros of
polynomials, as stated in the following theorem.

Theorem II.2:With the notations above we have that
1. the polynomialv(x) has a zero atαj+1 if and only if thejth
frequency componentVj is equal to zero;
2. the polynomialV(x) has a zero atα−i if and only if theith
time componentvi is equal to zero.
Proof: Part (1) follows from the fact thatv(αj+1) =
n−1∑
i=0

viα
i(j+1) = Vj , and the proof of part (2) follows from the

fact thatαi(n−1)V(α−i) = nvi.
Theorem II.3: (Convolution Theorem) Ifei = figi, for all

i = 0, 1, · · · , n− 1, then

nEj =
n−1∑
k=0

F(j−k−1)Gk, j = 0, 1, · · · , n− 1,

wherej − k− 1 is interpreted modulon and the productnEj is
interpreted modulop.
Proof: Setting the Fourier transform ofei = figi, for all i =
0, 1, · · · , n− 1, we have that

nEj = n
n−1∑
i=0

αi(j+1)ei = n
n−1∑
i=0

αi(j+1)figi =

=
n−1∑
i=0

αi(j+1)fi(ngi) =

=
n−1∑
i=0

αi(j+1)fi(
n−1∑
k=0

α−i(k+1)Gk) =

=
n−1∑
k=0

Gk(
n−1∑
i=0

αi(j−k)fi =
n−1∑
k=0

F(j−k−1)Gk.

Theorem II.4: (Translation Property) If{vi} ↔ {Vj} is a
Fourier transform pair, then{αivi} ↔ {Vj+1} is also a Fourier
transform pair, wherej + 1 is interpreted modulon.
Proof: The proof follows from the fact thatVj+1 =
n−1∑
i=0

αi(j+1)αivi.

III. A PPLICATIONS

In this section we present a decoding algorithm for BCH
codes using the modified Berlekamp-Massey algorithm and the
Fourier transform that corrects all errors up to Hamming weight
t, i.e., whose minimum Hamming distance is greater than or
equal to2t + 1. LetA be the local finite commutative ring and
Gs = {1, α, α2, · · · , αs}, wheres = pmh − 1, as defined in
Section 2.



Definition III.1: [2, Definition 2.2] ABCH codeC of length
n ≤ s overA has parity check matriz defined by

H =


1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

...
...

...
1 α2t (α2)2t · · · (αn−1)2t

 , (4)

wheret ≥ 1 andα is an element of ordern of Gs.
The minimum Hamming distance of this code isd ≥ 2t + 1

[2, Theorem 2.4] and therefore this code has an error correction
capability equals tot.

Let c = (c0, c1, · · · , cn−1) be the transmited codeword and
v = (v0, v1, · · · , vn−1) be the received vector. The error vector
is given bye = (e0, e1, · · · , en−1) = v − c. The error pat-
tern e can be described by a list of values and locations of its
nonzero components. The location will be given in terms of an
error-location number. Thus, each nonzero component ofe is
described by a pair of elements,yi (the magnitude of error), and
xi (the error-location number), whereyi is an element ofA and
xi = αik is an element ofGs. If at mostt errors occur, there
are t nonzero components ofe, and hencet pairs (xi, yi) are
required to describe the errors.

Suppose thet errors occur at locationsαik for k =
1, 2, · · · , t. The error-locator polynomial is

Λ(x) =
t∏

k=1

(1− xαik) = Λ0 + Λ1x + · · ·+ Λtx
t. (5)

Thus the proposed decoding algorithm consists of three major
steps:
Step 1 - Calculation of the syndrome vector from the received
vector.
Step 2 - Calculation of the error-locator polynomialΛ(x) from
s using the modified Berlekamp-Massey algorithm [3].
Step 3 - Calculation of the error magnitudesy1, y2, · · · , yt us-
ing an inverse Fourier transform.

The syndromes of this noisy BCH codewordv are given by

Sj =
n−1∑
k=0

αk(j+1)vk = v(αj+1), j = 0, 1, 2, · · · , 2t− 1.

(6)
For Equation (6) we have that the syndromes are computed
as2t components of a Fourier transform. The received noisy
codewordv = c + e has Fourier transform with components
Vj = Cj + Ej for j = 0, 1, 2, · · · , n − 1 and the syndromes
are the2t components of this spectrum from0 to 2t − 1. But
by construction of the BCH code, the parity frequencies for
j = 0, 1, · · · , 2t − 1 have spectral components equal to zero,
i.e., Cj = 0, j = 0, 1, · · · , 2t − 1, sincecHt = 0. Hence
Sj = Vj = Ej , for all j = 0, 1, · · · , 2t − 1. The block of syn-
dromes gives us a window through which we can look at2t of
then components of the spectrum of the error pattern. But we
know from the BCH bound that if the error pattern has weight at
mostt, then these2t syndromes are enough to uniquely deter-
mine the error pattern.

Let the vectorΛ = (Λ0,Λ1, · · · ,Λn−1). The inverse Fourier
transform of the vectorΛ is given bynλj = αj(n−1)Λ(α−j)

for j = 0, 1, · · · , n − 1. ThusΛ(α−j) is equal to zero if and
only if j is an error location. ThusΛ(x) has been defined so
that in the time domain,nλj = 0 wheneverej 6= 0. Therefore
nλjej = 0 for all j, and thus, by the convolution theorem, the
convolution in the frequency domain is zero, i.e.,

n−1∑
j=0

ΛjEk−j−1 = 0, k = 0, 1, · · · , n− 1. (7)

SinceΛ(x) is a polynomial of degree at mostt, we have that
Λj = 0 for j > t. Then

t∑
j=0

ΛjEk−j−1 = 0, k = 0, 1, · · · , n− 1, (8)

and sinceΛ0 = 1 we have

Ek−1 = −
t∑

j=1

ΛjEk−j−1, (9)

for k = 0, 1, · · · , n − 1. This is a set ofn equations inn − t
unknowns (t coefficients ofΛ(x) andn− 2t components ofE)
and in2t known values ofE given by the syndromes.

On the other hand, in terms of the pairs(xi, yi), we have that

Sl =
t∑

i=1

yix
l
i, l = 1, 2, · · · , 2t.

Multiply both sides of the Equation (5) byylx
j+t
l and setx =

x−1
l . Then the left side is zero, and we have that

0 = ylx
j+t
l (1+Λ1x

−1
l +Λ2x

−2
l + · · ·+Λt−1x

−(t−1)
l +Λtx

−t
l )

or
yl(x

j+t
l + Λ1x

j+t−1
l + · · ·+ Λtx

j
l ) = 0.

Such an equation holds for eachl and eachj. Sum up these
equations froml = 1 to l = t. This gives, for eachj,

t∑
l=1

yl(x
j+t
l + Λ1x

j+t−1
l + · · ·+ Λtx

j
l ) = 0

or

t∑
l=1

ylx
j+t
l + Λ1

t∑
l=1

ylx
j+t−1
l + · · ·+ Λt

t∑
l=1

ylx
j
l = 0.

The individual sums are recognized as syndromes, and thus the
equation becomes

Sj+t + Λ1Sj+t−1 + Λ2Sj+t−2 + · · ·+ ΛtSj = 0, (10)

for j = 0, 1, · · · , t− 1. Hence, we have the set of equations

Λ1Sj+t−1 + Λ2Sj+t−2 + · · ·+ ΛtSj = −Sj+t, (11)

for j = 0, 1, 2, · · · , t−1. This is a set of linear equations relating
the syndromes to the coefficients ofΛ(x). Thet equations

Sk−1 = −
t∑

j=1

ΛjSk−j−1, (12)



for k = t+1, · · · , 2t, involve only the known syndromes and the
t unknown components ofΛ. These are always solvable forΛ,
for example, using the modified Berlekamp-Massey algorithm
[3]. The remaning components ofS can then be obtained by
recursive extension, that is, using the Equation (12) to findS2t+1

from the known components ifS andΛ, then findS2t+2, and so
on. In this way, we have thatSj is computed for allj, Ej equals
Sj , andCj = Vj − Ej . The inverse Fourier transform of the
vectorC = (C0, C1, · · · , Cn−1) completes the decoding.

Example III.1: Let C(n, η) be the BCH code overZ2(i) gen-
erated by polynomialg(x) = x8 + x4 + x2 + x + 1. Let

R = Z2[i][x]
〈x4+x+1〉 , wheref(x) = x4+x+1 is irreducible overZ2,

G15 the cyclic subgroup ofR containing the roots ofx15−1 and
α a primitive element ofG15. Sinceα, α2, α3, α4, α6, α8, α9

andα12 are the roots ofg(x) it follows thatdmin(C) ≥ 5 and
this can correct up tot = 2 errors. Letη = (α1, α2, · · · , α15) =
(α0, α1, · · · , α14) = (αk1 , αk2 , · · · , αk15) be a locator vector
and the parity-check matrix given by

H =


1 α α2 α3 α4 α5 · · · α14

1 α2 α4 α6 α8 α10 · · · α13

1 α3 α6 α9 α12 1 · · · α12

1 α4 α8 α12 α α5 · · · α11

 .

Suppose that the received vector is given byv =
(0i0000000000010) = c + e, wherec is the transmitted vec-
tor ande is the error vector. The sindrome is given byS =
vHT = (S0, S1, S2, S3), where S0 = E0 = αi + α13,
S1 = E1 = α2i + α11, S2 = E2 = α3i + α9 and
S3 = E3 = α4i + α7. By the modified Berlekamp-Massey
algorithm we obtainΛ(z) = 1 + α12z + α14z2. Thus we
obtain thatS4 = E4 = α5i + α5, S5 = E5 = α6i + α3,
S6 = E6 = α7i + α, S7 = E7 = α8i + α14, S8 = E8 =
α9i + α12, S9 = E9 = α10i + α10, S10 = E10 = α11i + α8,
S11 = E11 = α12i + α6, S12 = E12 = α13i + α4,
S13 = E13 = α14i + α2 andS14 = E14 = i + 1. On the
other hand, we have thatVi = Si, i = 0, 1, · · · , 14. Therefore
C = 0 and its inverse Fourier transform is given byc = 0.
Hence the transmitted vector was the zero vector.

Example III.2: In the Example III.1, lettingη = (1, β, · · · , β4),
whereβ = α3 is a element of order 5, we have that the matrix

H =
[

1 β β2 β3 β4

1 β2 β4 β β3

]
define a BCH code of length 5 and minimum distance at least
3 overA. Suppose that the received vector is given byv =
(11101) = c + e, wherec is the transmitted vector ande is the
error vector. The syndrome is given byS = (S0, S1), where
S0 = E0 = β3 andS1 = E1 = β. By the modified Berlekamp-
Massey algorithm we obtain the following table

n σ(n)(z) dn ln n− ln
−1 1 1 0 −1
0 1 η3 0 0
1 1 + β3z 0 1 0
2 1 + β3z - 1 1

and thenΛ(z) = 1 + β3z. Thus we obtain thatS2 = E2 = β4,
S3 = E3 = β2 e S4 = E4 = 1. HenceV0 = β3, V1 = β,
V2 = β4, V3 = β2 andV4 = 0. ThusC0 = V0 − E0 = 0,
C1 = V1 − E1 = 0, C2 = V2 − E2 = 0, C3 = V3 − E3 = 0,
C4 = V4 − E4 = 1. ThereforeC = (00001) and its inverse
Fourier transform is given byc = (11111). Thus the transmitted
vector was the vectorc = (11111).
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