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Abstract—In this work we propose an adaptive spatial 
resolution restoration algorithm for sequence of images. The 
Regularized Least-Squares (RLS) algorithm is modified to 
include an adaptive regularization that considers the subpixel 
contribution of each frame. This regularization is used to 
mitigate the distortions caused by the sub-sampling process. The 
contribution from additional frames is exploited according to its 
subpixel displacements. The pixels amplitudes from other 
frames, displaced by subpixel distances, provide the information 
to minimize sub-sampling distortions. The information about the 
displacements is used to control the adaptation. The 
regularization adapts in both ways: spatial and directional. In 
the motion estimation step only the reliable displacement vectors 
are chosen for the restoration process. The proposed model 
significantly improves the objective (SNR) and the subjective 
(visual) image quality. 
 

Index Terms—resolution restoration, interpolation, adaptive 
regularization, multiframe restoration, subpixel displacement.  
 

I. INTRODUCTION  
The image resolution amplification has many important 

applications: scientific and medical imaging, satellite and 
aerial photography, astronomy and military use. However, 
image acquisition systems have an imaging resolution limit. 
Improving the spatial resolution through the use of a denser 
photo sensor, better lens, or more precise focus system, 
increase substantially the system cost [1,2]. A possible 
approach to solve this problem is by using multiframe 
resolution restoration, also known as super-resolution or 
resolution enhancement. 

Most of the interpolation techniques used in spatial 
resolution amplification do not exploit the degradation model 
of the image acquisition device and the differential 
information among the frames in the sequence. The 
conventional interpolation methods [1,2], like the bilinear, the 
bicubic interpolation and high-order splines, are considered 
basic operations and only expand the low-resolution (LR) 
image without correcting the degradation. It is possible to 
achieve better results with the use of resolution restoration 
algorithms which consider the mixture of the pixels in the 
image sensor, motion and out-of-focus blur, aliasing in the 
sub-sampling process and noise from various sources. Also, 
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the resolution restoration techniques based on the use of 
multiple frames can recover the components lost in the sub-
sampling process, assuming that each frame in the sequence 
can contribute with new information about the high-
resolution (HR) image [1,3,4,6]. 

In this work we estimate the relative motion among the 
frames and detects the outliers in the sequence [4,5]. The 
outliers are: i) regions that suffer complex movement and 
does not produce an apparent motion that can be well 
represented by the chosen motion model, ii) parts of objects 
that moves outside the image borders, iii) regions covered or 
exposed by the motion of other object. Due to the presence of 
outliers, not all the information provided by other frames can 
be used in the resolution restoration. The outlier regions as 
well as the unreliable motion vectors are not used [4]. 

Moreover, we achieve superior results using adaptive 
regularization. The adaptation depends on the subpixel 
contributions of the additional frames. The adaptive 
regularization can preserve the recovered details in the 
regions that received significantly subpixel contributions and 
properly mitigate the sub-sampling effects in regions that 
received little, or none, contributions. This additional 
adaptive regularization considering subpixel contributions has 
not been considered in previous works. This innovative 
approach can significantly improve the quality of the 
estimated images. 

II. DEGRADATION MODEL 
The degradation model can be represented as: i) One-

Frame, which refers to the degradation of the same frame; ii) 
Additional Frames, which refers to the degradation related to 
other frames in the sequence. 

A.  One-frame model 
The acquired image can be represented by the equation (1). 

The high-resolution image fm suffers a degradation that 
includes: an optical degradation Hm, a sub-sampling process 
Sm, and an additive noise ηm. 

 mmmmm fHSg η+=   (1) 

Where fm is a vector, with size M1M2×1, that represents a 
digital HR image fm[m1,m2], with dimensions M1×M2, 
lexicographically ordered. Hm is a matrix, with size 
M1M2×M1M2, which represents the optical flux degradations 
like motion blur, out-of-focus blur and pixels mixture. Sm is a 
matrix of size N1N2×M1M2 that represents the sub-sampling 
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process in the photo sensor. gm is a vector, with size N1N2×1, 
which represents the LR image gm[n1,n2]. The vector ηm 
represents the noise. The resolution ratio between the HR and 
the LR images is: R2=M1M2/N1N2, where R is the 
amplification factor. 

The equation (1) can be rewritten as: 

 mmmm fDg η+=  (2) 

Where Dm is a matrix of size N1N2×M1M2, and SmHm=Dm. 

B. Additional frames 
When additional frames are utilized, it is necessary to use a 

motion compensation operation. The operation is:  

 mmkk fAf ,=  (3) 

Where fk is another HR image of the sequence. 
However, due to the existence of outliers, not all the image 

can be used. Then, the outliers, as well as the unreliable 
motion vectors, are removed. Only the useful regions are 
used, according to: 

 m
I

mk
I

k fAf ,=  (4) 

Where fk
I represent the useful pixels, they are named inliers. 

The fm image can be related with the other LR frames 
through: 

 I
km

I
mkkk

I
k fAHSg η+= ,  (5) 

In the vectors fk
I, gk

I and ηk
I, the pixels that correspond to 

outliers are set to zero. The degradation can also be 
represented by: 

 I
km

I
mk

I
k fDg η+= ,  (6) 

Where SkHkAI
k,m =DI

k,m. 
The motion among the frames and the outliers need to be 

estimated with an appropriated technique. [1,4,5]. 

III. INVERSE SOLUTION 
A solution to fm can be found either using only the 

correspondent LR frame gm or using all the frames. 

A. One-frame inverse solution 
In this case, the linear system (1) has to be solved. 

However, the system is underdetermined, among other 
sources of ill-conditioning [1,7]. The sub-sampling process is 
the main source of the underdetermination. According to [7], 
it is required additional information about the solution in 
order to recover the image. The solution through the 
Regularized Least-Squares [8] method is adequate, because it 
is possible to use a constraint as additional information. The 
equation (7) presents the estimated solution: 

 m
T
m

T
m

T
mm gDGGDDf 1)(ˆ −+= α  (7) 

Where G is a constraint operator, which is a filter chosen to 
mitigate the sub-sampling effects and to obtain a smooth 
solution of fm. The term α is the regularization factor. The 
solution (7), in some cases, is computationally heavy to be 

solved directly and is usually carried out by an iterative 
method, as in [8]. The iterative method is shown in equation 
(8), where (n) is the current iteration: 

 ))(( )()()1( n
m
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n
m fGGDDgDff αβ +−+=+  (8) 

Where β is the relaxation factor, and it has to guarantee the 
convergence and the convergence rate [8]. 

B. Multiframe inverse solution 
The use of multiple frames is advantageous. If the 

estimated motion, in any additional frame, is at subpixel 
displacement the additional frame contributes with new 
information about the details in the HR image.  

In order to use the additional frames, a new linear system is 
built as: 

 ηDg +=
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In this new system, the image fm is related to L low-
resolution frames, including the frame gm and the additional 
frames gI

k. The vector g has size LN1N2×1 and the matrix Dm 
has size LN1N2×M1M2. The factors εk represent a weight 
applied to each frame due to any motion estimation error [3]. 

The solution for the system (9) can be achieved by the use 
of Regularized Least-Squares: 

 gDDD T
m

T
m

T
mm CCf 1)(ˆ −+= λ  (10) 

In this case the system may not be underdetermined, or it 
can even be overdetermined. Then, the constraint C must 
avoid noise amplification. It also preferable that the solution 
of (10) is found by iteration, according to: 
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In this situation, it is considered that the problems caused 
by the sub-sampling process are completely solved by 
subpixel contributions. In general, a discrete Laplacian 
operator is used as the constraint C, as in [6]. The same 
constraint is also used in restoration problems that do not 
involve the sub-sampling process, as in [8]. 

IV. ADAPTIVE REGULARIZATION 
When the additional frames provide the complete solution 

to the problems caused by the sub-sampling process, the 
equation (10) is adequate. However, in many situations the 
additional frames do not provide enough contributions and 
the resulting images still has the distortions caused by the 
sub-sampling process. Usually, the additional frames are able 
to provide only partial contributions to the restoration of the 
details in the HR estimation. The regions that did not receive 
contributions from frames with subpixel displacement still 
have distortions caused by the sub-sampling process and have 
to be regularized. The Figure 1 illustrates an example of the 
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sub-sampling distortions in a region without contribution. In 
this example the region that contains outliers where removed 
and do not contribute to the estimated image. 

 

Figure 1: Example of distortions caused by the sub-sampling 
process. 

This work proposes an adaptive regularization of the 
distortions caused by the sub-sampling process. This way, the 
regions that have more subpixel contribution from the 
additional frames receive less influence of the constraint. On 
the other hand, the regions that had less, or none, subpixel 
contributions, receive more influence of the constraint. The 
regularization also considers the direction of the subpixel 
contribution, since it depends on the direction of the subpixel 
displacement. The proposed solution is: 
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Where the G operator used to smooth the distortions 
caused by the sub-sampling process in (7) is divided in P 
filters. In an amplification factor of two (R=2) it is required 
P=3, where Gi can be: horizontal, vertical and diagonal filters. 
The filters for this case are illustrated in Figure 2. 

 
(a) Horizontal 

 
(b) Vertical 

 
(c) Diagonal 

Figure 2: Example of the filters used in the adaptive regularization. 

The quantity of filters is related with the modulated base 
band components that appear in the Fourier spectrum during 
the sub-sampling process [1]. These components are not 
completely eliminated without subpixel contributions or 
proper regularization, and causes visible distortions in the 
restored image. The Wi matrix is a diagonal matrix where 
each value is the weight of the correspondent Gi filter in a 
specific pixel. Therefore, the regularization is spatially and 
directionally adaptive. The weights are chosen according to 
the subpixel contribution received in each region. If the 
additional frames provide enough subpixel contributions to 

cancel the effects of the sub-sampling process, all the weights 
are set to zero. If there were no contribution in the whole 
image (one-frame case) all the weights are set to one. The C 
operator is kept due to existence of noise. Figure 3 
demonstrates a view of the necessary steps previews to the 
restoration. It illustrates that the regularization operators C 
and Gi, i=1…P, are chosen according to the image acquisition 
system and Wi, i=1…P, are chosen according to the sub-pixel 
motion analysis. 

 
Figure 3: Steps previews to restoration. 

A more detailed analysis about this adaptive regularization 
can be found in [9]. 

V.  EXPERIMENTAL RESULTS 
In order to evaluate the performance of the technique, the 

algorithm is used in an artificial and in a real degradation 
case. 

A. Artificial degradation 
The degradation is applied to a known HR sequence, 

followed by the restoration. A sequence composed by two 
frames is degraded by an optical degradation of a moving 
average 2×2 filter and a rectangular sub-sampling of factor 
R=2. To emphasize the need for regularization of the 
distortions caused by the sub-sampling process, only 3 dB of 
noise is added. This degradation is similar to the CCD 
degradation in amplifications of factor of R=2, [2]. The 
degraded sequence and the regions estimated as outliers are 
presented in Figure 4. 

The goal is to improve the resolution of the Image 1 in the 
Figure 4. The proposed solution by equation (12) is compared 
to the solutions from equation (13) and the conventional 
interpolation methods. The Non-Adaptive Regularized Least-
Squares, considering the same constraints is: 

 ( ) gDDD T
m

TT
m

T
mm GGCCf

-1
αλ ++=ˆ  (13) 

When the regularization factors, α and λ, are set to zero the 
equation becomes equivalent to the Least-Squares (LS) 
solution. The C operator is a discrete Laplacian operator and 
each Gi is a transformed version of the Bicubic low pass filter 
[1,8]. The Bicubic filter is preferable due to the better 
selectivity. Each Gi is high frequency transformed at 
horizontal, vertical, and both (diagonal) axis. The cutoff 
digital frequency is 1/R. The Gi’s are the same shown in 
Figure 2. 

The Table 1 shows the numerical results calculated 
according to equation (14). 



XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’03, 05-08 DE OUTUBRO DE 2003, RIO DE JANEIRO, RJ 

 

)(10

)(25510

2

2
0

10

21

2

10

21

dB
ff

ff
LogDSNR

dB
ff

LogPSNR

e

eMM















−

−
∗=

















−
∗=

 (14) 

Where f is the original image, fe is the estimated image and 
f0 is the zero order interpolated image. 

The results in Table 1 show the importance of the 
regularization to produce better results. It can be seen 
comparing the values of the multiframe LS solution and the 
one-frame RLS. The Figure 5 shows some visual results 
presented in Table 1. The Figures 5a and 5b illustrate that the 
resolution restoration can recover optical degradations while 
conventional interpolation method cannot. Figure 5c, where 
no regularization was used, illustrates the distortions caused 
by the sub-sampling process in the region where there is no 
subpixel contribution from the additional frame due to the 
outliers (the car and the borders). It illustrates why the 
regularization process needs to adapt according to the 
contribution in the region. The solution using adaptive 
regularization is presented in Figure 5d. Only a small area of 
180×120 of the experiment results are illustrated in Figure 5. 

B. Real degradation 
To demonstrate the application in real cases the technique 

is used in an image sequence captured by a commercial 
digital camera. Five frames are used in the restoration 
process. The degradation model assumed is the same of the 
last section. Figure 6 demonstrates a visual comparison of the 
results with another acquisition taken from a closer distance 
(better spatial resolution). 

VI. CONCLUSION 
In this work an adaptive regularization for the distortions 

caused by the sub-sampling process is proposed. This 
regularization provides superior results in the multiframe RLS 
resolution restoration method when the information provided 
by the sequence is not enough to cancel the effects of the sub-
sampling process completely. The adaptive regularization 
provides the necessary smoothness in regions of low 
contribution and preserves details in regions of high 
contribution. Numerical and visual results illustrate the 
improvement achieved. 
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TABLE 1: NUMERICAL SNR VALUES. 
AMPLIFICATION METHOD: PSNR DSNR AMPLIFICATION METHOD: PSNR DSNR 

BILINEAR 36,63 1,88 LS (λ=0.0, α=0.0) 40,02 5,46 

BICUBIC 38,18 3,44 NON-ADAPTIVE RLS  
(λ=0.01, α=0.2) 43,32 8,59 ONE-FRAME 

NON-ADAPTIVE RLS  
(λ=0.01, α=0.2) 41,22 6,48 

MULTIFRAME 

ADAPTIVE RLS  
(λ=0.01, α=0.2) 44,52 9,78 

 

 
(a) Image 1 

 
(b) Image 2 

 
(c) Estimated outliers (black) 

Figure 4: Low-resolution sequence and outliers. 
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(a) Bilinear interpolation 

 
(b) One-frame RLS 

 
(c) Multiframe LS (no regularization) 

 
(d) Multiframe RLS (proposed adaptive regularization) 

Figure 5: Visual experimental results. 

 

 
(a) One of the frames 

 
(b) Bicubic interpolation 

 
(c) Adaptive regularization 

 
(d) Taken from a closer distance 

Figure 6: Visual comparison in a real case. 

 


