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Coding Closed Geodesics on Modular Surfaces by
Use of the Elias Type of Codes

Reginaldo Palazzo Jr., Marinaldo Felipe da Silva, and Henrique Lazari

Abstract— In this paper we show a procedure for coding

geodesics on modular surfaces by use of the Elias type of

code for source coding. This procedure implies that the

arithmetic codes associated with each primitive hyperbolic

matrix can be viewed as a generalization of the Elias codes.

The main result of this paper establishes the procedures

to be followed in order to identify the arithmetic code and

the axis of the geodesic when only the probability associ-

ated with the geodesic is given. Several examples are also

considered.

I. Introduction

The traditional source coding techniques such as Huff-
man, Elias and Lempel-Ziv, [3], are used to compact se-
quences of symbols at the source output. Each one of these
sequence of symbols can be viewed as an orbit {φn(x)}n∈Z

of a discrete-time dynamical system whose evolution of
a point x occurs at t = n ∈ Z. On the other hand,
continuous-time dynamical systems whose orbits are pa-
rameterized by the set of real numbers, are also impor-
tant. In general, such systems are modelled by differen-
tial equations whose solutions are orbits. An example of a
continuous-time dynamical system is the geodesic flow on
surfaces with constant negative curvature.

In this context, the aim of this paper is to show how
the traditional process of coding sequence of symbols (or-
bits) with a probability δ (real number in [0,1)) using the
Elias code is identified with the process of coding simple
closed geodesic (closed curve without self-crossing) based
on its repelling fixed point β (real number in [0,1)) in the
hyperbolic plane by use of the arithmetic code. As a con-
sequence, the latter procedure can be viewed as a general-
ization of the former. Although we do not know of any pre-
vious engineering work in this context, there are, however,
important contributions in the mathematical literature in-
volving coding of geodesics. For instance, in [8], Morse
proposes coding geodesics with respect to a given Dirich-
let region (fundamental region) of a Fuchsian group G. In
[7], it is proposed the use of continued fractions for coding
geodesics on modular surfaces. Related works appear in
[1], [2], [4] and [9]. In [6], it is proposed an algorithm for
the construction of arithmetic codes by use of the Gauss
reduction theory.

This paper is organized as follows. In Section II we state
the problem and the procedure employed in the identifica-
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tion of the process of coding simple closed geodesics and
the source coding process. In Section III, we briefly review
the concepts of dynamical systems and the Elias code for
source coding. In Section IV, we show the procedure for
coding geodesics by use of the arithmetic codes. Such codes
are derived from the assumption that the hyperbolic plane
is tesselated by ideal triangles (fundamental region D, see
Fig. 2 c)). The tessellation of the hyperbolic plane by ideal
triangles has the following rationality: any geodesic in the
hyperbolic plane intersecting the fundamental region cuts
adjacent sides of this region. The modular surface is iden-
tified by the quotient H2/G of the hyperbolic plane H2 by
the modular group G = SL(2,Z), where S means special
(determinant equal to 1) and L means linear, group of 2×2
matrices over Z. Let D be a fundamental region for G and
π : H2 −→ H2/G be the projection. The restriction of π to
D identifies the congruent points of D and take D/G to an
oriented surface with possibly marked points and cusps. In
the case being considered it is topologically characterized
as a three times punctured spherical surface. We present
some examples of arithmetic codes derived from continued
fractions. Finally, in Section V the conclusions are drawn.

II. Problem Statement

For simplicity, consider a source outputting symbols a1

and a2 with probabilities p1 and p2, respectively, such that
they add to one. We consider the process of coding such
a source by use of the Elias code. Each sequence at the
source output can be viewed as an orbit of a dynamical
system. Associated to each sequence is its probability of
occurrence. Note, however, that the set of sequences and
the set of probabilities is not a one-to-one mapping, since
two distinct sequences may have the same probability. In
order to have a (an almost) one-to-one mapping some kind
of transformation has to be used. A suitable two steps type
of transformation is used for the purpose of this paper.
The first step is to associate a q-ary symbol to each source
symbol. In our case, a binary symbol, that is, a1 → 0 e
a2 → 1. Therefore, the original sequence is transformed to
a sequence of 0’s and 1’s. The second step is to think of
this sequence as representing a real number in the interval
[0, 1). For that, we have to use a comma in front of the
binary sequence. With this, and disregarding exceptional
cases, to each binary sequence we have a real number in
the interval [0, 1) representing the probability of the corre-
sponding sequence.

An analogous statement of the source coding problem is
the following: Given δ, a real number in the interval [0, 1]
(probability associated with a sequence of symbols), and
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knowing the apriori probabilities of each symbol, let us
say, p1 and p2, How the sequence can be identified? How
the sequence can be encoded? The Elias procedure of chain
partitioning intervals proportional to the apriori probabili-
ties is a clever alternative to determine the sequence at the
source output and to encode it. This procedure uses a tree,
where to each branch the corresponding apriori probabili-
ties are associated with the objective of matching a path
probability to δ. When this occurs we have determined the
sequence at the source output.

To understand the connection between the arithmetic
and Elias codes we consider the concept of factorization
of reduced matrices in SL(2,Z), that is, hyperbolic ma-
trices having attracting, α, and repelling, β, fixed points
such that α > 1 and 0 < β < 1. One of the important
results, [7], consists in considering G as a Fuchsian group
and γ1, γ2 ∈ G as hyperbolic elements having a common
fixed point. Thus, the second fixed points also coincide,
and consequently, have the same axis, and both are powers
of a primitive matrix having the same axis.

The characterization of conjugate hyperbolic matrices in
SL(2,Z) with the same trace occurs by its attracting and
repelling fixed points having periods in its continued frac-
tions expansion that are cyclic permutations of one an-
other. Hence, we have two other invariants of a closed
geodesic, also defined from a cycle of permutation: the
periods of the continued fractions expansion of its attract-
ing and repelling fixed points. The first invariant is the
arithmetic code of A denoted by (A). The second is the
arithmetic code associated with the matrix (A−1) that cor-
responds to the same geodesic associated with the matrix
A with reversed orientation. Hence, it is convenient to have
a result and a systematic procedure guaranteeing the ex-
istence of a set of hyperbolic matrices in SL(2,Z) with a
given trace t such that each matrix is always reduced by a
finite number of conjugations. Under these conditions we
may identify each hyperbolic matrix in SL(2,Z) with its re-
pelling fixed point, β. Since β takes values on the interval
[0, 1), it follows that we may interpret β as the probability
of occurrence of the corresponding geodesic.

The importance of this result is related to the fact that
there exists a one-to-one correspondence between the set
of reduced hyperbolic matrices (A-cycle) with the set of
probabilities of each geodesic.

Analogously to the statement of the source coding prob-
lem we have the following coding of geodesics problem:
Given a value of β, β ∈ [0, 1], How the corresponding
geodesic can be identified? How the associated geodesic
can be encoded?

The answer to these questions comes from the use of con-
tinued fractions with respect to the repelling fixed point.
From Gauss reduction theorem we know that a hyperbolic
matrix in SL(2,Z) with a given trace may be reduced by
a finite number of conjugations. On the other hand, the
necessary and sufficient conditions for a hyperbolic ma-
trix A ∈ SL(2,Z) to be totally D-reduced as a function
of its arithmetic code, [7], is to show the equivalence of
the following statements: 1) A is totally D-reduced; and,

2) all the geodesic segments (geodesic components) in D
corresponding to the conjugation class of A are clockwise
oriented. Therefore, to identify all the reduced matrices
as a function of its arithmetic codes, [7], is equivalent to:
(A) = (n1, n2, ..., nm) is totally D-reduced if and only if
1
ni

+ 1
ni+1

≤ 1
2 for every i (modm).

As a consequence of the previous facts, we have the fol-
lowing result.

Proposition II.1: Let βA be the repelling fixed point,
identified as the probability of occurrence of the geodesic

associated with the matrix A =

(

a b
c d

)

, where A is

a totally D-reduced primitive hyperbolic matrix (geodesic
intersecting the fundamental region D) with positive trace
(|tr{A }| > 2). Let n1, n2, ..., nm ≥ 2 be integer num-
bers such that 1

βA
= (nm, nm−1, ...., n1), where the overbar

denotes the period of the sequence in the minus contin-
ued fractions expansion. Then, the attracting fixed point
αA is given by αA = (n1, n2, ...., nm), and the matrix A
may be represented as A = T n1STn2S...TnmS, where T =
(

1 1
0 1

)

and S =

(

0 −1
1 0

)

are the transformations

identifying the sides of the fundamental region D. The
associated arithmetic code is (A) = (n1, n2, ...., nm).

From Proposition II.1, we have identified the geodesic, or
equivalently, its axis associated with the hyperbolic matrix
A and the coding is realized by the arithmetic code.

III. Preliminaries

A. Review of Symbolic Dynamics

Symbolic dynamics, [5], by its relevance, occupies a great
deal of the theory of dynamical systems. Due to its impor-
tance, we briefly review some concepts which are relevant
to the purpose of this paper.

Let M be a metric space, the set of possible values that
the dynamical system can take on. Let us assume the laws
governing such a system are time-invariant. The time de-
pendence of the system provides a mapping φ : M → M ,
usually continuous. Thus, if φ0(x) = x describes the sys-
tem at time t = 0 sec, then φ1(x) describes the system at
time t = 1 sec, φ2(x) at time t = 2 sec, and so on. Hence,
in order to study the behavior of the system it suffices to
study the behavior of the sequence φ0(x), φ1(x), φ2(x), ....
These considerations lead to the following notion.

A dynamical system (M,φ) consists of a compact metric
space M and a continuous mapping φ : M → M . If φ is
a homeomorphism, then (M,φ) is said to be an invertible

dynamical system. Usually, (M,φ) is denoted by φ in order
to emphasize the dynamics.

Let (M,φ) be a dynamical system. The orbit of a point
x ∈ M is the set {φn(x)}n∈Z when φ is invertible and,
{φn(x)}n≥0, otherwise. A periodic point is a point x ∈ M
such that φn(x) = x for some n > 0. An orbit is called a
periodic orbit if x is a periodic point.

A realistic model of a physical system uses time conti-
nuity to model the evolution. The mathematical model
for this is called a continuous flow consisting of a family
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{φt}t∈R : X → X of homeomorphisms φt of a compact
metric space over itself, such that: 1) φt(x) is jointly con-
tinuous in t and x; and, 2) φs ◦φt = φs+t for every s, t ∈ R.
The orbit of a point x ∈ X over a continuous flow {φt}
is the set {φt(x) : t ∈ R}. The solution to a system of
differential equations may be viewed as a continuous flow.
A class of continuous flow of great interest in symbolic dy-
namics is the class of geodesic flow.

Given a surface S, there are classical notions such as
the tangent vector, curvature and geodesic. Geodesics are
curves that minimize distance. Let S be a compact surface
with constant negative curvature. For each point x on S
and for each vector u tangent to S in x, there exists a
unique geodesic γu,x passing by x in the direction of u.
Geodesics are normally parameterized by R, where time
is the parameter in consideration. We denote by γu,x(t)
the position of the geodesic γu,x at time t. The geodesic

flow is a continuous flow {φt}t∈R : X → X defined by
φt(x, u) = (y, v), where y = γu,x(t), and v is the unitary
vector tangent to γu,x in y,

In the case of discrete-time dynamical systems, the idea
of the symbolic dynamics is to associate sequences of sym-
bols with orbits of continuous flows and, to deduce the
properties of these orbits by the properties of the sequences.

Two geodesic flows {φt}t∈R : X → X and {ψt}t∈R : Y →
Y are equivalents if the mapping π : X → Y takes orbits of
{φt} into orbits of {ψt} then π is a homeomorphism that
preserves orientation.

Consider r ∈ R being written as r = n+ s, where n ∈ Z

and s ∈ [0, 1). Thus, r ≡ s (mod1) implies that s is the
fractional part of the real number r. With this notation,
the mapping φr : R → R defined by φr(x) = x+r (mod1) is
a homeomorphism. Hence, the pair (R,φr) is an invertible
dynamical system. This leads to the Elias technique for
source coding, [3], and it can be viewed as a geodesic flow
associated with a sequence of symbols (representing a real
number) to be encoded as the fractional part of this real
number. Therefore, characterized as an arithmetic code
since a type of continued fractions expansion will be used.

B. Tree codes of the Elias type

As it is well known, the entropy of a source is given by
−

∑

j pj log pj , where pj denotes the probability of occur-
rence of the j-th symbol of the source. On the other hand,
the average length of the codewords of a Huffman code is
given by

∑

j pj lj , where lj denotes the codeword length as-
sociated with the j-th symbol of the source. In order to
encode at a rate equal to the entropy of the source, the
codewords have to be chosen such that the length satis-
fies lj = − log pj . Since the codeword length has to be an
integer number, then it is not possible to satisfy such a
condition but for a few exceptional cases. An alternative
is to use tree codes.

The Elias code is a tree code of variable length used to
compact source symbols. As an example, consider a bi-
nary source whose alphabet is {a1, a2} with probabilities
{0.6, 0.4}, respectively. The entropy of the source is 0.97
bits. At time zero, the source emits a very long sequence of

output symbols. This semi-infinite sequence at the source
output may be represented as a sequence of bits. For in-
stance, , 011010111010......, where the symbols a1 and a2

are represented by 0 and 1, respectively. Since we have
placed a comma in front of the zero, we let this sequence
to be considered as an infinite binary expansion of a real
number. Hence, we may say that this expansion represents
a real number δ in the interval [0, 1).
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Fig. 1. Elias coding; a) source output; b) source encoder output

Taking as reference Fig. 1, divide the interval [0, 1) in
two sub-intervals [0, 0.6) and [0.6, 1). Use the first symbol
of the source if it is 0, to specify that δ is in the first
sub-interval, if it is 1, to specify that δ is in the second
sub-interval. Again, divide each sub-interval in the same
proportion, that is, in sub-intervals [0, 0.36) and [0.36, 0.6)
or in [0.6, 0.84) and [0.84, 1). Use the second symbol of the
source to specify one of these sub-intervals. Each source
output is used in the divisions that follows.

This procedure of partitioning intervals in sub-intervals
proportional to the corresponding a priori probabilities of
the source symbols is similar to the procedure of parti-
tioning intervals in sub-intervals by use of the Farey se-
quences. Whereas the first tessellates the interval [0, 1),
and by translations tessellates R, the second tessellates the
semi-infinite strip [0, 1) of the hyperbolic plane, and by
translations tessellates the whole hyperbolic plane.

In this way, the specified interval for any symbol se-
quence of the source has length equal to the probability
of that sequence. Note that the intervals decrease as the
length of the sequence increases. In the limit when the
length of the sequence goes to infinite, exactly a point is
specified.

The codeword, on the other hand, is a binary represen-
tation of δ. Consider the case shown in Fig. 1 b). As soon
as the encoder has a sufficient number of source symbols,
it is in the condition of determining if δ is in the interval
[0, 0.5) or in the interval [0.5, 1), and from this the first bit
of the codeword may be sent. Similarly, the second bit of
the codeword may be sent from the knowledge of the in-
terval in which δ is in, that is, [0, 0.25) or [0.25, 0.5) or in
one of the sub-intervals [0.5, 0.75) or [0.75, 1). Hence, the
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coding procedure follows.
The decoder starts recovering the source symbols only

after receiving some bits of the codeword. For instance, if
the binary sequence begins with 011..., then the real num-
ber δ must be between 0.375 and 0.5; observe that in the
third row of Fig. 1 a) the interval [0.375, 0.5] is in the inter-
val [0.36, 0.504], therefore, the first two source symbols are
a1a2. If the binary sequence begins with 0110...., then the
real number δ must be between 0.375 and 0.4375, see Fig.
1 b); then the first three source symbols are a1a2a1, for the
interval [0.375, 0.4375] is in the interval [0.36, 0.4464] in the
fourth row of Fig. 1 a).

IV. Coding Simple Closed Geodesics

In this section we consider coding simple closed geodesics
associate with the class of hyperbolic matrices in SL (2,Z)
by use of the arithmetic code. The arithmetic code is de-
rived from the concept of continued fractions, makes use
of the Gauss reduction theory, and it is specific for the
modular group SL (2,Z).

The coding of geodesics in the hyperbolic plane is as-
sociated with a primitive geodesic (geodesic which inter-
sects the fundamental region D) of a given set of conju-
gate reduced matrices of a matrix A ∈ SL (2,Z), called
an A-cycle. The arithmetic codes are associated with an
”arithmetic” (continued fractions) of the fixed points of a
fractional linear transformation (Mbius transformations).
To this transformation is associated a hyperbolic matrix of
the modular group SL (2,Z).

A. Arithmetic Codes

The group PSL (2,R) = SL (2,R) / {±I} acts on the
upper-half plane H2 = {z ∈ C : Imz > 0} by Möbius

transformations: γ : z → az+b
cz+d

, which are oriented-preserving

isometries in H2 and with a hyperbolic metric ds2 = dx2+dy2

y2 .

This action extends to the border of H2, R ∪ {∞}. The
fixed points of γ ∈ PSL (2,R) are the solutions of the fol-
lowing equation: z = γ (z) = az+b

cz+d
. If the matrix A =

(

a b
c d

)

, associated with the transformation is hyper-

bolic, |tr{A }| > 2, then γ has two fixed points in R ∪
{∞}, namely, the roots of a quadratic polynomial cz2 +
(d− a) z − b = 0, whose discriminant ∆ is equal to ∆ =
(a+ d)2 − 4 > 0.

A fixed point, denoted by α, is called attracting, that
is, A′(α) = d

dz
γ(z)|z=α = 1

(cα+d)2 < 1, and the other

fixed point, denoted by β, is called repelling, A′(β) =
d
dz
γ(z)|z=β = 1

(cβ+d)2 > 1.

A geodesic in H2 from β to α, called axis of γ, is invari-
ant when we choose matrix −A rather than matrix A. If
γ belongs to a Fuchsian group G, that is, a discrete sub-
group of PSL(2,R), its axis becomes a closed geodesic in
the quotient space H2/G, or equivalently, on the modular
surface identified by the fundamental region D.

In this point, we make use of the concept of continued
fractions in the construction of codes to be used for coding

geodesics on modular surfaces by use of the Gauss reduc-
tion theory, [7]. Such codes are sequences of integer num-
bers (n1, n2, ..., nm), with ni ≥ 2, defined as a permutation
cycle. They are called arithmetic code of the conjugation
class of A, denoted by (A).

Assume now we have a set with an equivalence relation.
In general terms, the reduction theory is an algorithm with
the objective of determining the canonical representatives
in each class of equivalence. Such representatives are called
reduced elements. Each equivalence class contains a canoni-
cal set (finite and non-empty) of reduced elements forming
a cycle. Following the reduction algorithm, [7], we may
pass from a given element in an equivalence class to a re-
duced element in a finite number of steps. Applying the
algorithm to this reduced element, another reduced ele-
ment will be generated, and so on. Thus, all the reduced
elements in a cycle are obtained.

In order to clarify these concepts, consider the reduction
algorithm for co-compact Fuchsian groups, [6]. The ele-
ments whose axis intersect a given fundamental region D
are the reduced elements. The cycle of its G-conjugate re-
duced elements are all the reduced elements with the same
Morse code, and the intersection of its geodesics with the
region D has all the closed geodesics associate with this
particular conjugation class.

A hyperbolic matrix in SL(2,Z) is called reduced if its
attracting and repelling fixed points α and β, respectively,
satisfy α > 1, and 0 < β < 1.

The set of all conjugated reduced matrices of a given ma-
trix A ∈ SL(2,Z) is called A-cycle. On the other hand, we
know that for any matrix A ∈ SL(2,Z) the A-cycle con-
sisting of all the matrices B such that the arithmetic code
associate with B is equal to the arithmetic code associate
with A, that is, (B) = (A), is finite and non-empty.

Let D be a fundamental region in H2. A matrix A ∈
SL(2,Z) is called D-reduced if A is reduced and its axis in-
tersects D. A hyperbolic matrix in SL(2,Z) is called totally

D-reduced if all the matrices in the A-cycle are D-reduced.
The direction of the axis of a hyperbolic transformation is
not invariant by conjugation, that is, some geodesics in D
may be clockwise or counter-clockwise oriented.

B. Minus continued fractions

Let n0, n1, n2, ... be a sequence of integer numbers satis-
fying ni ≥ 2, for i ≥ 0. Let us denote by (n0, n1, ..., ns) the
finite minus continued fractions

(n0, n1, ..., ns) = n0 −
1

n1 −
1

n2 −
1

. . .
1

ns

,

and by (n0, n1, n2, ...) the limit lims→∞(n0, n1, ..., ns). Con-
versely, (by the uniqueness of the limit), every real number
α has a unique expansion in continued fractions α = α0 =
(n0, n1, n2, ...), with ni ∈ Z and n1, n2, ... ≥ 2, by the fol-
lowing procedure:
• n0 = [[α0]] + 1 and, inductively;
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• ni = [[αi]] + 1, where αi+1 = 1
ni−αi

and [[x]] denotes the
integer part of x.

This establishes a one-to-one correspondence between
the set of real numbers α and the set of infinite sequences
(n0, n1, n2, ...) with ni ∈ Z, and n1, n2, ... ≥ 2.

This correspondence satisfies the following properties:
P1 - α is rational if and only if from a given ni, the re-
maining numbers are equal to 2;
P2 - α is a quadratic irrationality, that is, a root of a
quadratic polynomial with coefficients in Z if and only
if its continued fractions expansion is eventually periodic,
that is, from a certain point on the sequence repeats, α =
(n0, n1, ...nk, nk+1, nk+2, ..., nk+m), where the overbar in
nk+1, nk+2, ..., nk+m means that these numbers repeat pe-
riodically, and its minimum period is m;
P3 - α has a pure periodic expansion in continued frac-
tions if and only if α > 1, and 0 < β < 1, where β is the
conjugate root of α, that is, it is the other root of the same
quadratic polynomial from which α is a root;
P4 - If α = (n1, n2, ..., nm), then 1/β = (nm, nm−1, ..., n1).

Property P3 is very important, for it provides an equiv-
alent definition of a reduced matrix, that is, a matrix is
a reduced matrix if and only if its attracting fixed point
has an expansion in continued fractions which is pure and
periodic. Katok [7] shows that the period of an expansion
in continued fractions is a complete system of SL(2,Z)-
invariants.

Example IV.1: Consider the matricesA =

(

14 −3
5 −1

)

,

B =

(

14 −5
3 −1

)

, C =

(

16 −7
7 −3

)

, D =

(

15 −8
2 −1

)

.

A,B,C,D ∈ SL(2,Z) since its elements are integer num-
bers and the corresponding determinants are equal to 1.
The matrices A, B, C, and D are hyperbolic since the cor-
responding traces are greater than 2.

The solutions of the equation γ(z) = az+b
cz+d

= z, for each
one of the given matrices are the corresponding values of
its fixed points, αA = 2.7845, βA = .2154; αB = 4.640872,
βB = .359128; αC = 2.2746594, βC = .4396262; αD =
7.46, βD = .54. Representing the corresponding attracting
fixed points as continued fractions we have αA = (3, 5);
αB = (5, 3); αC = (3, 2, 2, 3); and αD = (8, 2). Con-
sequently, the corresponding arithmetic codes are (A) =
(3, 5); (B) = (5, 3); (C) = (3, 2, 2, 3); and (D) = (8, 2).

Example IV.2: Let us determine 1
βA

= (5, 3) by use of
the continued fractions expansion.
• Let β0 = 1

βA
w 4.640872, then:

• n0 = [[β0]] + 1 = [[4.640872]] + 1 = 5;
• n1 = [[β1]] + 1, with β1 = 1

n0−β0
= 2.78452325 =⇒ n1 =

[[2.78452325]] + 1 = 3;
• n2 = [[β2]] + 1, with β2 = 1

n1−β1
= 4.680872 =⇒ n2 =

[[4.680872]] + 1 = 5;
• n3 = [[β3]] + 1, with β3 = 1

n2−β2
= 2.78452325 =⇒ n3 =

[[2.78452325]] + 1 = 3, and so on.
As a consequence, 1

βA
= (5, 3, 5, 3, 5, 3, · · · ) = (5, 3).

C. Coding geodesics by use of ideal triangles

In this subsection we consider coding geodesics in the
hyperbolic plane, however with two main differences with
respect to the coding of geodesics as described in subsec-
tion 4.1. The first difference is that the upper-half plane
H2 = {z ∈ C; Imz > 0} is tessellated by ideal triangles
whose vertices are on the border of the Poincaré disc, more
precisely, one vertex is at infinite and the other two are
in R ∪ {∞}, see Fig. 2 c), whereas in subsection 4.1, the
upper-half plane is tessellated by triangles with one vertex
at infinite and the other two in H2, see Fig. 2 a). The
reason for this consideration is that every geodesic is D-
reduced. The second difference is related to the elements
of the coding sequence. In subsection 4.1, the elements
of the sequence are power of the transformations T and
T−1 separated by S, in this subsection such elements are
geodesic elements labelled by D (right) and E (left), also
with a constraint that such segments do not coincide with
cusps. It should be clear that, as it occurs with the classi-
cal techniques for source coding, there are constraints that
must be considered related to the arithmetic code just pre-
sented, one example is that the repelling fixed point can
not be a reducible rational number for it is associated with
a parabolic transformation (cusp).

As in subsection 4.1, the objective is to establish a con-
nection between geodesics on modular surfaces M and the
continued fractions. This connection was observed by Artin
[2] when applying continued fractions deduced the exis-
tence of dense geodesics on M .

We consider the upper half-plane H2 with a hyperbolic
metric. Geodesics in H2 are semi-circles whose centers are
in R or they are orthogonal to the x-axis. The modu-
lar group SL(2,Z) acts on H2 by isometries, namely; by
Möbius transformations. The upper-half plane H2 is pro-
jected onto the modular surfaceM by π : H2 → H2/SL(2,Z),
called projection function. Geodesics on M are exactly the
images of the geodesics of H2 by the transformation π.

The idea that a sequence in which a geodesic γ cuts cer-
tain fixed lines onM (or on its lifting to H2), was the object
of several researches, [1], [4], and [9]. In general, the bor-
ders of the canonical tessellation of H2 are used by copies

of the fundamental region D = {z ∈ C; |Rez| ≤ 1

2
, |z| ≥ 1},

with the objective of determining a relation between the
cutting sequence γ and the expansions in continued frac-
tions of the ending points of proper lifting of γ.

We consider substituting the canonical tessellation by
the Farey tessellation F. Such a tessellation is a tessellation
of H2 by ideal triangles, where the set of vertices is precisely
Q ∪ {∞}.

An oriented geodesic in H2 is divided in segments when
it transversely cuts the triangles that compose F. When
cutting such a triangle ∆, a segment s cuts two sides meet-
ing at a vertex which is on the border (R ∪ {∞}). These
oriented segments are labelled according to the position of
the vertex with respect to the geodesic. If the vertex is to
the right, it is labelled D, otherwise, E. This labelling is in-
variant by the action of the group SL(2,Z). Consequently,
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for any geodesic γ on M (topologically, the modular sur-
face M is a sphere three times punctured, with singularities

in the images of i,
1

2

(

1 + i
√

3
)

and ∞, respectively), we

may associate a cutting sequence of the form En1Dn2 ...,
where ni ∈ N, and the positive ending point of γ over
R is given by the plus continued fractions of γ∞, that is,
γ∞ = n1 + 1

n2+
1

n3 + ...

.

Hence, we use the same notation (n1, n2, ...) for repre-
senting the plus continued fractions of γ∞, and also [[x]]
for the integer part of x, x > 0.

C.1 Farey tessellation

The fundamental region D = {z ∈ C : |Re(z)| ≤ 1/2, |z| ≥
1} for SL(2,Z) is divided in half by the imaginary axis
(dashed line in Fig. 2 a)). By translation of the left-side
(denoted by A) of the region, shown in Fig. 2 b), by the
transformation z → z + 1 and placing the two parts to-
gether, a new fundamental region is obtained for SL(2,Z),
namely the four sided polygon as shown in Fig. 2 b).

A B

-1/2 1/2

AB

0 1

D

0 1

a

a) b)

c)

Fig. 2. Construction of the fundamental region of the ideal triangle

If S′ denotes the matrix

(

0 −1
1 −1

)

∈ SL(2,Z) (an el-

ement of order 3), then the three images of each triangle

(A and B) by I, S′ and S′2 leads to exactly the ideal tri-
angle ∆ whose vertices are 0, 1 and ∞, as may be ob-
served in Fig. 2c. The images of ∆ by SL(2,Z) tessel-
lates H2. Notice that S′ results from S′ = S−1T−1, where

T =

(

1 1
0 1

)

and S =

(

0 −1
1 0

)

are the translation

and inversion matrices, respectively, and that S ′ fixes the
point a = 1

2 (1+
√

3i), see Fig. 2. This tessellation is called
Farey tessellation, and is denoted by F. Note that F may be
considered as the images of the imaginary axis by SL(2,Z).

It is not difficult to see that the images of {0, 1,∞} by
SL(2,Z) are exactly the points Q∪{∞}, and that two

points
p

q
and

p′

q′
(irreducible rational numbers) are con-

nected by a segment of F if and only if,

(

p p′

q q′

)

∈
SL(2,Z).

A description of F with respect to the Farey sequences is
as follows: the n-th Farey sequence Fn, is the set of rational

numbers
p

q
with |p| , |q| ≤ n arranged in increasing order.

As a consequence, we have

F1 = {−∞,−1, 0, 1,∞}

F2 = {−∞,−2,−1,−
1

2
, 0,

1

2
, 1, 2,∞}

F3 = {−∞,−3,−2,−
3

2
− 1,−

2

3
,−

1

2
,−

1

3
, 0,

1

3
,

1

2
,

2

3
, 1,

3

2
, 2, 3,∞}

and so on. Therefore, F may be obtained by the trace of
the vertical line passing by the point 0 and connecting the
adjacent points in each Farey sequence, as may be seen in
Fig. 3, where we have illustrated only the positive elements
of each Farey sequence.

0 1 2 31/3 1/2 2/3 3/2

Fig. 3. Farey sequences F1, F2, and F3

Example IV.3: Consider the matrices A, B, C and D
from Example 4.1. Hence, from the values of αA, αB , αC

and αD obtained from βA, βB , βC and βD, the codes asso-
ciate with the corresponding geodesics by use of the plus
continued fractions expansion are

αA = 2.7845 −→ (2, 1, 3, 1, 1, 1, · · · ) ;
αB = 4.640872 −→ (4, 1, 1, 1, 1, · · · ) ;
αC = 2.2746594 −→ (2, 3, 1, 1, · · · ) ;
αD = 7.46 −→ (7, 2, 3, · · · )

V. Conclusions

In this paper we have shown the connection between
coding geodesics on modular surfaces by use of arithmetic
codes and Elias codes for source coding. The main results
of this paper established the procedures in order to identify
both the arithmetic code and the axis of the geodesic when
only the probability associated with the geodesic is given.
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