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An IoT Crop Recommendation System with k-NN
and LoRa for Precision Farming
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Abstract— Choosing the planting site is a complex and decisive
task for crop success, but data can help with this task. Wireless
Sensor Networks can capture large volumes of data, but manual
analysis may be impossible depending on the number of devices
and sensors deployed. Furthermore, Machine Learning tech-
niques are handy for processing data and detecting patterns and
are widely used nowadays. The union of these two technologies
is promising, presenting itself as a path to precision agriculture.
This paper proposes a system based on Wireless Sensor Networks
capable of detecting the best regions to for cultivating plants such
as Kidney Beans, Pomegranate, and Apple. The system uses LoRa
technology and Time Division Multiplexing for excellent cover-
age, various devices at the same channel, and local processing,
eliminating the need for the Internet.
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I. INTRODUCTION

Agriculture is a significant factor that sustains human life
on planet earth. It is through agriculture that much of the
food consumed is produced today. However, the rapid ex-
pansion of cities and the necessary reduction of deforesta-
tion make the process of choice and use of a local for
planting extremely important. Analogously, the local planting
conditions are decisive variables in plant development and
production. Moreover, agriculture is now a significant source
of growth in the economy of many countries. At the same time,
farmers continue to use traditional, less precise methods in
their planting. So that efficiency, production, and fruit quality
suffer. Nowadays, different technologies are researched and
developed for agriculture, including Wireless Sensor Networks
(WSN)[1].

WSN is an approach that helps farmers transform traditional
agriculture into precision farming. This approach can be
helpful in different aspects, allowing collect data periodically,
real-time data processing and analysis, among other utilities.
In WSN, sensors are connected and spread across the crop
for data capture and transmission, and it is widely used for
climate change monitoring. In addition, sensor networks are
inexpensive and flexible in their implementation and can be
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applied to the most diverse scenarios and processes, including
agriculture [2].

Most WSN applications in agriculture periodically collect
crop-relevant data such as temperature, humidity, and minerals
in the soil. All these data can be used to increase crop yield
and quality. Therefore, choosing the ideal location for planting
plays a crucial role in the outcome of the harvest and must be
carefully chosen.

However, manually analyzing this large amount of data
can become a challenge. Because of this, several Machine
Learning (ML) applications have been developed and proposed
for automatic data processing and classification. These appli-
cations can process the collected data and present relevant
information to the farmer. Many agricultural applications have
been developed for this purpose to automate data processing
on a large scale [3].

This paper presents a WSN that uses Long Range com-
munication (LoRa) and ML to classify and identify the best
locations for planting specific plants. The application uses mi-
crocontrollers, microprocessors, LoRa modules, batteries, and
sensors to perform all computation at the edge, eliminating the
necessity of an Internet connection. This way, the application
can be used in remote locations where mobile networks and
the Internet are unavailable.

The remainder of this paper is organized as follows. Section
II discusses the literature reviews and the main technologies
used in IoT agriculture solutions. Section III describes the
proposed IoT application architecture and gives a detailed
workflow of the services provided. Section IV presents and
analyses the results instead. Finally, Section V concludes the
paper and suggests further future works.

II. RELATED WORKS

In [4], several sensors are used in a WSN approach to collect
data on the plantation autonomously. A mobile application
gives the user access to the collected data in real-time. These
local data can be used to increase the efficiency and quality of
the crop. The authors main proposal is to offer the possibility
of monitoring his crop from anywhere at any time.

WSN can play an essential role in data collection related to
disease prediction. Authors in [5] propose a WSN application
to predict crop diseases in agriculture. This application uses
ML models running in the cloud, requiring mandatory Internet
access for its implementation. Applications for greenhouses
are also being developed. The control of temperature and
humidity in a greenhouse is essential for developing the
species cultivated there. Therefore, authors in [6] proposed an
application capable of predicting the ambient temperature us-
ing Artificial Neural Networks (ANN). This way, greenhouses
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become more autonomous and precise regarding temperature
control. Also, the use of data in the decision process is one
pillar of precision agriculture.

In [7] an application for agriculture based on WSN that
encompasses ML and computer vision is proposed. However,
most of the processing is not done locally, requiring the user
to have a reliable Internet connection for the system to work.
At the same time, the solution integrates technologies such
as LoRa and 4G, thus broadening the applicable scenarios.
Through LoRa communication, it is possible to reach signifi-
cant distances, and 4G has a wide diffusion all over the globe.
The application aims to use the collected images and data to
improve planting efficiency, thus achieving better results.

ML is also used for disaster prediction, and the authors in
[8] developed a WSN solution for flood prediction. Flooding
is one of the most common disasters and can cause significant
damage to crops. The proposed solution uses WSN to collect
data such as humidity, pressure, and water level. Afterward,
it injects this data into the input of an ANN responsible for
predicting the location’s flooding. This way, the farmer ends
up being able to mitigate the possible damage caused by the
disaster.

The proposed system makes use of a WSN for monitoring
variables and LoRa technology for communication between
devices. A machine learning model is also installed to indicate
the best planting options for a given region.

III. PROPOSED WSN AND ML MODEL

The main objective of the WSN system is to present what
crop type can benefit from the local conditions. The system is
composed of two primary devices named Sensor and Collector
nodes. For that, the Sensor node periodically captures local
data and sends it through LoRa to the Collector node. Then,
the collector node real-time analyzes the captured data and
presents what of the 22 crop varieties can take more advantage
of the presenting variables. With this approach, farmers can
monitor various locations simultaneously and choose better
locations to plant. Figure 1 shows an overview of the entire
system.

To capture metrics of different and distant locations simul-
taneously, all the two devices use LoRa to exchange data
in a Machine-to-Machine approach. LoRa is a low-power
Radio Frequency (RF) communication generally used in low-
transmission rates and long-distance scenarios. The technology
is an excellent option for IoT devices and sensor network
applications [9]. Time Division Multiplexing (TDM) is the
technique used to allow multiple sensor nodes to work within
a single LoRa channel, so each sensor node has a set period
allowed to transmit data. The receiver side always waits for
messages and uploads all the information to the Internet
through the Message Queuing Telemetry Transport (MQTT)
protocol. The MQTT is a lightweight publish-subscribe-based
messaging protocol extensively used in IoT applications [10].
The protocol is developed to connect devices in a remote
location with limited network bandwidth. The MQTT in the
application sends the data to the NodeRED [11] tool, which is
responsible for inserting the data into the database, dashboard,
and ML model.

The sensing device comprises Arduino Uno R3, batteries,
LoRa module, and sensors. The prototyping board contains a
microcontroller responsible for reading, pre-processing, and
controlling information flow in the sensor node. Batteries
are necessary to allow the implementation in remote zones,
the LoRa module for transmitting all the captured data, and
sensors are responsible for collecting the local data. The sen-
sors used are DHT11 (humidity and temperature sensor) and
hygrometer (soil moisture sensor). The pre-processing done by
the Sensor node is in structuring the data in JavaScript Object
Notation (JSON) structure. This format is later transformed
into a JSON in the Collector node and injected into the input
of the ML model.

The Collector node comprises Raspberry Pi 4B, LoRa
module, and batteries. The board is responsible for receiving,
processing, and uploading the data to the cloud. The entire
system offers an online and offline database and dashboard, al-
lowing heterogeneous implementation scenarios. LoRa module
is necessary to guarantee a long-range connection to receive
the sensing nodes data. Once received, all data in string format
is transformed into a JSON file and sent to the ML model for
real-time sensor data classification. The model output is stored
in a cloud and offline time-series database called InfluxDB.
Afterward, a cloud dashboard captures the data and shows the
results for the final user.

K-Nearest Neighbors (k-NN) were chosen among the var-
ious possible techniques to classify the collected data. The
technique was chosen because it allows clustering of the data,
trying to identify patterns in their behavior. k-NN follows
instance-based learning, where all computations are postponed
until the time of classification. The classification takes place
by considering the majority vote of its neighbors, basing the
classification on the same class as its closest neighbors. During
the training period, N clusters with similar characteristics are
created. When inserted an unknown sample into the model, all
the distances between the samples inserted in training and the
new observation can be computed [13]. Some proceedings are
followed to develop all these ML capabilities: (I) Data mining,
(II) Model training, and (IV) Deployment.

The dataset used [16] in the application contains 2200
observations, 8 variables and 22 plant types and their respec-
tive optimal planting conditions. The dataset is already fully
labeled, only mining and adapting the dataset to use only
variables collected by sensors. The data mining process aims
to improve the dataset quality for model training, eliminating
all possible outliers and gaps in the data. First, a dataset scan
is done to ensure that Not a Number (NaN) and outliers values
are not present on the dataset. Afterward, variables that are not
captured by sensors are also taken from the dataset, leaving
only temperature and humidity data in the dataset. Also, a
plot of each crop’s temperature and humidity median and
the standard deviation is used to understand the crop’s ideal
condition of each variable in the model classification. Figure
2 and Figure 3 illustrates these information.

Removing features from the dataset can cause the model
metrics to decay. Therefore, a training run was also performed
using all the variables presented in the dataset to verify
the impact caused on the model’s performance due to their
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Fig. 1. The sensor node captures the data locally and transmits the data to the collector node, which is responsible for processing, storing, and displaying
the data.

Fig. 2. Respective crops and their temperature profiles.

Fig. 3. Respective crops and their humidity profiles.

removal in the previous process. The results of both model
training are presented in section IV, while the conclusion on
the differences is discussed in section V.

The second phase is model training. The training is done
through the Scikit Learn library on a local computer. After,
the final model is exported and installed with Scikit learn and
NodeRED tools on the Raspberry Pi board. The dataset is split
into 80% for training purposes and 20% for model testing.
This approach helps generate performance model metrics and
configure hyperparameters, ensuring a better model score.
The model developed uses the following hyperparameters: 22

Neighbors, Uniform weights, Leaf Size of 10, and Euclidean
distance for Minkowski metric.

The number of classes is generally related to the number
of neighbors used K-NN model. In this case, the number
of neighbors equals the number of classes. The weight pa-
rameter defines the weight function used by the model for
computing the distance of the observation. The model uses
the Uniform approach. In this case, the model makes the
predictions considering all neighbors weighted equally. The
Leaf Size hyperparameter defines the complexity of the model,
affecting the speed of the construction, query, and the memory
required for storage. The default value is 30, but the optimal
value depends on the nature of the problem, and in this case,
the value of 10 is the minimum found that does not affect
the model performance. Finally, the Minkowski metric is the
distance metric used for the tree [14].

The model is deployed on a Raspberry Pi board in the
final step. Some packages are installed in the Raspberry Pi
operational system for real-time classifying of the various
nodes information. Although the main packages used are Scikit
Learn and NodeRED. Scikit Learn is an open-source ML
library that supports supervised and unsupervised learning
[15]. In this case, a supervised multi-label classification is
utilized. The model constructs the clusters during the training
phase based on the relations between observations (tempera-
ture and humidity data) and their respective labels (crop types).
The new observation classifications are done by computing
the distance between the new observation and the already
created clusters. The multi-label technique can classify the
local condition into 22 different crop varieties.

NodeRED runs locally and connects the inputs and outputs
of services as illustrated in Figure 4, making it possible to use
various tools and services in parallel. The final classification
presented by the model is sent directly to the local databases
and cloud through an Application Programming Interface
(API). The database used is InfluxDB, a time-series-based
database. InfluxDB enables local, and cloud databases and
integration with NodeRED and Grafana [12] tools, both of
which were implemented in the application. The simultaneous
implementation of the databases ensures redundancy in the
application and ensures that the application runs entirely
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Fig. 4. Ilustration of the humidity and temperature samples.

offline. The dashboard used is built on top of the Grafana
service. Another API retrieves the database data and shows it
in the dashboard.

The result is displayed in a bar displaying the model’s
classification in different colors. It makes it intuitive for
the user to identify how long that place has been in ideal
conditions for each plant. In addition, several nodes can be
visualized simultaneously. Grafana offers several tools for
customizing the graph’s colors, making it possible to use other
visualization forms.

IV. RESULTS

The testing step can be separated into two stages: (I)
Testing the ML model and (II) Testing communication and
application. The first relates to obtaining metrics such as the
model accuracy, Recall, and F1-Score. The second aims to test
the LoRa communication and the application’s operation.

The model is tested during the training phase. The Scikit
Learn library provides the user with several functions capable
of capturing and displaying metrics about model performance
to the developer. These tools allow measuring each class
results in isolation, getting a deeper and more detailed view of
the model’s capability. The metrics utilized to test the model
classify capacity are: (I) Precision, (II) Recall, and (III) F1-
Score. All individual results presented by the model can be
seen in Table I.

Each metric evaluates different aspects of the model. For
computing each of them, four parameters are used to evaluate
the model performance: True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative(FN). True Pos-
itives determine that the model’s predicted and actual ranking

TABLE I
ISOLATED SCORE OF EACH PLANT IN THE DATASET.

Precision Recall F1-Score

Rice 0.67 0.91 0.77
Maize 0.29 0.28 0.29

Chickpea 0.76 0.86 0.81
Kidneybeans 0.88 1.00 0.94
Pigeonpeas 0.80 0.67 0.73
Mothbeans 0.43 0.53 0.47
Mungbean 0.50 0.45 0.48
Blackgram 1.00 0.59 0.74
Lentil 0.46 0.24 0.32

Pomegranate 1.00 0.90 0.95
Banana 0.38 0.56 0.45
Mango 0.50 0.30 0.37
Grapes 0.50 0.94 0.65

Watermelon 0.75 0.38 0.50
Muskmelon 0.83 0.79 0.81
Apple 0.78 0.96 0.86
Orange 0.78 0.47 0.58
Papaya 0.67 0.57 0.62
Coconut 1.00 0.21 0.35
Cotton 0.75 0.52 0.62
Jute 0.17 0.46 0.25
Coffee 0.35 0.63 0.45

are the same. Similarly, True Negatives indicate that the actual
and predicted values are the same but are now negative. False
Positives, in turn, indicate an error made by the model in
its classification, so the actual and predicted values are not
the same. Finally, the False Negatives also indicate that the
predicted and actual values are not the same, but now negative
[15].

Precision measures how much of all data classified as
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positive is positive.

Precision =
TruePositives(TP )

TruePositives(TP ) + FalsePositives(FP ))

The Recall is an important metric when we do not have
a representative dataset for all included classes. Recall tells
the percentage of data classified as favorable compared to the
number of positives in the sample.

Recall =
TruePositives(TP )

TruePositives(TP ) + FalseNegatives(FN)

F1-Score, in turn, metric unites Precision and recall to bring
a single number that determines the overall quality of our
model.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall

The model presents promising results for some plants
like kidney beans, pomegranate, apple, grapes, chickpea, and
muskmelon that achieve an F1-Score above 80%. In contrast,
the model has difficulty identifying the ideal condition for jute,
maize, lentil, and other plants. Therefore, the applied dataset
does not contain all variables to identify ideal plant locations.
A plot of the temperature and humidity data was made to
better understand the clusters created, as presented in Figure
4.

The model misclassifications are due to the similarity of
the observations, with several plants having the same set of
ideal planting temperature and humidity. Because of this, the
user can choose to cultivate plants with the same temperature
and humidity characteristics or add other sensor types to
the application to create more accurate recommendations. In
summary, although each plant has the exact ideal temperature
and humidity conditions at planting, variables such as Nitro-
gen, Potassium, and Calcium can differentiate and indicate
more precise locations. In the tests performed using these
variables, the model achieved more promising results like
overall Precision of 96.74%, Recall of 92.62%, and F1-Score
of 95.46%.

V. CONCLUSION

This paper proposed a system capable of detecting the best
planting locations for 22 different plants. The system uses
ML and LoRa for classification and long-range communication
between nodes, respectively. The tested system uses only the
local humidity and temperature. However, due to the similari-
ties between the plants, it is necessary to include more soil and
environmental information to allow a more accurate model.
The system works entirely with no necessity of the Internet,
and this approach can ensure greater privacy and security of
the data collected. However, the same functionalities, such
as dashboard and database, are available in the cloud. Thus,
the farmer also has the option to activate the features and
have access to the collected data from any place and time.
New models should be tested and implemented, and new
sensor sets should also be integrated into future studies. Also,
the power consumption of each component in the network,
packet loss during transmission, packet transmission delay, and

error rate should be investigated in future work. The Scikit
Learn library offers several other classification models like
Decision Trees and Random Forests that can be applied for
the same function and guarantee better results. Also, other
sensors such as Nitrogen and Potassium can be integrated into
the application to ensure better accuracy and Precision of the
model in its classifications.
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