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Abstract— A wide variety of packet classification algorithms
exist in the research literature and commercial market. The
existing solutions exploit various design tradeoffs, providing high
search rates, power and space efficiency and the ability to scale
to large numbers of filters. However, still remains a need for
techniques that achieve a favorable balance among these tradeoffs
and scale to support classification. Based on this motivations,
this paper presents a tensor approach for the classification of
TCP and UDP packets. By using a multidimensional structure,
more specifically a 4-th order tensor, to store the packet data, a
tensorial algorithm known as Support Tensor Machines (STM) is
used to perform classification. Results showed good performance
of the approach in comparison to other classifiers such as the
Support Vector Machines and Naive-Bayes.

Keywords— packet classification, tensor, support tensor ma-
chines.

I. INTRODUCTION

The process of classifying information is directly related to
categorization, where ideas, objects or data are recognized,
differentiated, understood and then, separated in different
tags [1]. Moreover, data classification can be achieved with
methods aimed to determine whether or not the data con-
tains some specific information, feature, or behavior, then,
identifying the correct class of the data [2]. This method is
an important branch of computer vision, machine learning
and computational intelligence, being used in many fields
such as geophysics (seismic recognition, seismic swarms) [3],
recognition of fingerprint images [4], face [5], handwritten
digits [6], gait [7], electrocardiogram signals [8], and even
identification of specific vehicles [9].

The most common methods of classification are based on
supervised learning, which is the task of learning a function
that maps an input to an output based on example input-
output pairs [10]. In supervised learning, each example is a
pair consisting of an input object, typically a vector, and a
desired output value, also called the supervisory signal. A
supervised learning algorithm analyzes the training data and
produces an inferred function, which can be used for mapping
new examples. A common learning algorithm that has been
reported used on various classification applications such as the
mentioned earlier, is the the support vector machine (SVM)
[11], mostly employed to solve two-class problems, but also
used on multi-class solutions [12].
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More specifically, a standard SVM model is based on
vector inputs and cannot directly deal with matrices or higher
dimensional data structures, namely, tensors, which are very
common in real-life applications [15]. The SVM realization
on such high dimensional inputs is by reshaping each sample
into a vector. However, when the training data sample size is
relatively small compared to the feature vector dimension, it
may easily result in poor classification performance, known as
curse of dimensionality [15], [16].

In order to avoid the data destruction by converting tensors
into vectors, the supervised tensor learning method is proposed
[17]. This technique has been extensively studied in recent
years, and, proposes a supervised tensor learning framework,
which extends the standard linear SVM framework to tensor
patterns by constructing multilinear models, hence, called
Support Tensor Machines (STM). Also, the technique utilizes
a rank-one tensor to capture the data structure, thereby allevi-
ating the overfitting and curse of dimensionality problems in
the conventional SVM [17], [18]. Moreover, in the context of
supervised tensor learning, preserving the structural informa-
tion and exploiting the discriminating nonlinear relationships
of tensor data are crucial for improving the performance of
learning tasks [19].

On the other hand, classification of data packets in computer
networks is a very demanding task [20]. Packet classifica-
tion is important for applications such as firewalls, intrusion
detection, and differentiated services. Existing algorithms for
packet classification reported in the literature scale poorly in
either time or space as filter databases grow in size [21]. Also,
existing solutions may require high computational cost. In the
work of [22], an overview of packet classification algorithms
is presented. As explained [22], researchers have proposed
a variety of algorithms which, broadly speaking, can be
categorized as basic search algorithms, geometric algorithms,
heuristic algorithms, or hardware-specific search algorithms.

Moreover, the use of tensors and tensor-based classifiers
in packet classification is not common in the literature, with
few works addressing the topic. We may cite [23], which
utilizes a multidimensional approach for multi-scale feature
attention approach to network traffic classification, by using
convolutional neural networks (CNN) as the building block
of the deep packet analysis model. With so few tensor-based
works in covering this topic, it is desirable the development
of multilinear algorithms that could be used in packet classi-
fication.

In this paper, a tensor-based approach for the classification
of TCP and UDP packets is presented. By using a multidimen-
sional structure, to store the packet data, a tensorial algorithm
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known as STM is used to perform classification. The first
step is a creation of a 4-th order tensor from two packet
databases, with information from TCP and UDP segments
obtained through a packet capture software. After obtaining
the tensor, the data is classified using the STM algorithm,
achieving interesting results. For comparison purposes, both
linear SVM and Naive-Bayes were tested.

A. Organization

The rest of this paper is organized as follows. Section II
presents methods used, while Section III describes the Support
Tensor Machine formulation. Section IV introduces the STM
algorithm, Section V presents the results and, finally, Section
VI ends this paper with the conclusions.

B. Notation

Scalars are denoted by Roman lower-case letters (a,b,...),
vectors as lower-case boldface letters (a,b,...), matrices as
upper-case boldface letters (A,B,...) and tensors as calligraphic
letters (A,B,...). To retrieve the element (i, j) of an arbitrary
matrix A ∈ CI×R, we use ai,j (the same for tensors). AT

stands for the transpose. Also, ⊗ denotes the Kronecker
product between A ∈ RI×K and B ∈ RJ×L, resulting in
A⊗ B ∈ CIJ×KL. A matrix unfold of a 4-th order tensor X
∈ RK×M×N×P is given by X[n], i.e. X[1] ∈ RKMN×N .

II. METHODS

The methodology of this work was developed as follows.
Initially, TCP and UDP segment data were collected using
the Wireshark software. This software is a network protocol
analyzer, allowing the visualization of data from a given
network, allowing the user to interact by browsing through the
captured data and seeing the details of each packet [24]. Two
networks were analyzed for packets, one wired and the other
one wireless, where packets were obtained during conventional
web browsing, video calls and streaming services.

The data collected from the TCP and UDP packets were as
follows:

• Source port;
• Destination port;
• Header length;
• Window size;
• Payload (in bytes);
• Flag;
The attributes described above were chosen because they

facilitate the distinction between TCP and UDP segments, thus
facilitating the classification of these later on. After collecting
100 samples of TCP and UDP segments from the wired
network, another 100 samples were obtained from the wireless
network. Once the samples were properly tabulated, a 3rd
order tensor containing the database was assembled, with the
tensor dimensions being 2 × 3 × 6 × 100, with a total of 600
packets. The first mode of the tensor denotes the two types
of network: wired and wireless, the second mode refers to
how the packets were obtained (web browsing, video call or
streaming), the third mode refers to the number of attributes

Fig. 1. Flowchart of the presented classification method.

whereas the fourth mode indicates the number of samples. The
class tags are two: a packet of the dataset is either TCP or UDP.
In Figure 1 we can see the flowchart of the methodology.

TABLE I
DATABASE DESCRIPTION.

Size: 2 × 3 × 6 × 100 Number of Packets
Wired Network 100 (60 TCP, 40 UDP)

Wireless Network 100 (60 TCP, 40 UDP)

Table I shows the dataset description, with tensor dimen-
sions, number of TCP and UDP packets per type of network.
In the following, the adopted classifier is presented.

III. SUPPORT TENSOR MACHINES (STM) FORMULATION

Considered an extension to the conventional SVM, the STM
works in the following way. Let X ∈ RK×M×N×P be the
training data set tensor split into P third order tensors and
a vector y consisting of the class tags associated to each of
the P tensors, with y ∈ {-1,1}, thus, we need to find a tensor
classifier such the two classes can be separated with maximum
margin as the decision function:

f(Xp) = Xp(v(1), v(2), v(3)) + b, (1)

where Xp ∈ RK×M×N , v(1) ∈ R1×K , v(2) ∈ R1×M and v(3)
∈ R1×N are vectors orthogonal to the hyperplane. We can also
define:

Xp(v(1), v(2), v(3)) =
K∑

k=1

M∑
m=1

N∑
n=1

xk,m,nv(1)k v(2)m v(3)
n . (2)

Then, (1) can be rewritten as follows:

f(Xp) = Xp ×1 v(1) ×2 v(2) ×3 v(3) + b. (3)

In matricial notation, we have:

f(Xp) = (v(2) ⊗ v(3))X(1)
p (v(1))T + b, (4)

where X[1] ∈ RMN×K is an unfolding of the tensor Xp.
As stated earlier, the LR-STM method is an generalization

of the SVM for higher order arrays. In order to use (3), it
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is necessary to compute v(1), v(2) and v(3). The algorithm is
described as follows:

• Initialize v(2) = {1,...,1} ∈ R1×M and v(3) = {1,...,1} ∈
R1×N ;

• Let xp = (X[1]
p )T (v(2) ⊗ v(3))T ;

• Compute v(1) by solving the following optimization prob-
lem:

min
v(1)

1

2
〈v(1),v(1)〉+ C

P∑
p=1

ξp (5)

subject to

yp(〈v(1), xp〉+ b) ≥ 1− ξp, (6)

where
ξp ≥ 0.

• With v(1) obtained, let xp = (X[2]
p )T (v(3) ⊗ v(1))T , then

compute v(2) with:

min
v(2)

1

2
〈v(2),v(2)〉+ C

P∑
p=1

ξp (7)

subject to

yp(〈v(2), xp〉+ b) ≥ 1− ξp, (8)

where
ξp ≥ 0.

• With v(1) and v(2) obtained, let xp = (X[3]
p )T (v(1) ⊗

v(2))T , then compute v(3) with:

min
v(3)

1

2
〈v(3),v(3)〉+ C

P∑
p=1

ξp (9)

subject to

yp(〈v(3), xp〉+ b) ≥ 1− ξp, (10)

where
ξp ≥ 0.

• After the steps above, we can iteratively compute v(1),
v(2) and v(3) until they converge.

Now, with v(1), v(2) and v(3) obtained, we can classify the test
data Zs ∈ RK×M×N , with s = 1,...,S and J = P + S, where
P and S denotes the training and test samples, respectively.
Thus we have:

g(Zs) = sign(Zs ×1 v(1) ×2 v(2) ×3 v(3) + b). (11)

IV. STM ESTIMATION ALGORITHM

The algorithm of the STM method, in pseudo-code format,
is shown in Algorithm 1. The basic process of classification
is illustrated in Figure 2, where, with the training samples, we
build the LR-STM model by estimating v(1), v(2) and v(3).
Then, we use the model to classify the test samples with (11).

Convergence is achieved as follows. As we shown, the
optimizations problems in (5,7,9) are the same as in the
standard SVM algorithm, then we can use the computational

Fig. 2. STM classification steps.

Algorithm 1 STM Algorithm
For p = 1,...,P :
1)Initialization: Set i = 0; Initialize v(2)

i and v(3)i ;
2)With xp = (X[1]

p )T (v(2)
i ⊗ v(3)

i )T , estimate v(1)
i using (5);

3)i = i + 1;
4)With xp = (X[2]

p )T (v(3)
i−1⊗v(1)

i−1)
T , estimate v(2)i using (7);

5)With xp = (X[3]
p )T (v(1)

i−1⊗v(2)i )T , estimate v(3)
i using (9);

6)Repeat steps 2-5 until convergence;

methods for SVM to solve (5,7,9). As for the convergence of
the algorithm, the iterative procedure to solve the optimization
problems (5,7,9) will monotonically decreases the objective
function values in (6,8,10), and hence the STM algorithm
converges.

Let v(2)0 and v(3)0 be the initial values. Fixing v(2)0 and v(3)
0 ,

we get v(1)0 by solving the optimization problem (5). Likewise,
fixing v(1)

0 and v(3)0 , we get v(2)
1 by solving the optimization

problem (7) and so on. Notice that the optimization problem of
SVM is convex, so the solution of SVM is globally optimum
[25]. Thus, we have:

f(v(1)0 , v(2)0 , v(3)0 ) ≥ f(v(1)
0 , v(2)1 , v(3)0 ). (12)

And finally we get:

f(v(1)
0 , v(2)

0 , v(3)0 ) ≥ . . . ≥ f(v(1)1 , v(2)1 , v(3)1 ) ≥ . . . . (13)

V. RESULTS

In this section, the obtained classification results are pre-
sented. The STM algorithm was implemented using MATLAB
2017b, in a 9-th generation core i3 processor. For comparison
purposes, the conventional SVM with linear kernel and the
Naive-bayes classifiers were tested, using a vectorized version
of the data, in order to better evaluate the STM performance.
Also, an Artificial Neural Network (ANN) implementing for-
ward propagation with two fully connected layers, Rectified
linear unit (ReLU) activation functions and a softmax function
to the final fully connected layer, using vectorized data, was
tested against the STM.

The data was classified using K-fold cross validation, with
K = 10 and the relaxing constant was set C = 100. The results
are presented in the form of accuracy, which is defined as the
number of correctly classified samples over the total number of
samples, execution time, in seconds, of the feature technique
plus classifier, and, confusion tables. The results were averaged
100 times to eliminate fluctuation.
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The first result, presented in Table II shows the accuracy
and execution times of the tested methods. As can be seen,
the STM showed the highest accuracy, thus showing its
good performance in packet classification. The second best
classification rate was achieved by the ANN, however, at a
cost of more execution time. The worst accuracy was obtained
by the Naive-Bayes classifies. Moreover, although the STM
demanded more running time than the SVM and Naive-Bayes
techniques, it achieved higher accuracy, showing a trade-off
between performance of classification and computational cost.

TABLE II
ACCURACY AND EXECUTION TIME RESULTS FOR THE TESTED

TECHNIQUES

Classifier Accuracy Time (s)
STM 88.3% 201.11
SVM 80.3% 171.2
Naive-Bayes 75.4% 126.8
ANN 83.2% 244.67

Furthermore, in Table III, the obtained confusion matrix is
shown, illustrating the performance of STM in the TCP and
UDP packet classification process. As we can see, an accuracy
of 88.3% was achieved in the classification of the data.

TABLE III
CONFUSION TABLE - ACCURACY OF THE STM.

88.3% Accuracy TCP UDP
TCP 330 40
UDP 30 200

VI. CONCLUSIONS

In this work, a tensor-based approach for packet classifica-
tion was presented. By using a multidimensional structure, to
store the TCP and UDP packets, a tensorial algorithm known
as STM is used to perform classification. Results showed good
performance of the proposed approach in comparison to other
classifiers such as the SVM and Naive-Bayes techniques.
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