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Abstract—This work presents a procedure for decoding BCH codes over pressed as a direct product of cyclic groups. We are interested
finite rings using Fourier transforms in a Galois ring, where the error vector  jn the maximal cyclic group ofR*, hereafter denoted by,
ksksvgegelrrr'n.n‘edsasit?)e. inverse Fourier transform of the syndrome vectof = whose elements are the rootsi6f— 1 for some positive integer

Keywords—Fourier transform, Galois ring. s such thatgcd(s,p) = 1. There is only.one maximal cyclic

subgroup ofR* having order relatively prime tp [4, Theorem
XVII1.2]. This cyclic group has ordes = p™" — 1.

Definition I.1: Letv = (vg,v1,- -+ ,v,—1) be a vector over

There are many methods for decoding a given code. A choide wheren divides s, and leta be an element of/; of order
among several different decoding algorithms depends on certain The Fourier transform of the vecter is the vectorV =

I. INTRODUCTION

code parameters, such as blocklength and minimum, requirifig, V1, - - - , V,,—1) definded by

decoding speed and economy. Construction of procedures for o1

decpdlng BCH codes has always been one of the objetlve§ in V; = Z a0ty =01, ,n—1. 1)
coding research. Interlando, Palazzo and Elia [3] have described =

an efficient decoding procedure for BCH codes over finite rings . . ) . ) . .

Z.., with m a positive integer, called modified Berlekamp- he discrete index is thetime, v is thetime-domain function
Massey algorithm. Andrade and Palazzo [2] have propose@'dhesignal the discrete index is thefrequencyandV is the
construction technique of BCH codes over finite commutatifE#duency-domain functioor thespectrum .

rings with identity and decoding algorithm for these codes. Fourier transforms of every blocklength do not exist in a Ga-

Having the decoding of the BCH codes over finite rings as tigS N9 because elements of every order do not exist. Some-

main motivation, in this work we present an alternative decoMes We represent alvector by a polynomialv(z) = vo +
x4+ -+ v,—12" 1. The polynomialv(z) can be trans-

ing procedure for these codes using the modified Berlekamp- qi | . o
Massey and Fourier transform in a Galois ring. The decodifigmed into @ polynomiaV (z) = Vo +Viz +--- + V2™
% means of the Fourier transform. The latter polynomial is

procedure consists of three major steps: (1) calculation of ed th | e th ated ol i
syndromes, (2) calculation of the error-locator polynomial, arﬁﬁ(i E)’ thespectrum polynomiasr theassociated polynomi
vIT).

(3) calculation of the error magnitudes. .

This work is organized as follows. In Section 2 we describe Lemma ll.1: If o € G, is an element of ordet, then
Fourier transform in a Galois ring. In Section 3, a decoding n-1l 0if a#l
procedure for BCH codes defined over local finite rings using Z o = { nif a=1 2)
Fourier transforms is proposed. i=0 ’

wheren is interpreted as an integer modulo
Il. FOURIER TRANSFORM Proof: If o = 1 this sum is clearly equal to. If o # 1 we have
In this section we introduce Fourier transforms over Galojs “ 1—am .
ring which is very similar to the one proposed by Blahut ovépatz a; = 37— =0, sincea” = 1.
Galois field [5]. First we collect basic concepts and facts from L
the Galois theory of commutative rings.
Throughout this work we assume thatis a finite commuta-

=0
emma ll.2: Leta € G, be an element of order. If v(z) =
vo + v+ -+ v, 2"t € Alz], then

tive local ring with identity, with maximal ideaM and residue no! Sy i)

field K = % ~ GF(p™), wherem is a positive integer and nv; = ZV(O‘J Jam VT i =01, n =1, (3)
is a prime. Letf(x) be a monic polynomial of degréein A|zx], 7=0

such thaiu(f(x)) is irreducible inK[z], wherey is the natural where the productu;, i = 0,1,--- ,n — 1, is interpreted mod-

projection. Thenf(x) also is irreducible inA[z] [4, Theorem ylo p.

XIIL.7]. Let R be the ringA[z]/(f(x)). ThenR is a finite com- Proof: By Lemma Il.1 we have that
mutative local ring with identity and is called a Galois extension

—_ n—1 n—1 n—1
of A of degredl. Its residue field |K1 = R/Ml = GF(pmh), 1y —i(+1) G+Dky o —i(G+1) _
whereM; is the maximal ideal o, andK; is the multiplica- ZO V(e a o ‘_O(kz_o ke o o
tive group of K, whose order ig™" — 1. T 1n—1 A

Let R* denotes the multiplicative group of units &f. It fol- - Z Z vpaUTDE=D) = N7, Z QUADE=) — pyy
<

lows thatR* is an abelian group, and therefore it can be ex- ;=) 1= k=0  j=0



foralli=0,1,--- ,n—1.

Theorem I1.1:If ¢ = (cg,c1,- - ;1) € A™ then

1. nv; = oﬂ'("_l)V(ofi)7 i=0,1,---,n—1,
2. nv = (V( ) "*1V( - ) 70[(”*1)2\/'(0[7(7171)),
3. nv ZO/(” 1)V —1) z

whereV (x ) = Vo + Vix + -+ + V,_12" ! and the product
nvg;, 1=0,1,--- ,n—1,Is mterpreted modulp.
Proof: For the first equality we have that

n—1
ai(n—l)v(a—i) — ai(n—l) E V’ja—ij —
=0
n—l n—1
a ¥

«
k:O

k( J+1)vk)

=0

.

For the second equality we have that

(V(1),a" V(™) ,a= D' V(e (=D)) =
= (nug, NV, "+ ,MUp_1) = NV.

For the last equality we have that
n—1 ) . )
Z az(n—l)V(a—z)xz —

nl

= g nv; " —nE vzt =nv(zx

Corollary I1.1: Over A, a vector and its spectrum are related

by

and

n—1
V; = Z iU+,
=0

where the productv;,i = 0,1, - -

p.
Proof: We have that

n—1
= Z a*i(jJrl)Vj’
j=0

— n—1

Z i(j+1) V= Za i(5+1) kaak(jﬂ) -
k=0

7=0 7=0
nz_: z_: QUADE=) _ o
k=0 ;=0

Remark 11.1: The coefficientd/; are given by

Vo @ ! Vg
i a? a?(n=1) o
Va — )
: 1 an! ... q-D?

anl 1 1 e 1 Un—1

,n—1,isinterpreted modulo

where the differences’ — o are units forall0 < j # k <
n —1[1, Theorem 7].

Example Il.1: Let A = Z[i] andR = % where
f(z) = x* + 2 + lisirreducible overd. Thuss = 15 andG5
is generated by, wherea* = a + 1. The elemen3 = o3
has order 5. The Fourier transform of the veator (11101) is
given byV = (3%, 3, 3%, 32,0).

Properties of the spectrum are closely related to the zeros of
polynomials, as stated in the following theorem.

Theorem 11.2: With the notations above we have that
1. the polynomiak () has a zero at’*! if and only if the jth
frequency componerit; is equal to zero;
2. the polynomialV (z) has a zero at~* if and only if theith
time component; is equal to zero.
Proof: Part (1) follows from the fact that/(a/*?!)

n—1
> ;0’0 = v, and the proof of part (2) follows from the
=0
fact thato!"~ DV (o~ %) = nv;.
Theorem 11.3: (Convolution Theorem) I&; = f;g;, for all

1=0,1,---,n—1, then
n—1
nEj =Y Fip-y)Gr, j=0,1,---,n—1,
k=0

wherej — k — 1 is interpreted module and the product E; is
interpreted modulg.
Proof: Setting the Fourier transform ef = f;g;, for all i =

0,1,---,n — 1, we have that
n—1 n—1
0B =03 e = S i i, =
i=0 1=0
n—1
= Z o't fi(ngi) =
= 0

_ Z a1(3+1)f Z a—z(k-i-l)G
— ZGk Zo/(] k) f, = ZF(J K—1)

Theorem I1.4: (Translation Property) Ifv;} < {V;} is a
Fourier transform pair, thefn'v; } < {V;41} is also a Fourier
transform pair, wherg + 1 is interpreted modula.
Proof: The proof follows from the fact thatV;,,

n—1

Z PVAC R DN
i=0

IIl. APPLICATIONS

In this section we present a decoding algorithm for BCH
codes using the modified Berlekamp-Massey algorithm and the
Fourier transform that corrects all errors up to Hamming weight
t, i.e., whose minimum Hamming distance is greater than or
equal to2t + 1. Let A be the local finite commutative ring and
G, = {1,a,02, a®}, wheres = p™" — 1, as defined in
Section 2.



Definition 111.1: [2, Definition 2.2] ABCH code(C of length for j = 0,1,--- ,n — 1. ThusA(a~7) is equal to zero if and

n < s over. A has parity check matriz defined by only if j is an error location. Thud(x) has been defined so
) i that in the time domainy\; = 0 whenevere; # 0. Therefore
1 o« TS nXje; = 0 for all j, and thus, by the convolution theorem, the
7o I «a el e D @ convolution in the frequency domain is zero, i.e.,
S : . : ’ n—1
Lo (a?)* - (a7 h)* S AEj =0, k=01, ,n-1 @)
j=0

wheret > 1 anda is an element of order of G..

The minimum Hamming distance of this codelis> 2t +1 SinceA(z) is a polynomial of degree at mostwe have that
[2, Theorem 2.4] and therefore this code has an error correctidp= 0 for j > ¢. Then
capability equals to.

t
Letc = (co,c1,- - ,cn—1) be the transmited codeword and
. AN:E,_;_1=0k=0,1,--- -1 8
v = (vg,v1,--- ,v,_1) be the received vector. The error vector ZO JEk=m1 = 1T T (8)
is given bye = (eg,e1,--- ,en_1) = v — c. The error pat- =

terne can be described by a list of values and locations of igd since\; = 1 we have

nonzero components. The location will be given in terms of an .

error-[ocatlon number Thus, each nonzero componenteois B =— ZAJ_E#FI’ )

described by a pair of elemenig,(the magnitude of error), and

x; (the error-location number), wheggis an element ofd and

x; = o' is an element ofj,. If at mostt errors occur, there for k = 0,1,--- ,n — 1. This is a set o equations in: —t

aret nonzero components ef, and hence pairs (z;,;) are unknowns { coefficients ofA (z) andn — 2t components oE)

required to describe the errors. and in2t known values oE given by the syndromes.
Suppose thet errors occur at locationsy’* for k = On the other hand, in terms of the paiirs, y;), we have that

1,2,--- ,t. The error-locator polynomial is

Jj=1

t
t SlZZyixé7l=1,2,-~-,2t.

Afz) =[] —za™) = Ao+ Mz + -+ Az’ (5) i=1

k=1 Multiply both sides of the Equation (5) by} ™" and setr =
Thus the proposed decoding algorithm consists of three majgr'. Then the left side is zero, and we have that
steps: , o
Step 1 - Calculation of the syndrome vector from the received = yiy (L A, Aoz 2+ Ay (¢=1) + Ay ")
vector.

. . or
Step 2 - Calculation of the error-locator polynomialz) from Jtt J+t—1 N
s using the modified Berlekamp-Massey algorithm [3]. (e + Ay +ood Aay) = 0.
Step 3 - Calculation of the error magnitudgs, v, - - - , 3, us- Such an equation holds for eatland eachj. Sum up these
ing an inverse Fourier transform. equations fromi = 1 to ! = ¢. This gives, for eaclj,
The syndromes of this noisy BCH codewordire given by .
n—1 Zyl(z{HJrAlx{H_l +...+Atx{) =0
Sp=> oty =v(@™), j=0,1,2,--,2t 1L =1
k=0 or
(6)

For Equation (6) we have that the syndromes are computedzt:

as 2t components of a Fourier transform. The received noisy
codewordv = c + e has Fourier transform with components
V; =C;+ E;forj =0,1,2,--- ,n — 1 and the syndromes The individual sums are recognized as syndromes, and thus the
are the2t components of this spectrum frointo 2¢ — 1. But equation becomes

by construction of the BCH code, the parity frequencies for

j =0,1,---,2t — 1 have spectral components equal to zero, i+t T A1Sjti—1+ 828542+ + A5 =0, (10)
ie,C; =0, 5 =0,1,---,2t — 1, sincecH' = 0. Hence for j = 0,1,--
S; =V; = E;, forall j =0,1,---,2t — 1. The block of syn- o

t t
ylﬂﬂﬂ+A1Zyz${+t_l+"'+AtZylx{ =0.
=1

=1 =1

- ,t — 1. Hence, we have the set of equations

dromes gives us a window through which we can looRtabf MSjti—1+ASjpe—o+ -+ AS; = =S4, (11)
then components of the spectrum of the error pattern. But we . ) ) .
know from the BCH bound that if the error pattern has weight R/ J = 01,2, -+ ,t—1. Thisis a set of linear equations relating
mostt, then thes@t syndromes are enough to uniquely detefD® Syndromes to the coefficients/ofx). Thet equations
mine the error pattern. t

Let the vectorA = (Ao, A1, -+ ,A,—1). The inverse Fourier Sp_1=— ZAjSk_j_l, (12)

transform of the vectoA is given byn); = o/~ YDA (a™7) =



fork =t+1,--- ,2t, involve only the known syndromes and theand thenA (z) = 1 + 33z. Thus we obtain tha$, = E, = *,

t unknown components of. These are always solvable far, S3
for example, using the modified Berlekamp-Massey algorithi}
[3]. The remaning components 8f can then be obtained by C;
recursive extension, thatis, using the Equation (12) to$ind,

By =p%eS, = Ey = 1. Hencely = 33, vV, = 3,
ﬂ4, Vi = ﬁ2 andV4 = 0. ThUSCo =Vo—FEy =0,
Vi—-E1=0,C=Vo—-F;=0,03=V3—-F3=0,

Cy = Vy — E4 = 1. ThereforeC = (00001) and its inverse

from the known components & andA, then findSs;,2, and so Fourier transform is given by = (11111). Thus the transmitted
on. In this way, we have tha; is computed for allj, E; equals vector was the vectar = (11111).

S;, andC; = V; — E;. The inverse Fourier transform of the

vectorC = (Cy, C4, - - - ,C,,—1) completes the decoding.
Example I1I.1: LetC(n, n) be the BCH code ovef, (i) gen-

erated by polynomiap(z) = 28 + 2% + 22 + z + 1. Let

R = % wheref (z) = z*+z+ 1 isirreducible oveZ,,

G115 the cyclic subgroup oR containing the roots of'® —1 and
a a primitive element of715. Sincea, o?, a?,a*,a’% o®,
anda!? are the roots of(x) it follows thatd,,;,(C) > 5 and
this can correctup to= 2 errors. Let) = (a1, a9, -+ ,a15) =
(@, al,--- o) = (aF1,ak2,...  aF15) be a locator vector
and the parity-check matrix given by

(1]
[2]

(3]

(4]
(5]

1 a o & ot o att
1 a2 a* af o8 alf al3
H= 1 QS OLG Oég 0512 1 C)é12
1 a* a® a'? « a’® all

Suppose that the received vector is given by
(040000000000010) = c + e, wherec is the transmitted vec-
tor ande is the error vector. The sindrome is given By=
vHT = (So,Sl,SQ,Sg,), where Sy = Ey = ai + 0413,
S E = a?i + 0[11, Sy = FEy = a’i + o and
S3 = B3 = o + o”. By the modified Berlekamp-Massey
algorithm we obtainA(z) = 1 + a'?z + o422, Thus we
obtain thatS, = E; = o’ 4+ a®, S; = E5 = ab% + o3,
SG = EG = Oé7i+04, S7 = E7 = 058i+0414, Sg = Eg =
agi + at?, Sg = Ey = a'% 4+ a9, S = Ejp = a'ti + a8,
Sll = E11 = Ot12i + Oé6, 512 = E12 = Oélgi + Ot4,
Si3 = FEi3 = alti + a? andSyy = Fi4 = ¢+ 1. On the
other hand, we have thé = S;, i = 0,1,--- ,14. Therefore
C = 0 and its inverse Fourier transform is given by= 0.
Hence the transmitted vector was the zero vector.

Example 111.2: Inthe Example 1111, letting) = (1,3, - - - , %),
wheres = o3 is a element of order 5, we have that the matrix

[t B B 5B

B R G A C G A G

define a BCH code of length 5 and minimum distance at least
3 over A. Suppose that the received vector is givenvby=
(11101) = c + e, wherec is the transmitted vector argis the
error vector. The syndrome is given By = (S, S1), where

So = Ey = % andS; = E; = 3. By the modified Berlekamp-
Massey algorithm we obtain the following table

H

n | c™E) [dy | ln [ n—1n
—1 1 1|0 -1
0 1 n | 0 0

1 [1+8%2] 01 0

2 1482 - |1 1
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