
The 7th International Telecommunications Symposium (ITS 2010)

A complex version of the LASSO algorithm and its application to beamforming
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Abstract— Least Absolute Shrinkage and Selection Operator
(LASSO) is a useful method to achieve coefficient shrinkage
and data selection simultaneously. The central idea behind
LASSO is to use the L1-norm constraint in the regularization
step. In this paper, we propose an alternative complex version
of the LASSO algorithm applied to beamforming aiming to
decrease the overall computational complexity by zeroing some
weights. The results are compared to those of the Constrained
Least Squares and the Subset Selection Solution algorithms.
The performance of nulling coefficients is compared to results
from an existing complex version named the Gradient LASSO
method. The results of simulations for various values of
coefficient vector L1-norm are presented such that distinct
amounts of null values appear in the coefficient vector. In this
supervised beamforming simulation, the LASSO algorithm is
initially fed with the optimum LS weight vector.
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version; optimum constrained optimization.

I. INTRODUCTION

The goal of the Least Absolute Shrinkage and Selection
Operator (LASSO) algorithm [1] is to find a Least-Squares
(LS) solution such that the L1-norm (also known as “taxi-
cab” or “Manhattan” norm) of its coefficient vector is not
greater than a given value, that is, L1{w} =

∑N
k=1 |wk| ≤

t. Starting from linear models, the LASSO method has
been applied to solve various problems such as wavelets,
smoothing splines, logistic models, etc [2]. The problem
may be solved using quadratic programming, general convex
optimization methods [3], or by means of the Least Angle
Regression algorithm [4]. In real-valued applications, the L1

regularized formulation is applicable to a number of contexts
due to its tendency to select solution vectors with fewer
nonzero components, resulting in an effective reduction of
the number of variables upon which the given solution is
dependent [1]. Therefore, the LASSO algorithm and its
variants could be of great interest to the fields of compressed
sensing and statistical natural selection.

This work introduces a novel version of the LASSO
algorithm which, as opposed to an existing complex version,
viz, the recently published Gradient LASSO [5], brings
to the field of complex variables the ability to produce
solutions with a large number of null coefficients. The paper
is organized as follows: Section II presents an overview
of the LASSO problem formulation. Section III-A starts

by providing a version of the new Complex LASSO (C-
LASSO) while the Gradient LASSO (G-LASSO) method
and Subset Selection Solution (SSS) [6] are described in the
sequence. In Section IV, simulation results comparing the
proposed C-LASSO to other schemes are presented. Finally,
conclusions are summarized in Section V.

II. OVERVIEW OF THE LASSO REGRESSION

The real-valued version of the LASSO algorithm is equiv-
alent to solving a minimization problem stated as:

min
(w1,··· ,wN )

1

2

M∑
i=1

(yi −
N∑
j=1

xijwj)
2 s.t.

N∑
k=1

|wk| ≤ t (1)

or, equivalently,

min
(w∈RN )

1

2
(y −Xw)T (y −Xw) s.t.

g(w) = t− ‖w‖1 ≥ 0. (2)

The LASSO regressor, although quite similar to the
shrinking procedure used in the ridge regressor [7], will
cause some of the coefficients to become zero. Several
algorithms have been proposed to solve the LASSO [3]- [4].
Tibshirani [1] suggests, for the case of real-valued signals,
a simple, albeit not efficient, way to solve the LASSO
regression problem. Let s(w) be defined as

s(w) = sign(w). (3)

Therefore, s(w) is a member of set

S = {sj} , j = 1, . . . , 2N , (4)

whose elements are of the form

sj = [±1 ± 1 . . . ± 1]T . (5)

The LASSO algorithm in [1] is based on the fact that the
constraint

∑N
k=1 |wk| ≤ t is satisfied if

sTj w ≤ t = αtLS , for all j, (6)

with tLS = ‖wLS‖1 (L1-norm of the unconstrained LS
solution) and α ∈ (0, 1].

However, we do not know in advance the correct index
j corresponding to sign(wLASSO). At best, we can project
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a candidate coefficient vector onto the hyperplane defined
by sTj w = t. After testing if the L1-norm of the projected
solution is a valid solution, we can accept the solution or
move further, choosing another member of S such that, after
a number of trials, we obtain a valid LASSO solution.

III. COMPLEX SHRINKAGE REGRESSION METHODS

A. A Complex LASSO Algorithm

The original version of the LASSO algorithm, as proposed
in [1], is not suitable to be used in complex-valued applica-
tions, such as beamforming. Aiming to null a large portion
of the coefficient vector, we suggest to solve (1) in two
steps, treating separately real and imaginary quantities. The
algorithm, herein called C-LASSO for Complex LASSO,
is summarized in Algorithm 1. In order to overcome some
of the difficulties brought by the complex constraints, we
propose that

N∑
k=1

|wk| ≤ t (7)

be changed to

N∑
k=1

|Re{wk}| ≤ tR and (8)

N∑
k=1

|Im{wk}| ≤ tI . (9)

Considering the equality condition in (7)

N∑
k=1

|wk| = t ≤
N∑
k=1

{
|Re{wk}|+ |Im{wk}|

}
≤ tR + tI ,

(10)
choosing tR = tI and the lower bound in (10), we have

tR = tI =
αtLS
2

. (11)

For an array containing N sensors, where all coefficients
are nonzero, consider the total number of multiplications
required for calculating a beamforming output equal to 3N .
For each coefficient having null real part (or imaginary),
the computational complexity is reduced from three to two
multiplications. For each null coefficient, the number of
multiplications is reduced from three to zero. Thus, the
resulting number of multiplication operation is:

NR = 3N − (Np + 3Nz) (12)

where Nz and Np are the amounts of null coefficients and
null coefficient parts (real or imaginary), respectively. The
count of Np excludes the null parts which had already been
taken into account for Nz .

Algorithm 1 : The Complex LASSO (C-LASSO) Algorithm
Initialization
α ∈ (0, 1];

X; % (X is a matrix with N ×M elements)

Y; % (Y is a vector with N × 1 elements )

wLS ← (XHX)−1XHY;

tLS ←
∑N
k=1 |w

LS
k | ;

tR ← αtLS/2 ;

tI ← tR;

wo
Real ←Re[wLS ] ;

wo
Imag ← Im[wLS ] ;

Cc
Real ← sign[wo

Real] ;

Cc
Imag ← sign[wo

Imag] ;

XReal ←Re[X];

YReal ← Im[Y];

R−1
Real ←

1
2
(XRealX

H
Real)

−1;

R−1
Imag ←

1
2
(XImagX

H
Imag)

−1;

while (‖wc
Real‖1 > tReal) do

Col← Numbers of columns of Cc
Real;

f ← 1(Col×1) × tR, 1(Col×1) = [1 1 . . . 1]T(Col×1);

wc
Real ← wo

Real −R−1
RealC

c
Real

(
(Cc

Real)
HR−1

Real

Cc
Real

)−1(
(Cc

Real)
Hwo

Real − f
)

;

CReal ← [CReal sign[wc
Real]];

end while

while (‖wc
Imag‖1 > tImag) do

Col← Numbers of columns of Cc
Imag;

f ← 1(Col×1) × tI , 1(Col×1) = [1 1 . . . 1]T(Col×1);

wc
Imag ← wo

Imag −R−1
ImagC

c
Imag

(
(Cc

Imag)
HR−1

Imag

Cc
Imag

)−1(
(Cc

Imag)
Hwo

Imag − f
)

;

CImag ← [CImag sign[wc
Imag]];

end while

wLASSO ← wc
Real + jwc

Imag .

B. The Subset Selection Solution Procedure

The Subset Selection (SS) solution [6] is obtained from
the ordinary least squares solution (LS) after forcing the
smallest coefficients (in magnitude) to be equal to zero.
In order to compare the beam patterns produced by the
SS and C-LASSO algorithms, the number of zero real
and imaginary parts obtained by C-LASSO algorithm are
taken into account to calculate the coefficients using the SS
algorithm. The SS algorithm is summarized in Algorithm 2.
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Algorithm 2 : The Subset Selection (SS) Solution
Initialization: wLS , NZReal , NZImag ;

[wSSSReal ,posReal]← Sort(|wLSReal |);
[wSSSImag ,posImag]← Sort(|wLSImag |);
for i = 1 to NZReal do
wSSSReal(i)← 0

end for
for k = 1 to NZImag do
wSSSImag (k)← 0;

end for
wSSSReal(posReal)← wSSSReal ;
wSSSImag (posImag)← wSSSImag ;
wSSSReal ← wSSSReal . ∗ sign(wSSSReal);
wSSSImag ← wSSSImag . ∗ sign(wSSSImag );
wSSS ← wSSSReal + jwSSSImag ;

C. The Gradient LASSO Algorithm
The gradient LASSO (G-LASSO) algorithm, summarized

in Algorithm 3, is computationally more stable than
quadratic programming (QP) schemes because it does
not require matrix inversions; thus, it can be more
easily applied to higher-dimensional data. Moreover, the
G-LASSO algorithm is guaranteed to converge to the
optimum under mild regularity conditions [2].

Algorithm 3 : The G-LASSO Algorithm
Initialization: w = 0 and m = 0;

while (not(coverge)) do
m← m+ 1;

Compute the gradient ∇(w)← (∇(w)1, ...,∇(w)d);

Find the (l̂, k̂, γ̂) which minimizes γ∇(w)lk for l = 1, . . . , d
, k = 1, . . . , pl, γ = ±1;

Let vl̂ be the pl̂ dimensional vector such that the k̂-th element
is γ̂ and the other column elements are 0;

Find β̂ = argminβ∈[0,1]C(w[β, vl̂]);

Update w:

wlk ←


(1− β̂)wlk + γ̂β̂ l = l̂, k = k̂

(1− β̂)wlk l = l̂, k 6= k̂

wlk otherwise

end while

return w.

IV. SIMULATION RESULTS

In this section, we present the results of simulations
for various values of α such that distinct numbers of null
coefficients arise in the coefficient vector w. The simulations
were performed from a supervised modeling beamforming
and the LASSO algorithm was initially fed with the optimum
weight vector wopt. Subsection IV-A describes, briefly, the
signal model used to calculate wopt and wLASSO. The
results are presented in Subsection IV-B

A. Signal Model
Consider a uniform linear array (ULA) composed by N

receiving antennas (sensors) and q receiving narrowband
signals coming from different directions φ1, · · · , φq . The
output signal observed from N sensors during M snapshots
can be denoted as x(t1),x(t2), · · · ,x(tM ). The N×1 signal
vector is then written as:

x(t) =

q∑
k=1

a(φk)sk(t) + n(t) , t = t1, t2, · · · , tM , (13)

or, using matrix notation,

X = [x(t1) x(t2) · · · x(tM )] = AS+ η, (14)

Sensor
                1

Sensor
                2

Sensor
                (N-1)

Sensor
                N

d d(N-3)d

Figure 1. Narrowband Signal Model for Uniform Linear Array (ULA) for
snapshot at instant t.

where matrix X is the input signal matrix of dimension
N × M . Matrix A = [a(φ1), · · · ,a(φq)] is the steering
matrix of dimension N × q, whose columns are denoted by

a(φ) = [1, e−j(2π/λ)d cos(φ), · · · , e−j(2π/λ)d(N−1) cos(φ)]T .
(15)

S, in (14), is a q ×M signal matrix, whose lines refer to
snapshots. η is the noise matrix of dimension N×M ; λ and
d are the wavelength of the signal and the distance between
antenna elements (sensors), respectively.

Based on above definition, the covariance matrix R,
defined as E[x(t)xH(t)], can be estimated as

R̂ = XXH = ASSHAH + ηηH , (16)
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which, except for a multiplicative constant, corresponds to
the time average

R̂ =
1

M

M∑
k=1

x(tk)x
H(tk). (17)

From the formulation above and imposing linear con-
straints, it is possible to obtain a closed-form expression
to wopt [8], the LCMV solution

wopt = R−1C
(
CHR−1C

)−1
f , (18)

such that CHwopt = f , C and f are given by [9]

C = [1, e−jπ cos(φ), · · · , e−jπ(N−1) cos(φ)]T (19)

and
f = 1. (20)

B. The Results

Experiments were conducted where we designed ULA
beamformers with 50 and 100 sensors. C-LASSO beam
patterns were compared to SSS and CLS beam patterns
for α values equal to 0.05, 0.10, 0.250, and 0.50. We also
compared the capacity of shrinking of the C-LASSO to the
G-LASSO algorithms.

The simulations presented in this section were carried out
considering the direction of arrival of the desired signal
θ = 120◦. The four interfering signals used in the sim-
ulations employed power levels such that Interference-to-
Noise Ratios (INR) were 30, 20, 30, 30 dB. The number of
snapshots was 6, 000.
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Figure 2. Beam pattern calculated for θ = 120◦, N = 50, and α = 0.05.

Figure 2 compares the beam patterns from the CLS,
the SS, and the C-LASSO algorithms, where it is possible
to realize that the constraints relating to interference are
satisfied by the C-LASSO coefficients. In this experiment,
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Figure 3. Beam pattern calculated for θ = 120◦, N = 50, and α = 0.1.

about 42% of the coefficients are zero and the percentage
for the real and imaginary parts is around 70%.

In the simulation presented in Figure 3, only about 14%
of the coefficients are zero, although the percentage for the
real and imaginary parts is around 50%.
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Figure 4. Beam pattern calculated for θ = 120◦, N = 50, and α = 0.25.

In the simulations whose results are presented in Figures 4
and 5, no coefficient is forced to zero (both real and
imaginary parts) although real or imaginary parts of some
coefficients were zeroed, representing 50% of the total.

Figure 5 shows that, for α = 0.50 and N = 100, the C-
LASSO and the SS solution beam patterns approximate the
optimal case (CLS), even with 50% of real and imaginary
parts equal to zero.
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Figure 5. Beam pattern calculated for θ = 120◦, N = 100, and α =
0.50.
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Figure 6. Null Real Parts Quantities versus α for N = 20.
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Figure 7. Null Imaginary Parts Quantities versus α for N = 20.

Based on the results of a second experiment, whose
simulations are presented in Figures 6 and 7, we can say that
the algorithm C-LASSO is more efficient than the algorithm
G-LASSO in terms of coefficient shrinkage, with regards
to forcing coefficients (or their real or imaginary parts) to
become zero.

V. CONCLUSIONS

In this article, we proposed a novel complex version
for the shrinkage operator named C-LASSO and explored
shrinkage techniques in computer simulations. We compared
beam patterns obtained using the algorithms C-LASSO, SS,
and CLS. Based on the results presented in the previous
section, it is clear that the C-LASSO algorithm can be
employed to solve problems related to beamforming with
reduced computational complexity.

Although, for very low values of α, the radiation pattern
presents extra secondary lobes, which decrease the SNR
in the receiver, it is noted that the constraints concerning
jammers continue to be satisfied by the C-LASSO algorithm,
making this technique ideal for anti-jamming systems [10].

One important area to apply and test this kind of
statistical selection algorithm would be in the field of
electronic warfare [10], where miniaturization, short delay,
and low power circuits are required.
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