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Detection of Zika virus infection on mosquitoes
using spectroscopy and machine learning
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Abstract— This work shows a method to classify mosquitoes
infected with the Zika virus. We accomplish that by using
spectroscopy and machine learning. Our model takes the light
absorbance of wavelengths from 350 to 1000 nm as inputs. It
employs a combination of Linear Discriminant Analysis (LDA)
of the windowed version of the signal (to take advantage of
nonlinearities) and Support Vectors Machine (SVM) to classify
the samples. The proposed method can detect the presence of the
Zika virus with 100% accuracy in less than 7 days post-infection.
The accuracy drops to 77.7% when 10 days have passed. The
main advantages are the low cost and the possibility to make
predictions in real-time.

Keywords— Zika virus, Machine Learning, Detection, Ar-
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I. INTRODUCTION

The Zika virus can cause serious side effects like micro-
cephaly, congenital Zikavirus syndrome, and Guillain-Barré
syndrome. In 2015 this disease started an epidemic in America.
In February 2016, the World Health Organization declared a
public health emergency due to the microcephaly cases asso-
ciated with the Zika virus epidemic. The traditional method
to detect this virus is using RT-qPCR [10], [4], [11]. This
method takes a considerable time, is expensive, intrusive,
and requires skilled workers. The method described in [6]
employs near-infrared spectroscopy (NIRS) with wavelengths
from 700 to 2500 nm to detect Zika virus in mosquitoes.
The spectra were mean-centered and then classified using the
Partial Least Squares (PLS) regression method in GRAMS
Plus/ IQ software (Thermo Galactic). Table I shows the results.

The main problem of the method described in [6] is its cost.
A near-infrared spectrograph can cost thousands of dollars. In
this work, we employ machine learning methods to verify if
it is possible to detect the Zika virus in mosquitoes using
a narrower wavelength band. To do so, we employ Linear
Discriminant Analysis (LDA) and Support Vectors Machine
(SVM) on the same data from [6] but considering only wave-
lengths from 350 to 1000 nm. In terms of cost, one can find a
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NIRS method
Dataset 4 DPI (%) 7 DPI (%) 10 DPI (%)

TPR SPC TPR SPC TPR SPC
Cohort 1

train 83.3 96.8 93.5 96.4 - -

Cohort 1
Validation

(sorted)
100.0 94.1 100.0 100.0 - -

Cohort 2
head/thorace 98.7 98.3 100.0 98.3 100.0 86.7

Cohort 2
abdomen 98.7 85.0 96.2 80.0 97.4 68.3

TABLE I: NIRS method [6]

full near-infrared (NIR) spectrometer (from 350 to 2500 nm)
with prices ranging from US $95, 000 to US $115, 0001.
However, some spectrometers detect light with wavelengths
from 350 to 1000 nm under US $1, 000.

This work is organized as follows. Section II describes the
dataset introduced in [6] and used here. Section III has the
proposed method, the results, and a discussion about them.
Conclusions are in Section IV.

II. DATASET

The dataset used in this study was obtained from a part-
nership with FioCruz researchers. The data was collected by
Laboratório de Mosquitos Transmissores de Hematozoários,
Pavilhão Carlos Chagas, Instituto Oswaldo Cruz, Rio de
Janeiro, Brazil. It consists of three pieces of information.

• The absorbance of the measured wavelenghts (from 350
to 2500 nm);

• If the mosquito is infected or not;
• How many Days Post Infection (DPI).

Figure 1 shows the absorbance versus wavelength of two
samples. The blue line corresponds to an infected mosquito (7
DPI), and the red line corresponds to an uninfected mosquito.

On this experiment they used Aedes aegypti mosquitoes with
5 and 6 days old. Some were feed with blood contaminated
with Zika virus, and some were with healthy blood. We
had two different cohorts of mosquitoes, each collected and
measured independently. The measures are from mosquitos
after 4, 7, and 10 Days Post Infection (DPI). The mosquitoes
were killed right before the readings by placing them in a
closed jar with an acetate-soaked cotton ball for 1 min. After
that a NIRS spectrometer was used to measure the absorbance

1models searched were ATP9110-25H and ATP9110-25H on optosky.com
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Fig. 1: Example of the difference between the average spectrum of the
mosquitoes infected and non-infected. This graph plots the result of
the spectroscopy (intensity of light) versus the measured wavelenghts
(350 to 2500 nm).

of wavelengths from 350 to 2500 nm. The spectrometer used
was a LabSpec 4 i NIR spectrometer from Malvern Panalytical
with an internal 18.6-W light source.

The mosquitoes of cohort 1 were measured in their head and
thoraces. The mosquitos of cohort 2 were measured in their
head, thoraces and abdomen. After the measures, a RT-qPCR
test confirms if the mosquito is infected or not.

The samples of each cohort were separated based on their
DPI and status (infected or not infected). This left us with up
to 6 groups under each cohort as showed on Figures 2 and 3.

Fig. 2: Distribution of samples from cohort 1.

The data from Cohort 1 contains:
• 4 DPI : 108 infected samples and 47 uninfected samples.
• 7 DPI: 98 infected samples and 70 uninfected samples.

The data from Cohort 2 contains:
• 4 DPI : 76 infected samples and 59 uninfected samples.
• 7 DPI: 77 infected samples and 59 uninfected samples.
• 10 DPI: 77 infected samples and 60 uninfected samples.

Fig. 3: Distribution of samples from cohort 2.

The spectrometer used combines three devices:
• A silicon sensor that operates between 350 and 1000 nm;
• An InGaAs sensor that operates between 1001 and

1800 nm;
• An InGaAs sensor that operates between 1801 and

2500 nm.
Our model used only the readings from the first device (the
silicon sensor).

III. METHODOLOGY AND RESULTS

In this paper, we use samples from cohort 1 to train our
model and test it with data from cohort 2. By doing so, we
have the advantage that training and testing data were collected
and measured independently. Since the process of preparation
of the mosquitoes and measurements can be very complex,
this data separation helps ensure that our model can generalize
well and predict the status of new samples instead of fitting
on noises in the data.

There are two problems related to the data remaining. Its
low amount of samples and high dimensionality. Although
excluding samples from cohort 2 from our training data
increases the problem caused by our low amount of data,
the advantages outweigh the disadvantages. It is critical to
ensure that our model can generalize well. We used the K-fold
method (K = 10) to validate our model using samples from
cohort 1 without needing to remove them from our training
samples. It helps prevent a higher bias caused by sorting a few
samples from a low amount of data.

The K-fold method consists in distributing the data between
K different folds. Then we train our data K times, each
time removing one folder from the training data and using
it to evaluate the model. The final evaluating metrics are
the average from all the K models. The final model is the
combination of all the models. For classification problems, the
class can be the most voted among all models. It is common
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to evaluate a model with K-fold and then get a new model
using all the folds for training. If we get a reasonable amount
of data and folds to reduce noises from specific samples, it
is expected by the theory of generalization [1] that our final
model will be close to the combination of the K original ones.

A. Applying LDA

One can solve the dimensionality problem by discarding
some data with little information. Since our data is composed
of absorbance versus wavelength and we are trying to classify
it using a continuous interval, its expected some degree of lin-
earity. It is possible to use linearity to deal with dimensionality
problems using Linear Discriminant Analysis (LDA) [8], [7] as
a feature extractor. It transforms the parameter axes into new
ones that best discriminate our classes. The main focus of the
LDA is to find a projection axis that maximizes the variance
between classes while minimizing the inner variance of each
class. The transformed data can discriminate between classes
with fewer parameters, so one can discard some of them.A
comparison between the used spectral band (350 to 1000 nm)
of infected and non-infected mosquitoes can be seen in Fig. 4.

Fig. 4: Example of the difference between the average spectrum of the
mosquitoes infected and non-infected. This graph plots the result of
the spectroscopy (intensity of light) versus the measured wavelenghts
(350 to 1000 nm).

We use the LDA algorithm to extract new features from our
data. When used in classification problems with C classes,
the LDA algorithm returns C − 1 axis that best discriminates
the classes. Since the problem proposed here only has 2
classes (infected or not), the LDA algorithm returns only 1
axis. Then our model would only be able to find a threshold
point on this axis and classify it based on a threshold. The
problem with this approach is that it does not deal with
non-linearity which could increase the algorithm power. To
deal with this we selected a reduced wavelength in the range
of (350, 1000] nm, corresponding to the ith intensity vector
xi = [x(1), . . . , x(650)] and divided it into twenty-six non-
overlapping windows with intervals of 25 wavelengths with
ranges of (350, 375], . . ., (975, 1000] nm. We generated LDA’s
for each window associated data, LDA1, . . . ,LDA26, and ap-
plied the vector window to its respective LDA coordinates,
producing the projection of the vector window in LDA space.
The twenty-six projections are concatenated creating a new
feature vector, [x′

1, . . . , x
′
26]. This vector is composed of an

axis that best discriminates each vector window. Each axis still
could be used to classify each window by a threshold, but they
can also represent the reliability of these classifications by the
distance of the threshold.

After having the feature vector obtained by concatenating
the LDA’s projections, we use the Support Vector Machine
(SVM) to classify the data to obtain the output yi associated
to xi. This approach was named LDA+SVM method 1, and
its block diagram is in Fig. 5.

Another approach, called LDA+SVM method 2, also eval-
uated in this work, consisted in adding a new feature, x′

all,
to the previously designed feature vector, making a 27-
dimensionality vector. This new feature is the projection of
xi in the LDA coordinates of the entire interval, LDAall. After
this, we apply the SVM classifier. The whole system is in
Fig. 5.

…

…

…

…

…
…
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Fig. 5: Block diagram of LDA+SVM method 1 and LDA+SVM
method 2.

B. SVM for classification

Support Vector Machine (SVM) [9], [2], [5], [3] is a very
powerful and popular algorithm. It can reproduce results of
higher complexity models using lower complexity. It makes
this algorithm able to handle more parameters using fewer data
and with more resistance to the curse of dimensionality [2] and
overfitting.

The idea behind SVM is to use the hyperspace of the inputs
parameters and choose the best hyperplane that splits two
classes. This hyperplane maximizes the margin between the
classes which is calculated by the support vectors. Support
vectors are the data points that touch the margin of the
hyperplane. This margin classifier can also deal with non-
linearly separable classes transforming the data to a higher-
dimensional space phi, which in practice is implemented by
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kernel functions, where the most common ones are kernel
polynomial and radial basis functions.

We feed our new vector generated by the LDA’s algorithms
as an input for a Support Vector Machine (SVM) algorithm
with a polynomial kernel. Since we are using a non-linear
kernel, we are adding non-linearity to our model. The SVM
approach tries to find the hyperplane that best discriminates the
data. As stated before, our new vector is the composition of the
projection of each window in the axis that best discriminates
it. It also carries information about the reliability of each
discriminant. It means that the SVM approach also matches
the geometry of our data. The results of LDA+SVM method
1 are listed on Tables II-III.

LDA + SVM method 1 (350 to 1000 nm).
Dataset 4 DPI (%) 7 DPI (%) 10 DPI (%)

TPR SPC TPR SPC TPR SPC
Cohort 1

train 100.0 100.0 100.0 100.0 - -

Cohort 1
k-fold 100.0 100.0 100.0 100.0 - -

Cohort 2
head/thorace 100.0 100.0 100.0 100.0 63.6 100.0

Cohort 2
abdomen 100.0 100.0 96.1 100.0 42.8 100.0

TABLE II: LDA + SVM method 1 (350 to 1000 nm).

LDA + SVM method 1 F1 score (350 to 1000 nm).
Dataset 4 DPI (%) 7 DPI (%) 10 DPI (%)

Cohort 2
head/thorace 100.0 100.0 77.75

TABLE III: LDA + SVM method 1 F1 score (350 to 1000 nm).

In the experiment using LDA+SVM method 2, we added
one more feature to our model, generating [x′

1, . . . , x
′
26, x

′
all]

as feature vector. The results of this approach are listed on
Tables IV-V.

LDA + SVM method 2 (350 to 1000 nm).
Dataset 4 DPI (%) 7 DPI (%) 10 DPI (%)

TPR SPC TPR SPC TPR SPC
Cohort 1

train 100.0 100.0 100.0 100.0 - -

Cohort 1
k-fold 100.0 89.5 100.0 92.9 - -

Cohort 2
head/thorace 100.0 86.4 100.0 93.2 98.7 98.3

Cohort 2
abdomen 100.0 95.0 100.0 95.0 93.5 100.0

TABLE IV: LDA + SVM method 2 (350 to 1000 nm).

LDA + SVM method 2 F1 score (350 to 1000 nm).
Dataset 4 DPI (%) 7 DPI (%) 10 DPI (%)

Cohort 2
head/thorace 92.70 96.48 98.49

TABLE V: LDA + SVM method 2 F1 score (350 to 1000 nm).

The addition of the LDA transformation of the entire
interval from 350 to 1000 nm as a new feature to our model

increased our generalization accuracy for the case of 10 days
post infection, a case that we do not have in our training
examples. This however comes with the cost of lowering our
predictions for the cases of 4 and 7 days post infection.

Comparing both methods proposed in this work, Tables II
and IV, method 2 generalizes better since the non-trained data
of the mosquitoes with 10 DPI reached a higher performance.
The reason is the insertion of the LDA representation of the
whole spectrum as a new feature in the input vector. Although
it increased the accuracy of the unseen scenario of 10 DPI, it
generated a slight reduction in the performances for 4 and
7 DPI, SPC columns and lines Cohort 1 k-fold, Cohort 2
head/thorace, and Cohort 2 abdomen.

Observing the results presented in Tables I and IV, which
are associated to the proposed LDA+SVM method 2 and
the approach presented in [6], respectively, it is noticed
that the proposed method achieved better balanced accuracy(TPR+SPC

2

)
for all mosquitos stratifications, except for cohorts

1 k-fold and 2 head/thorace with 4 and 7 DPI’s. It is worth
noticing that the proposed technique performed better in non-
trained 10 DPI data and similarly in the remaining data with
a considerably reduced spectral range of (350, 1000] nm.

IV. CONCLUSION

The results presented in this work shows that it is possible to
identify an infected mosquito with Zika virus using a reduced
spectral information, which could possibly be implemented by
a cheaper device than a professional spectrometer.

Comparing the RT-qPCR, the NIRS, and the proposed
method technologies in this work, One can state that RT-qPCR
is the technique currently used in arboviruses programs to
detect mosquitoes with Zika virus. However, it has a high cost
per measure, takes some time to obtain results, and requires
specialized workers. Meanwhile, the NIRS approach reads
wavelengths from 350 to 2500 nm, which requires a high-
cost device, making it inviable to be used in the field. It has
a low cost per measure, is fast to obtain results, and does not
need specialized personnel. Finally, the proposed method reads
wavelengths from 350 to 1000 nm, which requires a lower cost
and reduced size device, making it is viable for usage in the
field. It also has a low cost, is fast to obtain results, and does
not need specialized workers.

The proposed LDA+SVM method 2 provided a better
generalization in classifying mosquitoes within 10 DPI com-
pared with the other methods analyzed in this work. The
10 DPI mosquitoes data is unseen since it was not applied
in the training. The inclusion of the feature represented by
the projection of the data in the LDA coordinates of the
whole signals contributed to the generalization performance.
The main point here is that the proposed method 2 reaches
performance similar to the one in [6] with significantly reduced
wavelength information.

Due to the difficulty of the task of capturing and infecting
mosquitoes, our training dataset has a small number of sam-
ples, and to work with more reliable statistics information,
it is recommended to expand the dataset, prefereably with
different numbers of days post infection. This is supposed
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to generate a better training model and possibly increase the
system accuracy.

Further research on hyperparameters optimization and out-
liers removal is a natural future step to be followed, since the
data is far from being exhaustively investigated. Future work
also includes the construction a low budget IoT device to do
these readings and to run our model on field.
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