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Abstract— Reinforcement Learning (RL) is a promising al-
ternative to traditional methods of user scheduling and beam-
selection (SBS). Most of the current works on this topic adopt
deep RL, in which neural networks allow to adopt state and
action spaces with dimensions larger than the ones supported by
tabular RL. However, while deep RL uses approximations that
prevent them from getting policies that can be guaranteed to
be optimal, tabular RL allows methods that find the optimal
policy. The lack of optimal solutions complicates the proper
interpretation and assessment of results in deep RL applied to
SBS. This paper discusses how optimal policies can be found in
the context of SBS and the associated issues. It also provides
environments based on finite Markov decision processes that
promote reproducible results and support a smooth transition
from simple to more advanced RL problems. The presented
experiments provide a benchmark of state-of-art deep and
tabular RL algorithms, including scenarios for which the optimal
solution is known. The results indicate that there is still room for
improvement concerning deep RL algorithms, which do not reach
the optimal solution in the adopted scenarios. This methodology
not only provides insight into the performance of RL methods
but helps compare new algorithms by first looking at contrived
problems and later expanding the number of states and actions.

Keywords— Reinforcement learning, optimal solutions, schedu-
ling, beam-selection.

I. INTRODUCTION

Millimeter Wave (mmWave) technology allows the 5th
Generation (5G) networks and beyond to accommodate intense
flows of data, providing high Quality of Service (QoS), higher
packet throughput, and lower latency. As mmWave propaga-
tion is more prone to fading and blockage, it depends on
massive Multiple Input Multiple Output (MIMO) techniques,
such as beamforming, to produce directional beams. Analog
beamforming allows directional beams that can increase range
and improve data rate. In this scenario, beam-selection consists
in searching for the best beam to achieve the best combined
channel and better serve the scheduled user [1].

For efficient scheduling and beam-selection (SBS), the Base
Station (BS) can leverage awareness of its surroundings, like
the user locations [2] . Given the tools and concepts guiding
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the design of a Radio Access Network Intelligent Controller
(RIC) in Open Radio Access Network (O-RAN) [3], [4],
even extrinsic information, such as weather (rainy, sunny,
etc.), can be incorporated into the SBS algorithm. Traditional
schedulers are not able to easily incorporate such diverse
sources of information. Reinforcement Learning (RL) is a
good alternative in this case, given the flexibility it provides
concerning the input information. This paper considers RL-
based beam-selection and user scheduling.

In 5G and 6th Generation (6G) networks, decision pro-
cesses, as the one performed in SBS, become increasingly
complex and dynamic. For instance, one traditional way of
gathering information about the environment relies on the
transmission of pilot tones, but this leads to increased network
overhead. Applications of RL aim at decreasing such overhead.
The role of RL in mobile communications is becoming more
relevant, since it is being used in resource allocation [5],
network slicing [6], and congestion control [7], among others.

Some works do not use deep RL, but tabular. In [8], the
authors used Q-learning, a tabular RL method, to perform
beam tracking. In [9], multi-armed bandits were adopted
to perform beam-selection using unmanned aerial vehicles
(UAVs). But most recent work adopts deep RL. For instance,
the authors in [10] used a deep Q-Network (DQN) to manage
robots and improve the efficiency of mmWave MIMO systems.
However, in this and other works, there is no discussion on
how far from the optimal the presented results are.

The work in [11] is close to this paper in the sense that
its authors also studied the optimality of the RL solutions by
using a relatively small MIMO environment, for which the
optimal solution can be obtained analytically. However, in the
current paper, we also investigate scheduling, which brings
extra difficulty due to the need of taking into account the
buffers occupancy to avoid packet drops.

Our environments and simulation tools provide a benchmark
of state-of-art deep and tabular RL algorithms, including
scenarios for which the optimal solution is known. This metho-
dology has as its main objective to compare the performance
of optimal solutions and deep RL algorithms in simple SBS
scenarios since it is usually unfeasible to provide optimal
solutions in complex scenarios.

In summary, the contributions of this paper are:

• discussion of how to find optimal RL solutions in the
context of SBS;

• comparison of state-of-art algorithms and benchmark
definition;
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• open source software for running simulations and repro-
ducing the results.

This paper is organized as follows: Section II presents
the system model and describes RL-based SBS. Section III
discusses the optimal solutions for the Finite Markov Decision
Process (FMDP). Section IV presents the simulations results
and Section V concludes the paper.

II. RL-BASED SCHEDULING AND BEAM SELECTION

This section describes the adopted communication model
and the RL systems.

A. Communication system model

This paper concerns downlink single-user massive MIMO
systems in Vehicle-to-Infrastructure (V2I) scenarios. We as-
sume a single cell with one BS and U User Equipments (UEs).
The number of antennas at the BS is Nt and each UE has a
single omnidirectional antenna. The BS is equipped with a
Uniform Linear Array (ULA) and serves the UEs using an
analog MIMO architecture with Nb beam vectors obtained
from a Discrete Fourier Transform (DFT) codebook [1].

The incoming traffic is stored in buffers located at the BS.
There is one buffer per UE, each with the capacity to store
B packets. The UEs and the BS are positioned in a G ×
G grid-world, as depicted in Fig. 1. The convention adopted
for the UE or BS position in this grid is P (x, y) with x ∈
{0, 1, . . . , G − 1} and y ∈ {0, 1, . . . , G − 1}. P (0, 0) and
P (G − 1, G − 1) are the top-left and right-bottom corners,
respectively. The UEs and BS cannot occupy the same position
at the same time and the BS position is always P (G− 1, 0).
At each time slot t, the UEs randomly move one position left,
right, up, down, or stay at the same position.

Fig. 1: Grid-world proposed for the SBS analysis using
G2 = 36 positions and U = 2 UEs.

This basic description can be used to derive several sce-
narios of interest, depending on the models adopted for the
communication channel, traffic, and mobility. Table I illustra-
tes some of the many options.

In this paper, when simulating mobility according to the
ID sm in Table I, we assume the positions follow specific

TABLE I: Some possible SBS modeling assumptions.

Feature ID
Channel

Channel depends only on position and is
kept constant over time, even along
distinct RL episodes

fc

Still depends on position but channels
vary over time, even within an episode,
according to a stationary “small-scale”
gain distribution.

vc

Traffic
Full buffer: all users always have their
buffers full of packets to be transmitted,
and packets are never dropped

ft

Constant traffic: the same number of
packets arrive at each time slot for all
users

ct

Packet arrival is distributed according to
stationary Poisson distributions (same
statistics over time and episodes)

st

Packet arrival is distributed according to
non-stationary Poisson distributions
(statistics change at each episode and
are kept constant within the episode)

nt

Mobility
Number of UEs is kept constant over
time, even along distinct episodes fu

Number of UEs vary over time, even
within an episode vu

UEs move according to distributions that
do not change over time nor episodes sm

UEs move according to distributions that
change over distinct episodes nm

models of random walk in the two dimensions. This restriction
does not allow one to take the UE direction into account but
decreases the number of states that need to be taken into
account.

Without loss of generality, we assume that the spectral
efficiency associated with the channel of a given user at time
t, coincides with the number of packets that can be sent by
this user at time t.

B. RL system

The RL agent is executed at the BS and has knowledge of
the UE positions and their buffers occupancy. In the scheduling
problem, the agent simply chooses one UE among U UEs. In
the SBS problem, the agent also chooses one beam among
the Nb beams to serve the UE that has been scheduled. In the
following paragraphs, we present the details of the RL system.

The goal of the RL agent is to maximize the long-term
return

R =

Te∑
t=1

rt, (1)

defined as the accumulated reward rt at time t over the episode
duration t = 1, . . . , Te. The adopted reward aims at an agent
minimizing the packet loss and is given by

rt = −ℓt, (2)

where ℓt =
∑

u,t lu,t, u = 1, . . . , U is the sum of the number
of packets lost by all users at time t.

With respect to the RL environment, this paper adopts the
features fc, ct, fu, and sm in Table I. In this environment, we
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assume the simplifying assumption that there are G2 time-
invariant channels that depend only on the UE’s position
(feature fc). The reason is to improve the readability of the
results. We also fixed U for all time instants and episodes
(feature fu), which means that the number of neurons in the
output layer of a deep RL agent can be directly related to U .

The traffic model in the adopted environment is not a full
buffer but constant (ct) and packets may be dropped. Hence,
the scheduling requires an adequate definition of the state,
which includes information about the buffers occupancy, and
a focus on long-term return R to avoid an excessive number of
dropped packets. An agent that can predict the channel spectral
efficiency based on information about the UE trajectory can
better schedule the users. This corresponds to a stochastic
environment because the UEs mobility is not controlled by
the agent, but these distributions are stationary.

We use the adopted environment for both the scheduling
and SBS problems. For scheduling only, we will be able to
obtain the optimal policies. For SBS only deep RL will be
used because the computational cost is relatively large for the
tabular RL methods.

1) Action: We assume that anything that cannot be changed
arbitrarily by the agent is considered to be outside of it and
thus part of its environment [12]. In this paper, the RL agent
deals with SBS and does not control the users mobility. Hence,
mobility is part of the environment and not of the agent’s
actions.

In the scheduling problem, the action would be the sche-
duling of one user among the U UEs, while SBS also takes
into account the choice of one beam among the Nb beams to
serve it. The action space dimension for SBS is

A = U ×Nb. (3)

For instance, considering U = 2 UEs and Nb = 4 beam
vectors, there are A = 8 actions in SBS and A = 2 in
scheduling.

We model the RL state as the vector s = (p,b), where
p is the vector with the positions of all U users and b is
the vector with their buffer occupancy. There are G2 positions
in the grid, but because one is occupied by the BS and the
UEs cannot share the same position, the number of possible
position permutations is

∏U
i=1(G

2−i). Considering the buffer
can be empty, the number of permutations for their occupancy
is (B + 1)U . Therefore, the number S of states is

S =

 U∏
i=1

(G2 − i)

 (B + 1)U . (4)

Assuming G = 6, U = 2 and B = 3, there are S = 19, 040
states.

III. FMDP AND OPTIMAL SOLUTIONS

In this section, we first define notation and then discuss how
to obtain optimal solutions for an FMDP.

A generative FMDP is a tuple (S,A, p(s′, r|s, a), γ), where
γ is the discount factor, S and A are the finite sets of states and
actions, respectively, and p(s′, r|s, a) if the joint probability

for the next state s′ and reward r given the current state s and
action a (Eq. (3.2) in [12]). This model is called generative
because the distribution p(s′, r|s, a) allows the creation of
observations based on states and actions. In some scenarios,
r does not depend on s′, such that p(r|s, a, s′) = p(r|s, a).
Another simplification that is often adopted in practice is that
the reward is a deterministic function of the triple (s, a, s′). In
this case, p(r|s, a, s′) is one for a single value of r and zero
otherwise. If one is implementing the FMDP as a generative
environment, the distribution p(s′, r|s, a) is needed and can be
used, for instance, to randomly generate rewards according to
p(r|s, a, s′) or to obtain the expected value r(s, a, s′) of the
reward for any triple (s, a, s′) as

r(s, a, s′) =
∑
r∈R

r
p(s′, r|s, a)
p(s′|s, a)

. (5)

In many situations, one does not need a generative mo-
del and the goal is to solve the FMDP, which is also
called using it for control. In this case, a non-generative
FMDP model is more convenient,1 and defined as a tuple
(S,A, p(s′|s, a), r(s′, s, a), γ).

In this paper, solving the FMDP means to find the optimal
action-value function q∗(s, a) (defined in Eq. (3.16) of [12]).
When the goal is simply to solve the FMDP, the distribution
p(s′, r|s, a) is not needed, and it suffices to know p(s′|s, a)
and r(s, a, s′).

A. Tabular RL and Optimal Solutions

This subsection discusses optimal policies for the non-
generative FMDP. Note that a policy is represented here as
a matrix of dimension S × A, providing a distribution over
the possible actions for each state. A matrix with the optimal
state values q∗(s, a) can be easily converted into a policy [12].
Hence, the goal is to obtain q∗(s, a). There are two issues to
be circumvented: storage space and computational cost.

Regarding memory consumption, the representation of
p(s′|s, a) and r(s, a, s′) in software can rely on two distinct
arrays, both with dimension S ×A× S. In the adopted envi-
ronment of S = 19, 040 states with A = 8 SBS actions, each
of these arrays demands approximately 10.8 GB considering
elements represented with 4 bytes (single precision).

The computational cost is also O(S2A). When the Bellman
equations are used to solve the FMDP (see, e. g., Eq. (3.16)
of [12]), there are three nested loops, for state s, action a, and
next state s′. The direct implementation of the algorithm may
be highly inefficient when p(s′|s, a) is sparse as in the adopted
grid-world. For instance, when S = 19, 040 states, finding
q∗(s, a) in a regular personal computer takes approximately
30 hours. But instead of an inner loop over s′ (S = 19, 040 in
this example), one can pre-compute the feasible values of s′

for each s and a. Using this approach, q∗(s, a) can be found
in approximately 15 minutes.

Despite this speedup of three orders of magnitude, one can
note that FMDPs suffer not only from the O(S2A) scaling in

1The non-generative model is adopted, e. g., in the “RL Course” by David
Silver, Lecture 2: Markov Decision Process, available at https://www.
youtube.com/watch?v=lfHX2hHRMVQ&t=2594s.

https://www.youtube.com/watch?v=lfHX2hHRMVQ&t=2594s
https://www.youtube.com/watch?v=lfHX2hHRMVQ&t=2594s
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storage and computational cost but from the fact that S often
grows exponentially with the main environment parameters. To
provide insight into alternative strategies to solve FMDPs, the
next paragraphs discuss optimization via integer programming.

B. Integer Programming Optimal Solutions

For the scheduling-only version of the problem we also de-
veloped an integer optimization problem or Integer Program-
ming (IP) problem. Such a problem is formulated to schedule
the users while minimizing the packet loss and constrained
by the spectral efficiency and buffer size limitations. Then,
assume a set of U identical users moving on the grid as defined
in Section II, with a constant packet demand of Du packets
and a buffer of size B.

The problem has three decision variables. The binary vari-
able su,t is equal to 1 if the user u is scheduled by the BS
in the time-slot t. In each time-slot, the user that is scheduled
sends a certain amount of packets, defined by Eu,t, which
varies with the user u position in the time-slot t. If the Du

arriving packets are not all sent due to precarious channel
conditions, the remaining packets are stored in the buffer and
variable qu,t gives the buffer occupancy of user u at the time-
slot t. Therefore, if the buffer is full, the arriving packets must
be discarded. The variable lu,t is equal to the packets lost at
the time-slot t by the user u. The whole IP formulation is
described in Eq. (6).

P1 : min
l

∑
u,t

lu,t (6a)

s.t.

U∑
u=1

su,t ≤ 1, ∀ t ∈ [0, Ne], (6b)

qu,t ≤ B, ∀ u, t, (6c)
su,t · Eu,t + qu,t + lu,t ≥ qu,t−1 +Du, (6d)
qu,t ≥ qu,t−1 − su,t · Eu,t, (6e)

su,t ∈ B, lu,t, qu,t ∈ Z+, (6f)
u ∈ U, (6g)
t ∈ [0, Ne] (6h)

The objective function in Eq. (6a) minimizes the packet
losses. As only one user can be scheduled per time-slot,
constraint (6b) limits the sum of su,t in u to be equal to 1
for each time-slot. Also, the maximum buffer size B upper
limits the variable qu,t, as in constraint (6c). The right-hand
side of the constraint (6d) represents the sum of the packets
already available in the buffer (qu,t−1) and the newly arriving
packets (Du), for the user to take an action. Consequently,
the left-hand side of constraint (6d) defines the three possible
actions for the user u in time-slot t: to have the packets sent
(su,t ·Eu,t), to put the packets in the buffer (qu,t) or to discard
some packets and put the arriving on the buffer (lu,t). The
constraint (6e) assures that if no packet is transmitted at t, the
buffer occupancy is equal or greater to the occupation at t−1.
Constraints (6f-6h) define the domains of the variables.

IV. SIMULATION RESULTS

For evaluating models based on the adopted environment,
1000 episodes were created, each one with a duration Ne =
1000 time-slots. From this set, 800 episodes were reserved for
training and 200 for validation and test. The packet arrival was
kept constant at two packets per time-slot.

The grid is 6×6 (G = 6) positions, with the BS at position
(0, 5) and using a ULA with Nt = 8 antennas.

We assumed U = 2 users. The UEs mobility can be seen as
non-uniform random-walk specified by distinct probabilities
for each user. In case there is no restriction to any of the five
possible movements of a UE, the first UE moves top or down
with the probability of 0.3 and 0.4 is uniformly distributed
to left, right and staying still. The second UE has similar
behavior, but 0.3 is the probability of moving left or right,
while 0.4 is uniformly distributed up, down, and staying still.
In case any UE faces a movement restriction such as the end
of the grid, that mass probability is uniformly reallocated to
valid movements.

A. Results for scheduling-only

The scheduling problem consists of an FMDP with S =
19, 040 states and A = 2 actions. It was tackled with three
distinct approaches: a) solving it via the Bellman equations,
b) solving it with IP, and c) using deep RL with distinct
learning algorithms. These approaches will be identified as
Bellman, IP, and by the name of the specific deep RL learning
algorithm. While solving the Bellman equations iteratively for
the scheduling problem required approximately 15 minutes,
the IP problem took on average only 4.867 seconds.

Theoretically, both IP and Bellman solutions must provide
the same results in this case. Therefore, we assumed that
p(s′|s, a) is not known by the agent and needs to be estimated
by Monte Carlo [12]. This leads to discrepancies that impact
the performance of the Bellman solution.

Due to its flexibility and easy implementation, we chose Sta-
ble Baselines 3 [13], to train the deep RL agents. Among the
various RL libraries, we use 3 popular state-of-arts methods:
PPO (Proximal Policy Optimization),combines ideas from
A2C and use a trust region to improve actor, SAC (Soft Actor-
Critic), which optimizes a stochastic policy in an off-policy
way, and TD3 (Twin Delayed DDPG), which concurrently
learns two Q-functions, by mean square Bellman error minimi-
zation. For all these algorithms we assumed the default values
and did not tune their hyperparameters. The motivation for that
was to evaluate how deep RL performs in such relatively easy
problem and how the state-of-art algorithms compare with the
optimal solution.

In Fig. 2 we show the results for the scheduling problem
using histograms of all rewards obtained over the 200 test
episodes. It can be seen that IP, which represents the optimal
solution, reaches the best results, as expected. The Bellman
solution is still better than all the three deep RL agents. This
indicated that even in such simple scenarios, deep RL does
not always get close to the optimal solution, and there is still
room for improving deep RL. Having the optimal solutions
allow a better understanding of what can be achieved.
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Fig. 2: Histogram of cumulative rewards for the scheduling
problem using all test set.

B. Results for scheduling and beam selection

We use a PPO RL method and round-robin (RR) variations
to provide user scheduling and beam selection. Tabular and
IP methods were not explored here due to the increased
complexity of the scenario leading to a longer time to compute
the optimum policies. Besides the user scheduling action for
U = 2 users presented in Subsection IV-A, in this scenario,
the agent also needs to define one beam among Nb = 8 beams
to be used, where each beam has a specific spectral efficiency
value in a given grid position. Therefore, the main agent goal
is to select a combination of user and beam to minimize the
number of dropped packets during the simulation.

The PPO RL agent considers an observation space contai-
ning the grid positions, spectral efficiencies, incoming packets,
packets throughput, and buffer occupancy for each user. The
agent’s action space considers two discrete variables represen-
ting the index of the chosen user to be allocated and the beam
index to be utilized. We developed two baselines: The first
one utilizes a RR method for the user allocation combined
with a fixed beam allocation that always uses the first beam
available, and the second one combines a RR method to the
user allocation with the best beam through exhaustive search.

Fig. 3 shows the histogram of cumulative rewards obtained
to the PPO RL, RR using fixed beam, and RR using best
beam selection over a specific episode. This result shows that
the PPO agent outperformed all the baselines, even the RR
using the best beam selection. It indicates that the PPO agent
could learn an equivalent to optimal beam selection and a
user scheduling process with better performance than the RR,
confirming that PPO outperformed the baselines over all the
test set.

V. CONCLUSION

The importance of deep RL in 5G and 6G is evident by
the number of publications on the subject. However, there
are several disadvantages when deep RL is used as a black
box or investigated without connections to analytical results
or optimal solutions.

The idea is that, despite their simplicity, these environments
provide useful insight about how deep RL algorithms would
perform in practical situations, indicating that there is still
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Fig. 3: Histogram of cumulative rewards for the scheduling
and beam selection problem using all test set.

room for improvement concerning optimal solutions. Obtai-
ning a near-optimal performance in a simple scenario increases
the reliability of the deep RL performance in a complex
scenario, since a complex scenario is usually unfeasible to
provide an optimum solution to use for comparison.
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