
 

  

Abstract— In this paper, we present an analysis of the resonant 

behavior of modified bowtie nanoparticles with polynomial sides. 

The method of moments is used to solve numerically the 

scattering problem. With this model, we investigate the variation 

of the spectral response and near field distribution in function of 

the length and polynomial order of the nanoparticles. The results 

show that these particles possess smaller number of resonances in 

the analyzed wavelength range and their resonant wavelength, 

near field enhancement and confinement are higher than those of 

the conventional bowtie particle with linear sides. 

 
Index Terms—Surface plasmons, subwavelength structures, 

bowtie metal nanoparticles, spectral response.  

I. INTRODUCTION 

HE electromagnetic scattering of metals in optical 

frequency region possesses special characteristics. At 

these frequencies, there are electron oscillations in the metal 

called plasmons with distinct resonant frequencies, which 

produce strongly enhanced near fields at the metal surface.  

This effect can be analyzed using Lorentz-Drude model of the 

complex dielectric constant. The science of the 

electromagnetic optical response of metal nanostructures is 

known as plasmonics or nanoplasmonics [1]. 

One of the possible applications of plasmonics is design of 

nanoantennas [2-8] which are metal nanostructures used to 

confine and enhance optical electromagnetic fields. An optical 

monopole antenna is investigated in [3]. In [4], Bowtie optical 

antennas are analyzed. Dipoles nanoantennas are presented in 

[5], and sphere nanoantennas are discussed in [6-7]. Bowtie 

nanoantennas with different length, bow angles, thickness, gap 

distance, and radius of curvature of the apex are studied in [8]. 

Examples of applications of these antennas are ultra-high-

density data storage, super-resolution microscopy, integrated 

nano-optical devices and surface-enhanced Raman scattering 

[1]. Most of these antennas are composed of coupled metal 

nanoparticles. To understand the electromagnetic behavior of 

these nanoantennas is important to investigate the resonances 

and field distributions of individual particles. Some common 

metal nanoparticles have been analyzed, e.g. spheres [7], 

circular disk [9], and triangular disk [10]. 
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In the conventional triangular bowtie antennas, the sides are 

straight lines. In this paper, we present a theoretical analysis of 

modified bowtie nanoparticles with polynomial sides. We 

analyze the optical response of the proposed nanoparticles and 

the dependence of the optical response on the length and 

polynomial order. Near field distributions are also 

investigated. We apply the method of moments (MoM) [11] to 

calculate the optical scattering of these particles illuminated 

by a plane wave. The Lorentz-Drude theory with one 

interband term is used to model the complex permittivity of 

the gold. 

We show that these particles have smaller number of 

resonances in the analyzed wavelength range and higher 

resonant wavelength, near field enhancement and confinement 

in comparison with that of the conventional bowtie particle. 

The next sections present the mathematical modeling of the 

scattering problem, numerical results, and conclusions. 

II. THEORY 

The geometries of the modified bowtie nanoparticles are 

shown in Fig. 1. We investigate four particles made of gold 

(Au) with different values of the parameter α=(1,2,3,4) where 

α is the polynomial order of the side variation. The 

polynomial function used to model the curvature of the sides 

is x=(y/k1)
α
, where k1=L/2h

1/α
, h=0.5L(3)

0.5
, L is the side length 

of the conventional bowtie triangle. The conventional bowtie 

particle where the side variation is linear corresponds to the 

case α=1. These particles are centered in the origin of the 

coordinate system with one tip oriented along the x axis. The 

thickness of the antennas (which is not shown) is w. With 

these parameters, the tip on the x axis is positioned at the point 

(0.5h; 0; 0). For higher values of α, the tips are more acute. 
 

 
 

Fig. 1.  Geometry of the Bowtie nanoparticles with polynomial sides. 
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The particles shown in Fig. 1 are illuminated by an Ex-

polarized, z-directed plane wave. The numerical analysis of 

these scattering problems is fulfilled by our MoM code based 

on the model proposed in [11], where the equivalent 

polarization current inside the volume of the particles is 

determined by solving the tensor integral equation for the 

electric field. In this model, the volume of a particle is divided 

in N small cubic subvolumes, where the total electric field is 

approximately constant. With this approximation, the integral 

equation is transformed into a linear system with Nt=3N 

equations because there are three electric field components in 

each subvolume. 

The Lorentz-Drude model with one interband term was 

used to model the complex permittivity ε=ε0εr of the Au 

particles, where εr is defined 
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and the parameters of this equation are: ε∞=6, 

ωp1=13.8×1015s
−1

, Γ=1.075×1014s
−1

, ω0=2πc/λ0, λ0=450nm, 

ωp2=45×1014s
−1

, and γ=9×1014s
−1

 [1]. This model is a good 

approximation in the range of wavelengths from 500 nm to 

1800 nm. In this frequency range we fulfill our analysis. 

III. NUMERICAL RESULTS 

Based on theory presented previous section, four codes 

were developed in Fortran and Matlab. The discretization used 

in the bowtie nanoparticles with α=(1,2,3,4) are Nt=4380, 

5310, 4410, and 5328, respectively. With these discretizations 

we obtained a good convergence of the results. For each 

nanoparticle, eight simulations were did with different values 

of length L, these values are L=50; 100; 150; 200; 250; 300; 

350; and 400 (all in nanometers). The thickness w (in 

namometers) of the particles with L=50nm are 8.0; 8.3; 7.8; 

and 8.5 for the particles α=(1,2,3,4) respectively. The 

thickness of the others particles are proportional to these 

values, i.e. the particles with higher L possess higher 

thickness. The next sections present the obtained numerical 

results. 

A. Spectral Responses 

Figs. 2-5 present the spectral response of the field near the 

particles. The parameter shown in these figures is the field 

enhancement, which is defined by (E/E0)
2
, where E is the total 

electric field (incident and scattered) near the particle, and E0 

is the amplitude of the incident plane wave. In all these results, 

the field enhancement is calculated at 10nm far from the tip’s 

particles along the x axis, i.e. at the point (0.5h+10nm; 0; 0). 

We observe in these figures some characteristic resonances, 

which are numbered with 1 to 8, where the respective resonant 

wavelengths are λ1 to λ8. Some of these resonances for 

determined values of L are very weak, for example in Fig. 2 

the resonance λ1 is only significant for L=50 and 100nm, and 

it is practically null for other values of L. These very weak 

resonances are not shown in these figures. 

The number of resonances varies with α, for α=(1,2,3,4) we 

have 8 (Fig. 2); 6 (Fig. 3); 6 (Fig. 4); and 2 (Fig. 5) resonances 

respectively, so for larger values of α smaller is the number of 

resonances. In general, these resonances are shifted to the right  

 

 
 

Fig. 2.  Spectral response of field enhancement of the nanoparticles with α=1. 

 

 
 

Fig. 3.  Spectral response of field enhancement of the nanoparticles with α=2. 

 

 
 

Fig. 4.  Spectral response of field enhancement of the nanoparticles with α=3. 



 

 
 

Fig. 5.  Spectral response of field enhancement of the nanoparticles with α=4. 

 

for larger lengths L and polynomial order α. However, the 

sensitivity of this variation with α is higher than with L. In all 

the cases shown in Figs. 2-5, we observe an approximately 

linear increasing of the resonances λ1-λ8 for larger values of L. 

This variation is presented in Figs. 6-9, where we note the 

increasing of the resonances with α, for example, for L=50nm, 

λ1=660; 754; 903; and 1096 for α=(1,2,3,4) respectively.  

 

 
 

Fig. 6.  Variation of λ1-λ8 versus L for the nanoparticles with α=1. 

 

 
 

Fig. 7.  Variation of λ1-λ6 versus L for the nanoparticles with α=2. 

 
 

Fig. 8.  Variation of λ1-λ8 versus L for the nanoparticles with α=3. 

 

 
Fig. 9.  Variation of (E/E0)

2 and λ1-λ2 versus L for the nanoparticles with α=4. 

 

 With respect to the intensity of the resonances shown in 

Figs. 2-5, we observe that the field enhancement of each 

resonant is gradually increased and decreased with the 

variation of L, so that when one resonance is decreased, the 

next right resonance is increased. This behavior can be 

observed for example in the resonances λ2 and λ3 in Fig. 3, 

where for lower L (L=50; 100; 150; and 200nm), the field 

enhancement of λ2 is higher than λ3, and for L=250; 300; 350; 

and 400nm the field enhancement of λ3 is higher than λ2. This 

effect occurs progressively for all resonances. 

There is a given L where the maximum value of (E/E0)
2
 for 

each resonance is achieved. Figs. 9-12 show this variation of 

the field enhancement at resonances λ1-λ8 versus L for the 

nanoparticles with α=(4,1,2,3), respectively. We note from 

these figures that the field enhancements is increased for 

larger values of α, i.e. the modified bowtie nanoparticles with 

polynomial sides possess higher field enhancements than the 

conventional bowtie particle with linear sides. 

B. Near Field Distributions 

Figs. 13-16 present the spatial distributions of the fields 

near the particles with α=(1,2,3,4), respectively. The results 

show the magnitude of the total field (E/E0), and the 

components x (Ex/E0), y (Ey/E0), and z (Ez/E0) at the plane 

z=9nm (−50nm<x,y<50nm). This plane is approximately 5nm 

above the particle’s surface, because the thickness of them are 



 

variable, i.e. w=8.0; 8.3; 7.8; and 8.5 (nm) for the particles 

with α=(1,2,3,4) respectively. In these figures, the size is 

L=50nm, and wavelengths are λ2=703nm (Fig. 13), λ2=827nm 

(Fig. 14), λ1=907nm (Fig. 15), and λ1=1096nm (Fig. 16).  

We observe from these results that the modified bowtie 

nanoparticles with higher values of α (Figs. 14-16) possess the 

total field near the right tips more confined than that of the 

conventional one (Fig. 13). This shows that the modified 

bowtie nanoparticles with polynomial sides have a larger field 

confinement than the conventional triangular ones.  

 

 
 

Fig. 10.  Variation of (E/E0)
2 at λ1-λ8 versus L for the nanoparticles with α=1. 

 

 
Fig. 11.  Variation of (E/E0)

2 at λ1-λ6 versus L for the nanoparticles with α=2. 

 

 
Fig. 12.  Variation of (E/E0)

2 at λ1-λ6 versus L for the nanoparticles with α=3. 
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                         (c)                                                       (d) 

 

Fig. 13.  Field distribution at the plane z=9nm for α=1, L=150nm, λ2=703nm. 
(a) E/E0. (b) Ex/E0. (c) Ey/E0. (d) Ez/E0. 
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Fig. 14.  Field distribution at the plane z=9nm for α=2, L=150nm, λ2=827nm. 

(a) E/E0. (b) Ex/E0. (c) Ey/E0. (d) Ez/E0. 

 

We also observe from these figures that the magnitude of 

the z electric field component is higher than the others at this 

plane. This occurs because the normal electric field on the 

surface’s conductor of the particles is larger, and the plane 

z=9nm is parallel and near the surface’s particles. With 

relation to x component, it is more confined in the region in 

front of the tips for x>0.5h (Figs. 13b, 14b, 15b, and 16b). The 

other components in this region are very small. This is due the 

large concentration of charges in the tips, which produces 

strong electric fields towards the x direction. This component 

is important, for example, in applications of nanoantennas, e.g. 

nanodipoles, for enhancement the spontaneous emission of 

single molecules within the dipole’s gap, because the fields 

within this gap possess a strong polarization along the axis of 

the dipole, and the other components are small [8]. 
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Fig. 15.  Field distribution at the plane z=9nm for α=3, L=150nm, λ1=907nm. 

(a) E/E0. (b) Ex/E0. (c) Ey/E0. (d) Ez/E0. 
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Fig. 16. Field distribution at the plane z=9nm for α=4, L=150nm, λ1=1096nm. 

(a) E/E0. (b) Ex/E0. (c) Ey/E0. (d) Ez/E0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSIONS 

In this paper, we presented a theoretical analysis of the 

resonances of modified bowtie nanoparticles with polynomial 

sides. We observed that the number of resonances of the 

proposed particles is reduced for larger values of polynomial 

order in the analyzed wavelength range. For example, the 

conventional particle presented eight resonances, and the 

modified one with polynomial order equal to four has two 

resonances. We also demonstrated that the modified particles 

have resonant wavelength, near field enhancement and 

confinement higher than those of the conventional bowtie 

particle with linear sides. These novel particles can be used to 

design nanoantennas with better characteristics. 
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