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Abstract— The identification of the pavement can be an impor-
tant feature for the automotive market, as it impacts on different
characteristics of the vehicle and its navigability. Considering
the importance to identify the pavement, this paper describes
the design and implementation of a system capable of data
acquisition and real time classification of two types of road
pavement: asphalt and paving stone. The system is based on
a real-time operating system that polls data from a triaxial
accelerometer and GPS at a fixed frequency and offloads it to
a computer. An Artificial Neural Network is trained in Python
with 92% accuracy and the model is exported to the embedded
system for real-time classification while driving.
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I. INTRODUCTION

Modern vehicles have a rigorous testing process where all
aspects of their behavior are analyzed: from idle vibrations to
bumps in gear change, accelerometers are used in conjunction
with the data bus for overall analysis of the vehicle under stress
conditions. This activity requires the vehicle to be travelling
in a smooth surface, so that captured vibrations are associated
only to the vehicle and not to the test track. On the other hand,
accelerometers are also used to classify roads and road quality.

In Brazil, it is common to use paving stone due to low cost
installation and maintenance [1]. This type of pavement is not
as comfortable as asphalt due to excessive vibrations which
are transferred across the entire suspension to the driver and
passengers, while forcing the vehicle to drive at slower speed
to avoid damaging the vehicle. By analyzing this vibration
data, it is possible to map where this type of pavement is
present on a city, classify road quality or even control a vehicle
adaptive suspension.

In this context, the main goal of this paper is to develop an
embedded application to classify roads between asphalt and
paving stone in real time, using a triaxial accelerometer as
input and an Artificial Neural Network (ANN) model as the
classifier.

The rest of this paper is organized as follows: Section II
analyzes some of the similar works by other authors. Section
III describes the equipments necessary for the proposed sys-
tem. In Section IV the implementation of the peripherals, the
data flow in the real-time operating system (RTOS) and the
test setup are discussed. Section V describes the results from
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the data acquisition and training of the ANN that will be used
for real time prediction. Finally, Section VI is devoted to the
conclusion.

II. LITERATURE REVIEW

The work in [2] uses a Support Vector Machine (SVM) to
classify the road among seven types of pavement, using only
an accelerometer on the vertical axis that is coupled to a small
transport cart limited to a speed of 1 m/s. The work compares
statistical metrics of the temporal data to metrics obtained from
the frequency domain, such as Power Spectral Density (PSD)
and the Fast Fourier Transform (FFT). The authors conclude
that training the model for seven types of pavement there are
some improvements when using metrics from both frequency
and time domains. However for only three types, there is no
advantage and it is better to use temporal metrics only.

Some papers try to detect the occurence of potholes or
general anomalies instead of using an Artificial Intelligence
(AI) implementation for a more detailed classification of the
terrain. The approach in [3] is focused on detecting potholes
and compares some techniques used by other authors. The Z-
THRESH, Z-DIFF and STDDEV algorithms were compared
to the proposed G-Zero algorithm. Z-THRESH will detect an
anomaly when the Z axis acceleration goes above a certain
threshold. Z-DIFF will seeks two consecutive values with
the greatest difference in amplitude, showing when a sudden
change in acceleration occurs. STDEV evaluates the standard
deviation in a set of data and it will classify a pothole
if it crosses a threshold. In addition to the three methods
mentioned above, the proposed G-Zero algorithm analyzes
moments where the three accelerometer values approach 0 g,
which can be an indication of a free fall. Among the analysis,
it was stated that Z-DIFF provides the best performance when
comparing the rate of true positives.

Similar to the approach in [3], the work on [4] seeks
to identify anomalies on a surface. The data was obtained
from accelerometers available in smartphones. The author uses
SVM and compares it with the techniques proposed by others
authors. The comparison occurs in 30 different streets and it is
concluded that the proposed SVM has better F1 score but the
STDEV technique proposed in [3] shows better result among
the analyzed works.

A Z axis accelerometer was used on a truck and compared a
Artificial Neural Network (ANN), SVM and Naive Bayes for
terrain classification, while searching for a speed independent
classification model. This work also used a vehicle model for
simulation [5]. On different terrains, data acquisitions at speeds
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of 20, 30 and 40 km/h were performed and two main metrics
were compared: FFT and Fast Wavelet Transform (FWT). The
work suggests that if a classification independent of speed is
desired, the metrics generated from the FWT will yield a better
output.

In addition to the use of triaxial accelerometer, the work
on [6] also has a triaxial gyroscope and geolocation by the
use of the Global Positioning System (GPS). The proposal
detects anomalies on the ground up to 2 cm long but makes
an analysis based on length of asphalt, where every 100 m
provides data for a classification. The proposed classification
method is based on the Pavement Condition Index (PCI), an
index heavily dependent on manual survey of the pavement
condition where a grade is assigned to a length of asphalt
that indicates its quality. By using this equipment, the work
creates an equivalent scale to the PCI proposal. This approach
provides different metrics from the ones proposed in other
works, such as the peak of the moving variance.

In a previous work [7], SVM classifier was developed to
classify between two types of pavement: asphalt and paving
stone. The features contain metrics in time and frequency
domain for classification with precision up to 97%. Now, this
work seeks to continue what was previously implemented,
aiming at increased robustness of the acquisition system. The
triaxial accelerometer is kept in its position near the center
of gravity of the vehicle and a new implementation in the
embedded system is developed: a real-time operating system
(RTOS) is used to ensure data acquisition accuracy and an
ANN is trained to also be embedded in this system, allowing
the pavement classification in real time.

III. EQUIPMENT AND TOOLS

The proposed system is composed by a GPS module, a
triaxial accelerometer and an ARM Cortex-M4 development
board.

The GPS Module is the ublox NEO 6M, a cost-effective
device that is used during data acqusition by polling current
geolocation data twice a second. The data is received via
UART communication in the NMEA 0183 format. Accel-
eration measurements from X , Y and Z axis are obtained
from the MPU6050 at a sampling rate of 100 Hz. This device
contains a 16 bit Analog-to-digital converter (ADC) in each
axis, which can be setup in a configurable working range from
± 2 g to ± 16 g. The communication is implemented using an
Inter-Integrated Circuit (I2C) bus. All information is processed
on a EK-TM4C1294XL development board that has an ARM
Cortex-M4 operating with a clock frequency of 120 MHz. This
microcontroller will be carrying the Free RTOS kernel for the
implementation of a RTOS. Beyond the main devices, there
is also a push button for user input when necessary and some
LEDs are used for status monitoring. All data is sent to a
laptop via serial communication.

IV. SYSTEM OVERVIEW

A. GPS Data Request

The proposed architecture interfaces with 4 external de-
vices. The GPS module and laptop communication are based

on UART, configured for a baud rate of 11520 bits/s. The
accelerometer requires I2C communication and the external
pushbutton is connected to a General Purporse Input-Output
(GPIO) pin and triggers an interrupt handler.

The GPS data is collected by using a polling operation
requested by the Offload Task which happens two times per
second. A GPS message is polled by writing the UBX,00
message on the serial bus and a NMEA formatted message
will be returned containing the most recent data position
available. The message contains 23 data fields which includes
the required information, such as UTC Time (field 2), latitude
and longitude (fields 3 to 6) and speed in km/h (field 11).

Once the polling returns data, the GPS Read Task will
receive all data through the serial bus and the Offload Task will
be temporarily suspended to ensure all information is correctly
received. Upon receiving the end of message control sequence,
the Offload Task resumes and the GPS Parse task is triggered.
The GPS Parsing is a lower priority task and it is responsible
for parsing the data fields and calculating the checksum before
making this new position data available for the Offload Task.

Data reading and parsing from the GPS were separated in
two tasks due to importance and different requirements: the
GPS data is not time sensitive in the post processing and a 0.5
seconds delay will not influence on the data analysis, since the
main information to be extracted is the vehicle speed.

B. Accelerometer Data

The most time critical implementation of this system is the
Accelerometer reading. The Accelerometer Task has the same
priority as the GPS Read Task. However, it is triggered at a
constant rate of 100 Hz. Each time this task is called, the X ,
Y and Z axis acceleration are read and put into the queue to
be used by the Offload Task. Accelerometer reading is carried
using the I2C bus and a burst read sequence of 6 registers
(two for each axis). Each register read returns 8 bits of data
and a complete axis read will be a 16 bit float value in two’s
complement.

C. Data Offload

Data offloading to the laptop is executed via UART and
each line of data sent consists of ten data fields in a tabulated
format. The offload operation happens when an accelerometer
read is available, which is 100 times per second. The GPS data
is updated at a much slower rate, so the latest available data
is repeatedly sent. The buffer variable that allocates all data
described in Table I has a fixed size of 85 bytes, which includes
all accelerometer data, GPS data, sample number, general
tabulation and plus and minus signs. At a frequency of 100
Hz this requires a UART connection capable of 68000 bits/s
for adequate message throughput. The UART baud rate is set
at 115200 bits/s, which is more than enough to accomodate
a sampling frequency up to 150 Hz. An example of the data
received by the laptop is available on Figure 1.

D. Dataflow between Tasks

Moving data between tasks can be a complex process if
global variables are used. To simplify this operation, the Free
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TABLE I
ACQUISITION MODE MESSAGE HEADERS.

Header Description

Sample Number of acquisitions. Can be reset
by pressing the pushbutton.

AccX Acceleration on the longitudinal axis.
AccY Acceleration on the lateral axis.
Accz Acceleration on the vertical axis.

Terrain Actual terrain the vehicle is driving.
Lat Latitude information.

DirLat North/South indicator.
Long Longitude information.

DirLong East/West indicator.
Spd Speed over ground in km/h.

Fig. 1. Example of a data acquisition file.

RTOS API provides queues, which are simple message buffers
in a First in, First Out (FIFO) format that can be used to
transmit messages between tasks [8]. Each queue has a fixed
number of items that it can hold and it will allocate enough
RAM to fit those items based on the data types it will carry.
When data is inserted in the queue, it will be allocated to the
first available slot. To retrieve data from the queue, a task can
poll the queue receive function and evaluate if a message is
available to be read. Reading a message requires that data will
be copied from the queue to a variable and when this happens,
the received message will be removed from the queue, clearing
space for new messages.

The proposed system requires three queues for data acqui-
sition which can be seen in Figure 2. The common queue
between those modes is the accelerometer queue that moves
X, Y and Z acceleration samples from Accelerometer Task to
the Offload Task. The other queues are the GPS Read queue
that moves the raw GPS data from the GPS Read Task to the
GPS Parse task and finally the GPS Ready queue, that will
move the parsed geolocation data from the GPS Parse Task to
the UART Offload Task.

Fig. 2. Proposed dataflow for the acquisition mode.

Fig. 3. Proposed dataflow for the prediction mode.

Figure 3 shows how data is moved in the prediction mode. It
does not require the GPS task since speed or location are not
features used for pavement classification and no user input
is necessary. All prediction results are shown on the laptop
screen.

E. Prediction

When compiled in prediction mode, the system will acquire
128 samples that are written in an array for each accelerometer
axis. By acquiring 128 samples, the classification procedure
is triggered, and the arrays are passed to a function that will
calculate the required metrics for prediction. Only after the
metrics are available, the prediction will take place.

Classification of the terrain requires heavy mathematical
processing for metrics and feedforward of the multi-layer
perceptron. Some metrics used were defined in [7] for a
Support Vector Machine. This work required an ANN due to
easier implementation in an embedded scenario and to achieve
this, the training was executed in a computer and used the
following features, which are extracted from each second of
acquisition: standard deviation of the Z axis moving average
(as proposed in [3]), peak of the rolling variance [6], maximum
Z axis peak-to-peak amplitude, low frequency (0-15 Hz) and
high frequency (16-50 Hz) FFT amplitude average. Those
metrics show good accuracy and are enough for a proof of
concept of the real time classification.

The algorithm for classification was built using the GNU
Scientific Library (GSL) [9] that has all the mathematical
functions necessary to calculate the features that will be
used in classification. The advantage of using GSL is that
it provides the necessary mathematical functions and also
dynamic allocated vector and matrices which can be helpful
when dealing with large arrays and matrices.

The output of the classification is returned as a floating
point value representing the confidence in classification, where
values close to zero represent asphalt and values close to one
represent paving stone.

F. Test Setup

A standardized setup was developed to put all peripherals
into a single board. It contains a slot for accelerometer
placement, GPS connector and push button. The prototype on
Figure 4 was used to validate that the system was working
before mounting it on the vehicle.
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Fig. 4. Setup for validation before testing in vehicle.

V. RESULTS AND DISCUSSION

After all tests were executed in the test bench, the system
was ready to be installed in the vehicle. The mouting point
is the passenger seat rail due to its proximity to the center
of gravity and direct connection to the vehicle chassis [7]. A
calibration procedure is necessary before starting acquisition
due to the placement of the accelerometers XY plane not
being fully parallel to the ground. This procedure requires that
the vehicle be in a planar surface and it will acquire a few
seconds of accelerometer data, which will be averaged and an
offset will be calculated. This offset will set a virtual ground
reference that should read close to 0 g in the X and Y axis
and -1 g on the Z axis.

A. Data Acquisition

A total of 38 minutes were recorded in the region of Cam-
buí, in Campinas, state of São Paulo, Brazil. The total amount
of collected data was 14 MB containing the acceleration,
terrain, speed and position of each sample. Statistics on each
type of terrain is available in Table II, where the last three
columns represent the actual terrain where the acquisition took
place (Invalid represents conditions such as vehicle stopped or
speed bump).

TABLE II
STATISTICS OF EACH DATASET OBTAINED DURING A 38 MINUTE

ACQUISITION SESSION.

Dataset # Time [min] Paving Stone Asphalt Invalid
1 5.46 0.00% 95.60% 4.40%
2 3.79 0.00% 73.70% 26.30%
3 4.61 51.30% 35.20% 13.50%
4 3.01 6.70% 84.70% 8.60%
5 8.83 43.90% 36.60% 19.50%
6 2.15 0.00% 66.20% 33.80%
7 10.54 25.60% 39.20% 35.20%

The obtained data was processed in Python and generated
a total of 840 metrics from 3 files that contained over 25% of
samples in paving stone. Among them, 737 were actually used
after removing unwanted metrics when the speed was below
10 km/h or above 50 km/h.

B. ANN Training and real-time classification

A simplified ANN was trained to be used in the proposed
system. Older acquisition data obtained in [7] were used to
test this model and it showed prominent results. This data
was shuffled and split 80% for training and 20% for testing.
Figure 5 shows the metrics defined in Section IV-E on the
top plot (where Z_Max_Pk2pk was scaled down tenfold for
better visualization) and the prediction on the bottom, where
the black line is the actual terrain and the pink line is the
predicted terrain. The Predicted Terrain plot shows that the
predicted value contains some peaks that could be due to many
factors such as potholes or the vehicle speed. Filtering the
metrics can have a positive effect on those outliers.

Fig. 5. Prediction graph of a dataset.

The ANN model uses the five metrics displayed on the top
plot of Figure 5 as input, four hidden layers, an output layer
with a total of 44 neurons and learning rate of 0.001. The Keras
framework is used to develop and train the model, which used
binary cross-entropy as loss function, ReLu activation on all
layers except the output layer, which used Sigmoid.

The weights and biases of this model were exported to a
header file that was imported by the firmware of the proposed
system to be used in real time classification. Figure 6 shows a
screenshot of the real time classification while driving, where
each “Pred” field represents the confidence in a classification
of the last 128 samples, where values close to 0 are asphalt
and close to 1 are paving stone. This data is not available to
post-processing due to the current implementation not being
able to export the real-time classification data.

VI. CONCLUSIONS

This work presented the implementation of a RTOS ca-
pable of classifying road pavements based on accelerometer
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Fig. 6. Screenshot of the prediction mode.

readings. The system can work in two different modes: one
capable of acquiring accelerometer data, GPS data and terrain
for dataset generation while offloading the data to a computer
and the other mode classifies accelerometer data in two types
of pavement: asphalt or paving stone. This requires the ANN
to be trained using data acquired by the acquisition mode.
This work was validated by mounting the accelerometer in the
passengers’ seat rail of a vehicle and acquiring over 30 minutes
of data. The data obtained was processed in Python and used
as the training set for the ANN that would later be exported
to this system, making it capable of real-time classification.

In future works, some improvements will be executed on
the real-time classification algorithm for faster analysis of
the terrain and better metrics. The firmware must also be
upgraded to have both real-time classification and data logging
capabilities (currently real-time data is not saved), allowing
data to be post-processed and analyzed in a computer. This
implementation has the potential to improve the performance
of the ANN and allows for more terrains to be classified, such
as dirt or even speed bumps. Using an ANN was necessary
due to its simplicity to implement in an embedded environment
when compared to the SVM. However, comparing the current
implementation to the SVM in [7] requires improvements on
the current classification method. This system can be expanded
to classify asphalt quality by analyzing the prediction output
on false positives, where an asphalt road is misclassified as
paving stone due to its quality.
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