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Abstract— Despite the success of deep neural networks to
solve real world problems, the current theoretical comprehension
of their learning mechanisms still deserves further analysis.
Recently, various works have explored the use of information-
theoretic concepts in order to tackle this issue. This work
uses a framework derived from this theory to the study of
convolutional autoencoders, in order to better understand its
training mechanisms and suggest how the information quantities
can be used to determine its bottleneck’s size. We conclude by
presenting a discussion based on the results obtained that may
shed a light on network’s learning mechanisms.
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I. INTRODUCTION

Deep neural networks (DNNs) have been extensively stud-
ied in recent decades due to the various successes obtained
through their application to real world problems [2]. Among
the reasons for this success, one can highlight their capacity
to capture the underlying structure and statistical behavior
of large datasets. In spite of these successes, there is still a
latent shortage of widely accepted systematic methods for their
design.

In order to address this issue, Information Theoretic Learn-
ing (ITL), a framework which employs concepts from In-
formation Theory (IT) within Machine Learning, has gained
increasing attention in recent years. By using the well-
established informational quantities derived from IT, the ITL
framework allows the creation of systematic methods to design
and analyze DNNs more rigorously [1]. In particular, it has
been used to study Autoencoders (AEs), unsupervised DNNs
architectures widely used for data compression, with consid-
erable success in [5].

The AEs’ goal is to create more compact representations
of its inputs. By doing so, they suppress undesirable elements
contained in the data (e.g. redundancies and noise), which in
turn enables its better understanding and use [2]. AEs consist
of two main parts: the encoder and the decoder. The former
encodes the input into a lower dimension representation (i.e. a
code), which is stored inside the AE’s bottleneck layer, while
the latter recreates the input using its respective code [4]. It
is evident that the bottleneck’s size is a crucial parameter
for the proper functioning of AEs, because it determines
their capacity to capture the underlying statistical structure of
their inputs. If it is too big, not only the overall size of the

Frederico Carvalho Fontes do Amaral, Departamento de Engenharia
Elétrica, UnB, Brasília-DF, e-mail: 200054457@aluno.unb.br; Daniel Guer-
reiro e Silva, Departamento de Engenharia Elétrica, UnB, Brasília-DF, e-mail:
danielgs@ene.unb.br. This work was funded by CAPES and Edital Conjunto
PPGEE/PGEA UnB Nž 01/2021.

AE will increase (alongside its memory and computational
costs), but the code will contain redundant information. If it
is too small, the AE will be unable to completely capture the
relevant information of the input. In spite of its importance,
the systematic evaluation of the bottleneck’s size adequacy is
still a topic poorly explored in the literature [9].

To address this issue, the authors of [9] proposed an auto-
matic method to estimate the optimal size for the bottleneck
of a stacked autoencoder (SAE). By using its code’s entropy
as a key performance indicator (KPI), this method’s goal is
to enable the SAE to achieve maximum data compression
without compromising the overall performance of the decoder.
In light of the positive results yielded by said method, this
work aims to investigate the possibility of its application to
determine the bottleneck’s size of convolutional autoencoders
(CAEs), which are convolutional neural networks (CNNs)
structurally analogous to SAEs [4]. In order to do so, we
estimated additional information quantities associated with the
layers of a CAE’s encoder during its training in order to study
their behavior. We suggest an explanation for these metrics’
evolution during the CAE’s training, including the new ones
defined in [6], based on the experimental results. Also, we
argue that, differently from what was proposed in [9], instead
of using only the entropy of the codes as a KPI, these new
information quantities should also be used as KPIs.

The rest of the work is organized as follows. Section II
exposes the information estimators used in the experiment.
Section III details the experimental procedures and shows its
results. Section IV discusses them, as well as suggests how the
new information quantities proposed in [8] could be suitable
KPIs for CAEs. Finally, Section V concludes this work and
highlights topics that can be addressed in future studies.

II. INFORMATION ESTIMATORS

Originally proposed and formalized by Claude Shannon,
Entropy and Mutual Information (MI) are the fundamental
measurements of information [3]. While there are multiple def-
initions for these quantities, the family of parametric entropies
formalized by Alfréd Rényi is widely used in ITL [1]. Let X
be a u-dimensional random variable (RV) (e.g. an image) with
probability density function (PDF) p(x), Y be a v-dimensional
RV with PDF p(y) and p(x,y), their joint PDF. The α-Rényi
entropy of X is defined as

Hα(X) =
1

1− α
log

∫
pα(x) dx, (1)

the α-Rényi joint entropy of X and Y is defined as
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Hα(X,Y ) =
1

1− α
log

∫
pα(x,y) dx dy, (2)

and the α-Rényi MI between X and Y can be expressed as

Iα(X;Y ) = Hα(X) +Hα(Y )−Hα(X,Y ). (3)

The exact evaluation of expressions (1), (2) and (3) is often
impossible in practice, because it requires the knowledge of
p(x), p(y) and p(x,y), which are usually unknown. The
estimation of these PDFs in practice is often difficult as well,
since it usually involves high-dimensional data, for which
PDF estimation can be both unreliable and computationally
unfeasible. To circumvent this issue, recent works have used
the matrix-based Renyis α-order entropy functional, proposed
in [7], to estimate these information quantities directly from
data, without explicitly evaluating its underlying PDF.

Let X = {xi}Ni=1, xi ∈ X , be a set of independent
and identically distributed (iid) samples of X . The Gram
matrix K ∈ RN×N is obtained through the evaluation of
a real valued positive definite kernel κ : X × X 7→ R on
all the pairs of samples from X, i.e. (K)ij = κ(xi,xj).
Then, K is normalized in order to create a matrix A such
as (A)ij = 1

N
(K)ij√

(K)ii(K)jj
and tr(A) = 1, which results in

the matrix-based Renyis α-order entropy functional

Sα(A) =
1

1− α
log2

[ N∑
i=1

λi(A)α
]
, (4)

where λi(A) is the i-th eigenvalue of A. Also in [7], simi-
larly to how (4) is used to estimate Hα(X), another matrix
estimator was proposed to estimate Hα(X,Y ). Although these
estimators were applied to determine the bottleneck’s size of
the SAE with densely connected layers with considerable suc-
cess [9], they cannot be directly applied to CNNs, as explained
in [8]. Thus, the estimator proposed in [7] was expanded in
[8] to estimate the multivariate mutual information (MMI)
between a single RV and a group of RVs — e.g. the input
of a CNN and the feature maps (FMs) of one of its layers.
Let {si = (xi

1, . . . ,x
i
C)}Ni=1, C ≥ 2, be a collection of

N samples obtained from the same realization containing C
measurements {xp ∈ Xp}Cp=1 each and {κp : Xp × Xp 7→
R}Cp=1, positive-definite kernels. A matrix-based analog to
Rényis α-order joint entropy among C RVs is defined as

Sα(A1, . . . ,AC) = Sα

[
A1 ◦ · · · ◦AC

tr(A1 ◦ · · · ◦AC)

]
, (5)

where {(Ap)ij = κp(x
i
p,x

j
p)}Cp=1 and ◦ denotes the

Hadamard product. Let {T p}Cp=1 be the RVs associated with
the C FMs in a CNN’s convolutional layer. The MMI between
these FMs and the input X is given by

I(X; {T 1, . . . , TC}) =H(X) +H(T 1, . . . , TC)

−H(X, {T 1, . . . , TC}).
(6)

By inspecting (4), (5) and (6), it is immediate that the value
of I(X; {T 1, . . . , TC}) in a mini-batch of size N can be
estimated with

Iα(B, {A1, . . . ,AC}) = Sα(B) + Sα

[
A1 ◦ · · · ◦AC

tr(A1 ◦ · · · ◦AC)

]
− Sα

[
A1 ◦ · · · ◦AC ◦B

tr(A1 ◦ · · · ◦AC ◦B)

]
,

(7)

where B and A1, . . . ,AC denote the Gram matrices evaluated
on the input tensor and C FM tensors, respectively.

By estimating the MMI between these RVs using (7), the
authors of [6] measured the amount of information about X
that was captured by all the FMs inside the bottleneck layer.
They also used the partial information decomposition (PID)
framework to understand how the redundancy and synergy
between different FMs evolved during training. According to
this framework, the MMI I(X; {T i, T j}) between the input
X and the pair of FMs T i and T j can be written as the sum
of four nonnegative IT components: the unique information
associated with T i and T j , redundancy and synergy. The first
two, denoted by Unq(X;T i) and Unq(X;T j), measure the
information about X that can be exclusively provided by T i

and T j respectively. The third, denoted by Rdn(X, {T i, T j})
measures the shared information about X that can be pro-
vided by either T i or T j . Lastly, the fourth, denoted by
Syn(X, {T i, T j}), measures the information about X pro-
vided by the combination of T i and T j (i.e., the information
that cannot be captured by either T i and T j alone). All these
quantities satisfy

I(X; {T i, T j}) =Syn(X, {T i, T j}) +Rdn(X, {T i, T j})
+ Unq(X;T i) + Unq(X;T j),

(8)

I(X;T i) = Rdn(X, {T i, T j}) + Unq(X;T i) (9)

and

I(X;T j) = Rdn(X, {T i, T j}) + Unq(X;T j). (10)

From their definition, it is preferable to maximize
Unq(X;T i), Unq(X;T j) and Syn(X, {T i, T j}) while min-
imizing Rdn(X, {T i, T j}), since this would maximize the
amount of non-redundant information between T i and T j .
However, direct estimation of these quantities currently is not
possible. To circumvent this problem, the authors of [6] pro-
posed two new information quantities to characterize intrinsic
properties of the CNN’s layer representations: redundancy-
synergy trade-off (RST) and weighted non-redundant infor-
mation (WNRI). The RSTij between X , T i and T j measures
the trade-off of redundancy and synergy between these RVs,
being defined as

RSTij = I(X;T i) + I(X;T j)− I(X; {T i, T j})
= Rdn(X; {T i, T j})− Syn(X; {T i, T j}).

(11)

During training, the RST between the input layer and a given
convolutional layer can be estimated by averaging the sum of
the RSTij of each pair of FMs in the latter, which gives
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RST =
2

C(C − 1)

C∑
i=1

C∑
j=i+1

RSTij . (12)

Although a negative RST during training would be ideal (i.e.,
synergy dominates over redundancy), practical experimenta-
tion done so far indicates that it is always positive [6]. Thereby,
it should be as small as possible. The WNRIij between X ,
T i and T j , in turn, measures the amount of non-redundant
information about X that is captured by the pair of FMs T i

and T j , being defined as

WNRIij = 2.I(X; {T i, T j})− I(X;T i)− I(X;T j). (13)

As the RST, the WNRI between the input layer and a given
convolutional layer can be estimated by averaging the sum of
the WNRIij of each pair of FMs in the latter, which results in

WNRI =
2

C(C − 1)

C∑
i=1

C∑
j=i+1

WNRIij . (14)

Expressions (12) and (14) are important because they grant
access to the insights provided by both the redundancy and
synergy without their explicitly estimation. It is evident that,
to maximize the amount of non-redundant information present
in two given FMs, the WNRI’s value should increase during
training. On the other hand, in order to prevent redundancy
from limiting the capacity of those FMs to store non-redundant
information, the RST’s value (always positive in practice)
should be kept as small as possible during training. It is also
worth noting that, by adding (11) and (13), we obtain

I(X; {T i, T j}) = RSTij + WNRIij , (15)

which suggests that, from (12) and (14), we obtain

RST% =
2

C(C − 1)

C∑
i=1

C∑
j=i+1

RSTij

I(X; {T i, T j})
(16)

and

WNRI% =
2

C(C − 1)

C∑
i=1

C∑
j=i+1

WNRIij
I(X; {T i, T j})

. (17)

Equations (16) and (17) show the percentages that the RST and
WNRI account for the MMI in each pair of FMs, respectively.

III. EXPERIMENTAL PROCEDURES AND RESULTS

The real-world dataset "Wiki-Art: Visual Art Encyclopedia"
[11] was selected for training and evaluation of the CAE. It has
a size of 37 GB and consists of 72.619 RGB images of various
works of art, with distinct qualities and dimensions, distributed
between 14 different classes according to their classification
(e.g, abstract and animal paintings). This dataset was chosen
due to the substantial differences between the themes of its
images and the peculiarities of their various authors’ painting

styles, which make it very rich from an information standpoint.
Before the experiment, the images contained in the dataset
were shuffled and partitioned into 75% of the examples for
training and 25% for testing. Besides conversion from RGB
to grayscale and resizing of the images to 128×128 pixels, no
image pre-processing was conducted. The codes were written
in Python using the Keras API and various Python libraries.

Two symmetric CAEs, denoted by CAE_1 and CAE_2,
were used in the experiments. Both consisted of seven hidden
convolutional layers: three were located in the encoder, one
in the bottleneck and three in the decoder. Table I contains
the amount of FMs inside the bottleneck (Z), first (Conv_1),
second (Conv_2) and third (Conv_3) convolutional layers of
both CAEs’ encoders. All layes used the rectified linear unit
(ReLU) function and had stride 1. After each layer other than
the Z one, there was a Max Pooling layer with stride 2.

TABLE I
CAES’ ENCODERS’ SPECIFICATIONS.

Conv_1 Conv_2 Conv_3 Z

CAE_1 16 32 64 8
CAE_2 64 32 16 8

These CAEs were chosen to investigate the effects, caused by
the FMs’ placement inside the convolutional layers, on the
information quantities’ evolution during training. The exper-
iment was conducted using the Python 3 Google Computer
Engine backend (GPU) with 83,49 GB of RAM and 166,83
GB of Disk. The CAE was trained via SGD using the “Adam”
optimizer and the MSE loss function. A mini-batch size of
128 was adopted, and the CAE was trained for 50 epochs
in order to allow the information quantities’ stabilization. For
their estimation, we fixed α = 2 and used the radial basis
function (RBF) kernel often used in the literature [5], [6] to
obtain the Gram matrices. The kernel size σ is determined
based on Silverman’s rule of thumb σ = h.N−1/(4+d), where
N is the mini-batch’s size, d is the sample dimensionality, and
h is an empirical value selected experimentally. Similarly to
[6], we pick h = 5. Differently from them, however, no vector
rastering was done in order to preserve the spatial relationships
between neighboring pixels.

A. Experimental Results

Before the experiment, the images were shuffled and sep-
arated into 425 mini-batches for training, each containing
128 images. The information quantities were estimated after
each epoch’s completion. The evolution of the information
quantities’ magnitudes during the training of CAE_1 and
CAE_2 are depicted in Figs. 1 and 2, respectively. Moreover,
during the last epoch of the training of both architectures,
it was observed that the MSE between the input and its
reconstruction remained below 0,015.

IV. DISCUSSION OF THE EXPERIMENTAL RESULTS

In both figures it is evident that, the further a given layer is
from the CAE’s input, the slower its entropy will converge to
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the MMI between the CAE’s input and output. This is expected
due to the fact that information is lost when propagated
through the CNN. Therefore, the deeper a hidden layer is, the
larger will be the amount of epochs necessary for its entropy
to converge to the MMI. One can also see that, even after the
entropy of a given encoder layer converges, the values of both
its RST and WNRI can keep changing during training. They
also show that, even though CAE_1 and CAE_2 have similar
structures and the same bottleneck size, the placement of the
FMs inside Conv_1 and Conv_3 has a substantial impact on
the value to which the codes’s entropies converge.

These results show that, differently from what was observed
in [9], the CNN’s code entropy cannot be used as the sole
KPI for evaluating the bottleneck’s size adequacy. From its
definition, it is clear that it is desirable for the bottleneck’s
WNRI value to be as large as possible, because it indicates
that a larger amount of the information stored in its code is
non-redundant. The fact that both the RST and WNRI continue
to evolve in spite of the convergence of the code’s entropy,
indicates that their evolution and convergence should also be
taken into account when evaluating the adequacy (or not) of
the bottleneck’s size. This is, in turn, due to the fact that both
quantities are intrinsically related with the amount of non-
redundant information stored inside the FMs of the bottleneck
layer, whose maximization should be one of the CAE’s main
goals. Furthermore, it suggests that the convergence of the
bottleneck’s WNRI can be used as a parameter for evaluation
of the CAE’s training process. Its evolution during it may
indicate the CAE’s effort to maximize the amount of non-
redundant information, which indicates that its convergence
can be an indicator of the interruption of this effort. However,
more studies with different architectures and datasets are
necessary to verify the possibility of using the WNRI to this
end.

The results also show that CAE_1 clearly had a superior
performance than CAE_2 from an information standpoint.
This is shown by the fact that the entropy of CAE_1’s codes
converged to the MMI between input and output, while the
entropy of CAE_2’s converged to a value almost 1 bit lower.
Also, the value reached by CAE_1’s bottleneck layer’s WNRI,
whose convergence was not even achieved, is almost twice as
large as that to which the bottleneck layer’s WNRI of CAE_2
converged to. These results indicate that not only CAE_1 was
able to capture the statistical structure of the dataset, but also
that it did so while continuously increasing the amount of
non-redundant information in its codes. Given the structures
of CAE_1 and CAE_2, these results may suggest that, instead
of using a larger number of FMs in the shallower layers
(as is commonly done), using less FMs in these layers and
more in deeper ones may yield more positive results from an
information perspective. This observation is consistent with
the results obtained in various repetitions of this experiment
conducted by the authors, whose results cannot be shown in
this work due to space limitations.

V. CONCLUSION AND FUTURE WORK

This work presents a study of a CAE from an ITL perspec-
tive by using the efficient matrix-based information estimators

proposed in [8]. The main scope of this study was to inves-
tigate if the method for automatic estimation of the optimal
dimension of the bottleneck layer in densely connected SAEs
proposed in [9] could be extended for the sizing of CAEs. In
order to so, the evolution of different information quantities
associated with multiple layers was regularly evaluated during
their training. The results may suggest that the entropy of the
codes cannot be used as the sole KPI for CAEs due to the fact
that its convergence does not imply the convergence of both
the RST and WNRI, whose evolution indicates an effort by the
CAE to maximize the amount of non-redundant information
stored in its bottleneck. Also, the WNRI’s convergence may
indicate the interruption of this effort, which could make it
useful as a KPI for the training process quality, although
further investigation is necessary to validate this hypothesis.
Furthermore, it is worth mentioning that, by resizing the
images to 128× 128 pixels, some of their elements’ variance
(e.g., shape of objects) most likely increased, which probably
influenced the information quantities estimated. In order to
prevent this issue, we suggest that future works use CAEs
capable of processing inputs with variable sizes, thereby
eliminating the need for their resizing. Finally, the experiment
also indicates that, by placing more FMs inside the deeper
convolutional layers than in the shallower ones, the CAEs
may be capable of yielding better results from an information
perspective. We also leave further evaluation of this possibility
as a future work.
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Fig. 1. Evolution of the CAE_1’s information quantities’ magnitudes. Fig. 2. Evolution of the CAE_2’s information quantities’ magnitudes.


