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Symbol Detection Performance and Complexity in
Large-scale MIMO Systems
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Abstract— This paper presents an unified analysis of multiple-
input multiple-output (MIMO) detectors which aims to shed light
on the compromise between complexity and symbol error rate
(SER) performance, showing the conditions in which each de-
tector is more interesting. To demonstrate this unified approach,
five detectors with different levels of complexity and performance
are evaluated under a large-scale MIMO scenario.

Keywords— MIMO-OFDM detectors, computational complex-
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I. INTRODUCTION

The high demand for data rates in wireless communication
networks in the last decades has pushed the development of
multiple-input multiple-output (MIMO) systems for mobile
networks. The advent of fifth generation of mobile network
(5G) systems has introduced different operational modes
where very high throughput allied with very low latency
is supported, all this considering the massive connectivity
of devices to the base station (BS) [1]. Besides, the recent
conception of sixth generation of mobile network (6G) is also
pushing the number of transmitting and receiving antennas in
MIMO system, leading to the so called large-scale MIMO or
massive MIMO [2].

The maximum likelihood detector (MLD) is the benchmark
detector for MIMO systems, since it can achieve the best
symbol error rate (SER) performance by harvesting all di-
versity available in the communication channel. However, it
is prohibitively complex, thus hindering its use in practical
systems. On the other hand, linear detectors based on the chan-
nel matrix inversion, such as zero-forcing (ZF) and minimum
mean square error (MMSE), have low complexity, however at
the cost of poor SER performance, since these detectors are
not able to harvest any diversity from the channel. Therefore,
the sphere detector (SD) has been proposed as a way to achieve
the MLD performance with reduced complexity, by restraining
the search for the most likely transmitted sequence to a set
within the hypersphere [3]. However, the fixed-complexity SD
[4], for example, presents a much smaller complexity than the
MLD, but still has a complexity that grows exponentially with
the square root of the number of transmit antennas. Therefore,
many MIMO detectors have been proposed in order to achieve
a better trade-off between performance and complexity [4].
Among these, the approximate message-passing (AMP) [5]
excels for its very low complexity, while the probability data
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association (PDA) [6] achieves acceptable performance with a
polynomial complexity.

In this work, the SER performance and the respective
computational complexity of baseband MIMO detectors are
studied, assuming a MIMO system that scales from 4 × 4
up to 32 × 64 antennas. Moreover, a rich scattering chan-
nel environment is considered, which motivated the use of
orthogonal frequency division multiplexing (OFDM) [7] for
symbol transmission. Consequently, a flat Rayleigh channel
can be assumed for each OFDM subcarrier without loss of
generality, considering also that the channel is constant over
the duration of an OFDM frame. In this context, five detectors
are compared in this paper, namely, MLD as a benchmark,
SD, AMP, PDA, and ZF. The main contribution of this work
is to present an unified analysis that takes into account both
SER performance and complexity metrics and, consequently,
to compare these different detectors under the same chan-
nel conditions. This approach allows for an analysis of the
trade-off between complexity and SER performance, showing
the conditions in which each detector is more interesting.

In order to achieve this goal, this paper is organized as
follows: Section II brings the system model used to draw a fair
comparison of all detectors, Section III describes the principles
of each detector, Section IV brings the complexity and SER
performance analysis, and Section V concludes the paper.

II. SYSTEM MODEL

We assume a Nt × Nr (Nt ≤ Nr) point-to-point baseband
MIMO system, where Nt denotes the number of transmit-
ting antennas and Nr the number of receiving antennas,
respectively. Therefore, a bit stream is demultiplexed into Nt
substreams, which in turn are mapped into a sequence of com-
plex M -quadrature amplitude modulation (QAM) symbols.
These symbols are transmitted by their respective transmitting
antenna using OFDM, for which it is assumed that the cyclic
prefix (CP) length is larger than the maximum delay spread
for all NtNr channels.

Consequently, for a given OFDM symbol, Nt M -QAM
symbols are transmitted in the same subcarrier. Hence, after
the discrete Fourier transform (DFT) operation on the receiver,
the received baseband signal at the kth subcarrier is given by

r̃k = H̃kãk + ñk, (1)

for which H̃k ∈ CNr×Nt is the matrix containing all channel
frequency responses for the kth OFDM subcarrier; ãk ∈ CNt

represents the symbol vector transmitted by the Nt transmitting
antennas on the kth subcarrier and ñk ∈ CNr is the complex
additive white Gaussian noise (AWGN) vector at the kth



XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

subcarrier for the Nr receiving antennas, with zero mean and
covariance matrix given by σ2INr . For convenience, consider
the real-valued representation [4] for MIMO systems, which
allows us to rewrite (1) as

rk = Hkak + nk, (2)

where

rk =
[
ℜ(r̃k)T ℑ(r̃k)T]T ∈ R2Nr , ∀ k, (3)

Hk =

[
ℜ(H̃k) −ℑ(H̃k)

ℑ(H̃k) ℜ(H̃k)

]
∈ R2Nr×2Nt , ∀ k, (4)

with ak and nk having the same structure as rk, but with
the real and imaginary values of ãk and ñk, respectively.
Moreover, we assume that ℜ(ãk) ∈ SNt and ℑ(ãk) ∈
SNt , that is, the real and imaginary parts of ãk can take
on different values from the finite set of coordinates per-
taining to the square M -QAM constellation. Hence, let
S = {±E0,±3E0, . . . ,±(

√
M − 1)E0}, for E0 =

√
3

2(M−1) ,
such that the constellation energy is normalized to 1 (unity).

III. MIMO DETECTORS

A. Maximum Likelihood

The MLD estimates the symbol vector by solving:
argmin ∥rk − Hkak∥22, for which ak, âk ∈ S2Nt . Although
achieving the best SER performance, the associated high
complexity hinders its feasibility in practical systems. Next,
sub-optimal detectors with more affordable complexity are
described.

B. Sphere Detector

The SD is based on a space reduced search over a Nt-
dimensional hypersphere with radius d. Thus, the SD considers
only the solutions for

∥rk −Hkak∥2 ≤ d2. (5)

However, determining the ideal search radius and the points
inside a Nt-dimensional sphere can still be a complex task. To
reduce the complexity, a wise approach is to iteratively incre-
ment the dimension of the hypersphere, as the points inside of
a k− 1 dimensional sphere are still inside of a k dimensional
sphere and as lower the dimension gets the less complex the
search becomes [3]. We can use a QR decomposition on Hk

to exploit some useful properties. Firstly, RNt×Nt is upper
right triangular; Secondly, QNr×Nr is an orthonormal matrix.
We also introduce âk = H†

krk, the least-squares estimation of
the transmitted symbol ak, where the Moore-Penrose pseudo
inverse is defined by H†

k =
(
HH

k Hk

)−1
Hk, and apply in (5),

leading to

d2 − ∥rk∥2 + ∥Hkâk∥2 ≥ ∥R(âk − ak)∥2. (6)

The upper triangular R induces a tree with Nt levels and
M branches per node. Thus, the symbol estimation based on
(6) can be performed as a depth-first search in this tree [4]
and

d′2 ≥
Nt∑
i=1

Nt∑
j=i

R2
i,j [(âk)j − (ak)j ]

2, (7)

where, d′2 = d2 − ∥rk∥2 + ∥Hkâk∥2. Taking the square root
on both sides and expanding the right-hand side, we have a
lower bound and an upper bound for (ak)j , whereby equation
(8) is a recurrence formula for the lower and upper bounds:⌈

(âk)i|i+1 −
d′i
Ri,i

⌉
≤ (ak)i ≤

⌊
(âk)i|i+1 +

d′i
Ri,i

⌋
, (8)

wherein

(âk)i|i+1 = (âk)i −
Nt∑

j=i+1

Ri,j

Ri,i
((ak)j − (âk)j), (9)

and

d′2i = d′2i+1 −R2
i+1,i+1[(ak)i+1 − (âk)i+1|i+2]

2. (10)

Once the bounds are evaluated, the candidates for each (ak)i
are the constellation symbols that lies in between the upper
and lower bounds. When all the symbols have a candidate,
that is, the detector reached (ak)1, the search process starts
over again with a new radius equal to the final distance,
d′2Nt
− d′21 +R2

1,1[(ak)1 − (âk)1|2]
2, reducing the tree length.

If there is no candidate for some (ak)i, the detector assesses
the previous candidates for (ak)i+1, (ak)i+2 and so on. The
algorithm stops when the search backtracks to (ak)Nt and
there is no other possible candidate solution, as described in
Algorithm 1.

Algorithm 1 The Sphere Detector

Require: rk, d, QR = Hk, âk = H†
krk

1: i← Nt, (âk)i|i+1 = (âk)Nt

2: d′2 ← d2 − ∥rk∥2 + ∥Hkâk∥2
3: Compute LB[(ak)Nt ] and UB[(ak)Nt ] from (8)
4: (ak)i ← LB[(ak)i]− 1
5: repeat
6: (ak)i ← (ak)i + 1
7: if (ak)i ≤ UB[(ak)i] then
8: if i > 1 then
9: i← i− 1

10: Compute (âk)i|i+1 from (9) and d′2i from (10)
11: Compute LB[(ak)i] and UB[(ak)i] from (8)
12: (ak)i ← LB[(ak)i]− 1
13: else
14: Save ak, d′2Nt

− d′21 +R2
1,1[(ak)1 − (âk)1|2]

2

15: end if
16: else
17: i← i+ 1
18: end if
19: until i = Nt + 1

The SD performance is tightly coupled to the choice of the
initial radius. If the radius is too large, the search will not be
efficient. On the other hand, if the radius is too short, then
there will be no candidates within the sphere.

C. Zero Forcing

The ZF is based on equalizing (2) by the inverse of the
channel matrix. If Hk is not square, the Moore-Penrose pseudo
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inverse, H†
k, can be used to achieve the equalizing matrix.

Then, the estimated symbol is equal to the constellation
symbol with the shorter distance to the equalized received
symbol:

âk = argmin
ak∈S2Nt

∥H†
krk − ak∥22, (11)

also known as the slicing operation S(H†
krk). Applying (2)

in (11) leads to

H†
krk − ak = (INtak +H†

knk)− ak, (12)

where we can notice that the ZF detector nullifies the effect
of interfering symbols, as the identity matrix is expected as
the result of the product between the pseudo-inverse and the
channel matrix [4]. On the other hand, the noise can be
amplified if det

(
HT

kHk

)
is small, which is the case when

the channel presents severe fading. Consequently, the noise
enhancement can severely affect the ZF SER performance in
time-variant non-line-of-sight (NLOS) channels.

Algorithm 2 describes ZF detection procedure.

Algorithm 2 The Zero-Forcing Detector
Require: Hk, rk

1: H†
k ← (HH

k Hk)
−1HH

k

2: r̂k ← H†
krk

3: for r̂k = each line in r̂k do
4: âk = argmin

ak∈S2Nt

|r̂j − ak|2

5: end for

D. Probability Data Association

Before the detection task is carried out by the PDA detector,
the received signal, rk, is equalized by the ZF, leading to

zk = H†
krk = ak + v, (13)

where v = H†
kn is the enhanced AWGN.

Rewriting (13), leads to

zk = eiak(i)+
∑
j ̸=i

ejak(j) + v︸ ︷︷ ︸
Vi

, ∀ i, j ∈ {0, 1, . . . , 2Nt−1},

(14)
where ei is the vector with 1 (one) at its ith entry and 0 (zero)
otherwise and Vi is the effective noise contaminating ak(i) [6].
The main challenge is to detect the symbol transmitted by the
ith antenna, while considering that all other j ̸= i transmitted
symbols are interference added to Vi.

The PDA detector associates a probability vector pi ∈
R

√
M for each ak(i), which is given by the evaluation of

Pm(ak(i) = qm | zk, {pj}∀j ̸=i); qm ∈ S being a coordinate
of the M -QAM constellation and m ∈ {0, 1, . . . ,

√
M−1}. It

is important to remark that the PDA detector use all {pj}∀j ̸=i

associated to interfering symbols already detected, thanks to
its incorporation of a strategy similar to that of successive
interference cancellation (SIC) detectors. For the sake of
simplicity, the subscript (·)k denoting the kth subcarrier will
be omitted at this point.

Assuming that Vi has a Gaussian distribution [6], [8], then
the likelihood function of z | a(i) = qm can be defined as

Pm(z | a(i) = qm) ∝ exp (αm (i)) , (15)

for which,

αm (i) = (z− µi − 0.5eiqm)
T
Ω−1

i eiqm, (16)

wherein

µi =
∑

j ̸=i
ej

(
qTpj

)
,where q = [q0 q1 . . . q√M−1]

T ;

(17)

Ωi =
∑

j ̸=i
eje

T
j

([
q2

]T
pj − µ2

j

)
+ 0.5σ2G−1, (18)

and G−1 = (HTH)−1 is the inverse of the Gram matrix [9]
that accounts for the ZF noise enhancement. The posteriors
probabilities associated to each symbol is given by [8]

pi (m) =
exp (αm (i))∑√
M−1

m=0 exp (αm (i))
. (19)

Algorithm 3 describes the procedure for the PDA detection.

Algorithm 3 The PDA detector
Require: z̃ via (13)
Require: ki (refer to [10, §II-C, p. 222]), ϵ > 0
Ensure: pi (m)← 1√

M
, ∀ m ∀ i

1: repeat
2: for i = 1, 2, . . . , 2Nt do ▷ outer iteration
3: p′

i ← pi

4: Compute µki
from (17)

5: Compute Ωki
from (18)

6: for m = 1, 2, . . . ,
√
M do ▷ inner iteration

7: Calculate αm (ki) from (16)
8: Evaluate (19):
9: Pm(a(ki) = q (m) | z, {pj}∀j ̸=ki

) ≈ pki
(m)

10: end for
11: end for
12: until |pi − p′

i| ≤ ϵ, ∀ i ▷ convergence iteration
13: li ← argmax

m
{pi (m)}, ∀ i

14: Decide transmitted symbols â(i)← qli , ∀ i

E. Approximate Message-Passing

The AMP detector is an approximation of the seminal
messaging passing algorithm, largely used in the context of
graph representations [11]. The AMP detector consists of the
following sequence of updates:

zt = ât +HT (r−Hât) + bt;

bt =
τt

1 + τt−1

[
HT (r−Hât−1) + bt−1

]
; (20)

ât+1 = ηt (zt ; σt) ;

where S (ât) ∈ S2Nt is the estimated transmitted symbol
vector and σt = 0.5σ2 (1 + τt). Additionally, we have

τt =
2Nt

σ2Nr
⟨η′t⟩ , (21)
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wherein ⟨v⟩ = N−1
∑N−1

i=0 v (i) and

η′
t =

∑
qm∈S

q2mPm(at = qm | zt)−


ηt︷ ︸︸ ︷∑

qm∈S

qmPm(at = qm | zt)


2

.

(22)
To elaborate, ηt is the optimal Gaussian denoising function,

where f(x) is operated element-wise for the vector obtained
and thus f : R → R. Therefore, it is a non-linear operation
that improves the quality of the estimates, ât, across multiple
iterations of (20). Interestingly, when we have ât → a, then
the residual term (r−Hât)→ n and bt → 0, which give us
a result in (20) similar to (11).

The main feature of the AMP detector is the lack of matrix
inverses computations. Consequently, not only the global com-
putational complexity is reduced, but also the implementation
in practical systems is simplified. The AMP detector is an
interesting solution when the channel matrix is ill conditioned
and its inverse cannot be obtained.

IV. NUMERICAL RESULTS

In this work, entries of H are drawn from a complex Gaus-
sian random process for all k subcarriers at each transmission
of an OFDM frame and are normalized by 1/

√
Nr. Hence,

we have H̃i,j ∼ CN (0, 1/Nr) , ∀ i, j and, consequently, the
signal-to-noise ratio (SNR) per bit can be expressed as follows,

Γk =
E
[
∥Hkak∥22

]
Nr
√
Mσ2

, ∀ k, (23)

which is assumed to be identical for all subcarries. Note,
however, that the instantaneous channel gains differ among
subcarriers at a given symbol transmission cycle. The proba-
bility of symbol vector error, P (â ̸= a), obtained by averaging
the results from multiple Monte Carlo simulations, represents
the performance metric of the detectors. Moreover, the total
number of Monte Carlo trials was attached to the symbol
vector errors, such that new trials were interrupted as the mark
of 104 errors was reached.

A. Computational Complexity

The MLD computational complexity is given by
O(MNt) [4], whereas for the SD we considered O(M

√
Nt)

from the fixed-complexity SD [4, §VIII-D, p. 20], since
its performance is near–optimum. Furthermore, according
to the guidelines presented in [12, §IV-C, p. 122404], the
computation complexity of the PDA detector is approximately
given by

O(N4
t +
√
MN3

t +N2
t Nr +NtNr), (24)

per convergence iteration. Note that

O(8N3
t + 16N2

t Nr + 4NtNr), (25)

refers to the local cost of (13) or, equivalently, of the ZF
detector given by (11). Moreover, the inverse of G costs
O(8N3

t ) and O(16N4
t + 8

√
M(N3

t +N2
t )) is the complexity

due to computing (16), for which Ω−1
i costs O(8N3

t ) [6] per
outer iteration in Algorithm 3. It was verified that the PDA

TABLE I
COMPUTATIONAL COMPLEXITY OF DETECTORS STUDIED IN THIS WORK.

Detector Global Computational Complexity

AMP O(NINtNr +NINt
√
M)

ZF O(N3
t +N2

t Nr +NtNr)

PDA O(N4
t +

√
MN3

t +N2
t Nr +NtNr)

SD O(M
√

Nt )

MLD O(MNt )

algorithm converges within an average of less than 2 iterations
in Algorithm 3, considering ϵ = 10−3 and P (â ̸= a) < 10−2,
for all scenarios of interest. Hence, we assume the PDA
complexity per iteration is approximately the global PDA
complexity. Finally, for the AMP detector, NI refers to the
number of iterations or updates executed in (20). Table I
details the global computational complexity of the detectors
considered in this paper.

B. SER Performance

Here, we will consider two scenarios: i) square MIMO
where Nt = Nr and; ii) underloaded MIMO, where Nt < Nr.

1) Square MIMO Systems: Figures 1 (a) and (b) present
the SER performance of all detectors considered in this paper
for 16-QAM, assuming 4× 4 and 8× 8 MIMO, respectively.

From Figures 1 (a) and (b), we can see that the MLD
and SD outperform significantly the remaining detectors. It is
important to highlight that the PDA detector improves largely
upon the performance of the ZF, which, as demonstrated in
(13), is in fact used by the PDA as a preprocessing step in
symbol detection. Furthermore, from Figures 1 (a) and (b)
we conclude that the AMP suffers from poor performance
in square MIMO systems. This behaviour potentially stems
from the high inter antenna interference (IAI) present in
square MIMO systems, which makes the distribution of the
received signal depart from the typical independent identically
distributed (iid) Gaussian. This is a crucial violation of the
assumption made in operations carried out in (22).

2) Underloaded MIMO Systems: Figures 1 (c), (d) and
(e) bring the SER performance considering the underloaded
MIMO scenario, 16-QAM is considered here. The number of
antennas is set to Nr = 64 and Nt = 8, 16, 32. In Figure 1 (c)
we can see that the performance of all detectors significantly
improves and the performance gap among them is reduced,
with the PDA and ZF approaching the MLD performance and
the AMP reaching the MLD performance for high SNR. The
channel hardening is the main reason for this behaviour, since
it makes the fading of MIMO channels behave deterministi-
cally [13]. This benefit is observed for the PDA detector also
for 16 and 32 transmitting antennas, as can be seen in Figures 1
(d) and (e). As the number of transmitting antennas increases,
ZF and AMP SER performances deteriorate considerably, to
the point where the AMP detector presents an error floor. The
AMP can only outperforms the ZF in the 32× 64 MIMO for
SNR between 9 dB and 14 dB, where the IAI is not prominent
and the ZF noise enhancement is still high.
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Fig. 1. Estimation of the detection performance for the MLD, SD, PDA, ZF and AMP detectors given in terms of SER (P (â ̸= a)), for a range of SNR
values. The square (a) 4×4 and (b) 8×8 and underloaded (c) 8×64, (d) 16×64 and (e) 32×64 MIMO systems are considered, also assuming a 16-QAM
constellation.

TABLE II
THE COMPLEXITY-PERFORMANCE TRADE-OFF. THE TOPMOST ROW

SHOWS THE HIGHEST ORDER TERM OF THE COMPLEXITY.

Per. ∆

Complexity
(·)Nt N4

t N3
t N2

t

≥ 3 (dB) MLD/SD (Nt = Nr) PDA (Nt = Nr) — —
[1, 3) (dB) MLD (16, 32× 64) PDA (16, 32× 64) ZF (8× 64) AMP (32× 64)
< 1 (dB) MLD (8× 64) PDA (8× 64) ZF (16× 64) —

C. Complexity-Performance Trade-off

Given the SER performance analysis done in Subsection IV-
B and the computation complexity investigation presented in
Subsection IV-A, it may be of interest that a joint complexity-
performance analysis is produced comparing all detectors
presented in this work. Table II brings the relative detection
performance difference (∆) obtained by a given detector and
its next best, meaning that each cell of Table II is filled by a
detector, if the other one closest in performance is so within
any of the ranges expressed on the first column. It is important
to mention that the trade-off analysis considers the region of
values where P (â ̸= a) ∼ [10−3, 10−2]. Note also that these
detectors are ranked in descending order, from more to less
complex as columns of Table II progress to the right.

From Table II, we can observe that detectors located near the
upper-left corner yield greater gains in performance, but may
be prohibitively complex. However, in specific scenarios, such
as 8×64 and 32×64 MIMO, Table II shows that a good trade-
off is achieved by the ZF and AMP detectors, respectively.
Finally, note that for a heavily underloaded MIMO scenario,
that is, 8 × 64, the PDA ceases to show an attractive trade-
off, since the performance gap may be to small and the
AMP, which is orders-of-magnitude less complex, can be used
without significant losses in performance.

V. CONCLUSION

As devices limited in computational power start exploiting
MIMO systems, the complexity of the detectors becomes an
important aspect to be considered. Several MIMO detectors
has been proposed recently aiming for presenting more attrac-
tive trade-off between complexity and SER performance. In
this paper, we have analyzed such trade-off for 5 (five) detec-
tors widely present in the literature, considering the complexity
and SER performance for MIMO systems ranging from 4× 4
up to 32 × 64 antennas. It shows that only the SD detector

is able to achieve MLD performance for square MIMO. The
PDA detector can achieve near-optimum performance in the
underloaded scenarios, but the SER performance gap com-
pared with the ZF might not justify the higher PDA complexity
when Nr >> Nt. In this case, even the AMP can become an
interesting choice, mainly for high SNR. Otherwise, the AMP
is only interesting in very specific situations where the IAI is
not the main limitation for the system SER performance and
also when the ZF noise enhancement is high.
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