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Ratio of the Product-of-Two to One Variates: A
Framework - Application to κ-µ and η-µ

Carlos Rafael Nogueira da Silva and Michel Daoud Yacoub

Abstract— The performance analyses of a number of fading
scenarios require the knowledge of some of the statistics of the
product and the ratio of the involved variates. With the advent of
several enabling technologies, e.g., reconfigurable/large intelligent
surfaces, massive MIMO, cooperative communications, device-
to-device, vehicle-to-vehicle communications, and others, this is
even more evident. In this paper, we provide a framework for
the derivation of probability density functions and the cumulative
distribution functions for the ratio of the product-of-two to one
variates. The framework is then used to derive these statistics
for all possible combinations of these variates taken from κ-µ
and η-µ fading models. The expressions are obtained in terms of
a simple-to-compute single-sum infinite series, with convergence
attained very rapidly.

Keywords— R/LIS, massive MIMO, D2D, V2V, product distri-
bution.

I. INTRODUCTION

Channel characterization has always been an important issue
in telecommunications. This becomes even more so when the
demand for services increases dramatically and the designers
are faced with the very same question, which is how to
enhance the capacity in order to comply with such a demand.
As far as wireless networks are concerned, a better knowledge
of the channel statistics is a stepping stone towards this. In
this sense, a number of fading models arises, each of which
attempting to fill the gap left by the previous ones with
the inclusion of new physical phenomenon. As technologies
evolve, the communication channel becomes more complex,
hindering the usability of traditional fading models. This
shifts the focus from single to composite fading models. As
well known, the product of two fading variables models the
multipath-shadowing channels, in which one variable repre-
sents the shadowing phenomenon and the other, the multipath
fading. Typically, the lognormal distribution describes the
shadowing phenomenon completely, although, because of its
mathematical intricacy, other more tractable fading models are
used in its place. On the other hand, the choice for a multipath
fading model depends on the system design and physical
medium. For instance, the κ-µ describes fading signal with
a dominant component whereas the η-µ characterizes fading
in a non-homogeneous medium with no dominant component.

Enabling technologies such as cascaded channel [1]–[3],
reconfigurable/large intelligent surfaces (R/LIS) [3]–[5], multi-
hop links [6], [7], massive MIMO systems [8]–[10] have
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physical models based on the product of fading variables,
characterizing a composite fading signal. Hence, the behav-
ior of composite channels and statistics of the product of
random envelopes have been receiving great attention in the
literature [11]–[13]. On the other hand, the overall system
performance uses the ratio of some statistical metric. For
instance, the signal-to-noise ratio (SNR) is the fundamental
metric to evaluate bit error rate (BER), outage probability,
channel capacity, and secrecy capacity, to name but a few.
Therefore, the statistical characterization of the product and
ratio of fading signals is important for the deployment of future
generations of telecommunications.

In this paper, we develop a framework to derive the ratio
involving three fading variables. This scenario finds appli-
cation in the performance analysis of a wireless system in
an interference environment assisted by R/LIS or a relay.
Here, we derive the probability density function (PDF) and
cumulative distribution function (CDF) of the ratio of two
by one random variates. The general formulation is exercised
for variates taken arbitrarily from the κ-µ and the η-µ fading
models. Both PDFs and CDFs for all combinations of variates
are obtained as single, relatively simple, infinite series that
compute rapidly.

The remainder of the paper is divided as follows: Section II
establishes the channel model and the framework for obtaining
the PDF and CDF in terms of contour integrals and as
series representation. Section III revisit the generalized fading
models κ-µ and η-µ. Section IV exercises the framework by
chosen the fading components arbitrarily from the κ-µ or the
η-µ fading models; Section V provides final remarks.

II. CHANNEL MODEL

Let Xi > 0, i = 1, 2, 3 be fading variates. Consider a
channel characterized by the ratio of the product-of-two to one
variables. Such a scenario may be found in an interference
environment of a communication link assisted by a single
relay. Let Z > 0 be the desired ratio as

Z =
X1X2

X3
, (1)

in which all fading signals are independent and non-identically
distributed.

A. General Framework for Obtaining the PDF

The PDF of the random variate Z may be found by the
standard statistical procedures, which always lead to a double
integral, using any of the available methods We maintain,
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however, that with the appropriate use of the direct/inverse
Mellin transform pair in conjunction with the Cauchy residue
theorem, we have been able to provide the required formula-
tions through efficiently computable single-sum infinite series.
The Mellin transform is defined as

f∗(s) =

∫ ∞

0

ts−1f(t)dt, (2)

provided convergence. The inverse transformation is obtained
as

f(t) =
1

2πj

∮
L
f∗(s)t−sds, (3)

in which j =
√
−1, and L is a suitable contour on the complex

plane1. From the formulations, it is evident that there is a clear
relationship between the Mellin transform and the generalized
moments of a positive fading distribution. Therefore, the
Mellin transform of the PDF fR(r) of a fading signal R > 0 is
obtained in terms of its moments as f∗

R(s) = E[Rs−1]. More
importantly, if the generalized moment is an analytic function,
then its inverse is uniquely determined by f∗

R(s). From (1),
the generalized moment of the random variate Z applied at
s− 1 is

E[Zs−1] = E[Xs−1
1 ]E[Xs−1

2 ]E[X1−s
3 ], (4)

Now, applying (4) in (3) results in the PDF of Z as a contour
integration as

fZ(z) =
1

2πj

∮
L
E[Xs−1

1 ]E[Xs−1
2 ]E[X1−s

3 ]z−sds. (5)

Provided that the moments are analytical, the PDF fZ(z) is
uniquely determined by them. Integrating (5) from 0 to z
defines the CDF of the random variate Z which is

FZ(z) =
1

2πj

∮
L
E[Xs−1

1 ]E[Xs−1
2 ]E[X1−s

3 ]
z1−s

1− s
ds. (6)

B. Series Representation

The Cauchy residue theorem [15] states that an integral of
a function f(s) over a closed contour can be found as the sum
of the residues around the poles of f(s) inside the contour of
integration. Therefore, a series representation for the PDF in
(5) is

fZ(z)=
∑
i

resi
(
E[Xs−1

1 ]E[Xs−1
2 ]E[X1−s

3 ]z−s
)
, (7)

C. The Reciprocal Distribution

Let Z be as defined before, then the reciprocal variate is its
inverse, Z ′ = 1/Z. The first order statistics comes from the
standard variable transformation and is given as

fZ′(z) = z−2fZ(z
−1). (8)

Hence, an expression for the ratio of one by product of two
variates arises naturally.

1Please, refer to [14] for an appropriate contour

III. GENERALIZED FADING MODELS

In the next section, we derive the PDF and CDF for the
variate Z, as defined in (1), for several fading scenarios. In
particular, the chosen models for the components of Z are
the κ-µ and the η-µ distributions. These are general models
which comprise several important fading distributions such as
Nakagami-m, Rice, Hoyt, and Rayleigh. Using the proposed
framework, we provide the statistics for all combination of
X1, X2, and X3 arbitrarily taken from the κ-µ or the η-µ
distributions. First, let us briefly revisit some of the necessary
statistics of these fading models.

A. The κ-µ Fading Model

The κ-µ distribution is a generalized fading model used
to describe fading signal with a dominant component and
multipath clusters. Let R > 0 be a fading signal with rms
value given as r̂2 = E[R2]. Its moments are well known and
are defined as

E[Rk] = K kΓ
(
k
2 + µ

)
Γ(µ)

1F1

(
−k

2
;µ;−κµ

)
, (9)

in which K = r̂/
√
(µ(1 + κ)), µ = E2[R2]/V[R2] × (1 +

2κ)/(1 + κ)2 is related to the number of multipath clusters,
κ is the ratio between the total power of the dominant
component by the total power of the scattered waves, E[·] and
V[·] are the expectation and variance operators respectively,
Γ(x) is the gamma function [16, Eq. (6.1.1)] and 1F1(·, ·, ·)
is the Kummer’s confluent hypergeometric function [16, Eq.
(13.1.2)].

B. The η-µ Fading Model

The η-µ distribution is a generalized fading model used to
describe fading signals in a non-homogeneous medium with
power imbalance between in-phase and quadrature compo-
nents or with correlation between its components and mul-
tipath clusters. Let R > 0 be a fading signal with rms value
as r̂2 = E[R2]. Its moments are well known and are defined
as

E[Rk]=
EkΓ

(
k
2 + 2µ

)
Γ(2µ)

2F1

(
−k

4
,
2− k

4
;µ+

1

2
;
H2

h2

)
,

(10)
in which µ > 0 relates to the number of multipath clusters,
E = r̂/

√
2µ, the constants h and H varies in accordance

with the chosen format such that in format 1 we have h =
(2 + η−1 + η)/4 and H = (η−1 − η)/4 in which η > 0 is
the power ratio between the in-phase and quadrature scattered
waves, and for format 2 h = 1/(1 − η2) and H = ηh and
−1 < η < 1 is the correlation coefficient between the in-
phase and quadrature waves, and 2F1(a, b, c, x) is the Gauss’
hypergeometric function [16, Eq. (15.1.1)].

IV. RATIO OF THE PRODUCT

This subsection derives the PDFs and the CDFs for all
possible combinations of X1, X2 and X3 arbitrarily chosen
from the κ-µ or η-µ fading model. Interestingly, for every
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combination of X1, X2 and X3, when evaluating the general-
ized moment of random variate Z in (5), two gamma functions
provide the poles for computing the residues in (7). Thus, we
can separate the sum of residues into two parts, and the PDF
would, in general, be

fZ(z) =

∞∑
j=0

res
s→− j+a1

k1

Γ(a1 + k1s)f1(s)

+

∞∑
j=0

res
s→− j+a2)

k2

Γ(a2 + k2s)f2(s)

(11)

in which f1(s) and f2(s) are

fn(s) =
E[Xs−1

1 ]E[Xs−1
2 ]E[X1−s

3 ]

Γ(an + kns)
z−s, n ∈ {1, 2} (12)

with the moment of Xi taken from (9) or (10) in accordance
with the chosen model for each component. The residue
around the poles of the gamma function are [17, Section 6.3.1]

res
s→− j+a

k

Γ(a+ ks)f(s)=
(−1)j

kj!
f

(
−a+ j

k

)
, j ∈ Z+, (13)

provided that −(a+j)/k is not a singularity of f(s). Applying
(13) in (11), the PDF for Z would have the general form

fZ(z) =

∞∑
j=0

(−1)j

k1j!
f1

(
−a1 + j

k1

)

+

∞∑
j=0

(−1)j

k2j!
f2

(
−a2 + j

k2

) (14)

A. The κ-µ times κ-µ over κ-µ case

Let X1 > 0, X2 > 0, and X3 > 0 be fading variates
following the κ-µ distribution with parameters {κi, µi, r̂i}
with i ∈ {1, 2, 3}, and their generalized moments are given
in (9) with the appropriate subscripts. Now applying (9) in
(4) and then in (5), the PDF of the random variable Z is
obtained as a contour integral. In this scenario, the two gamma
functions with poles inside the contour of integration are
Γ(µ1 + (s− 1)/2) and Γ(µ2 + (s− 1)/2). Therefore, a series
representation for the PDF in this scenario arises from (14)
with ai = µi− 1/2, i = {1, 2} and k1 = k2 = 1/2, and f1(s)
and f2(s) are as in (12) in which the moments are replaced
with (9). After some algebraic manipulations the PDF for Z
is given in (15) in which 1F̃1(a, b, x) = 1F̃1(a, b, x)/Γ(b) is
the regularized form of Kummer’s hypergeometric function.
By integrating (15) the CDF for Z is obtained as in (16).

B. The η-µ times η-µ over η-µ case

Here, we consider that X1, X2, and X3 follow the η-µ
fading model with parameters {ηi, µi, r̂i} with i ∈ {1, 2, 3}.
Applying (10) with the appropriate subscript in (5) defines the
contour representation for this PDF. The series representation
is obtained as in (14) with ai = 2µi − 1/2, i = {1, 2} and
k1 = k2 = 1/2. After some algebraic manipulations, the PDF
is given as in (17) and the CDF is at (18).

C. The κ-µ times κ-µ over η-µ case

Let us consider both X1 and X2 taken from the κ-µ model
with parameters {κi, µi, r̂i} with i = {1, 2} while X3 follows
the η-µ distribution with parameters {η3, µ3, r̂3}. The series
representation is derived from (14) with ai = µi − 1/2, i =
{1, 2} and k1 = k2 = 1/2. The PDF of Z in this scenario is
given in (19) and its CDF is in (19).

D. The κ-µ times η-µ over κ-µ case

Here, we consider the scenario involving the product of a
κ-µ random variate and an η-µ variate divided by another κ-
µ. Thus, X1 and X3 are κ-µ with parameters κ1, µ1 and
r̂1 and κ3, µ3 and r̂3, respectively while X2 follows the
η-µ distribution with parameters η2, µ2, and r̂2. The series
representation is obtained from (14) with a1 = µ1 − 1/2,
a2 = 2µ2 − 1/2 and k1 = k2 = 1/2. After manipulations,
the PDF and CDF, in series format, is given in (21) and (22),
respectively.

E. The κ-µ times η-µ over η-µ case

Here, X2 and X3 follow the η-µ fading model with pa-
rameters {ηi, µi, r̂i} with i = {2, 3} and X1 follows the κ-µ
model with parameters κ1, µ1, and r̂1. In this scenario, the
series in (14) will have a1 = µ1 − 1/2, a2 = 2µ2 − 1/2
and k1 = k2 = 1/2. After some algebraic manipulation, the
PDF and CDF for this scenario are given in (23) and (24)
respectively.

F. The η-µ times η-µ over κ-µ case

Now, we consider that X1 and X2 follow the η-µ model
with parameters {ηi, µi, r̂i} with i = 1, 2 and X3 follow
the κ-µ distribution with parameters κ3, µ3 and r̂3. The
series representation in this scenario arises from (14) with
ai = 2µi − 1/2, i = {1, 2} and k1 = k2 = 1/2. After the
some manipulations, the PDF and CDF in this scenario are
given in (25) and (26) respectively.

V. CONCLUSIONS

In this paper, we provided a framework for the derivation
of the first order statistics for the ratio of the product-of-two
by one variates and its reciprocal. This scenario may arise
in the analysis of multi-hop communications immerse in an
interference environment. The framework was exercised for
the variates taken arbitrarily from κ-µ and the η-µ fading
models, which, by themselves, comprise several important
fading models such as Nakagami-m, Rice, Hoyt, and Rayleigh.
The expressions were given in series representations involving
a single sum. We maintain that they compute easily and
converge to any required accuracy with the appropriate number
of terms in the series. Unfortunately, due to lack of space,
we have not been able to use these in applications examples,
which may be chosen among several important enabling tech-
nologies such as reconfigurable/large intelligent surfaces, mas-
sive MIMO, cooperative communications, device-to-device,
vehicle-to-vehicle communications, and others.
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fZ(z) =
2

z

∞∑
j=0

(−1)j

j!

2∑
k=1

Γ
(
(−1)k (µ1 − µ2)− j

)
Γ (j + µk + µ3)

(
zK 3

K 1K 2

)2(j+µk)

× 1F̃1 (−j − µk;µ3;−κ3µ3)

2∏
i=1

1F̃1 (j + µk;µi;−κiµi)

(15)

FZ(z) =

∞∑
j=0

(−1)j

j!

2∑
k=1

Γ
(
(−1)k (µ1 − µ2)− j

)
Γ (j + µk + µ3)

j + µk

(
zK 3

K 1K 2

)2(j+µk)

× 1F̃1 (−j − µk;µ3;−κ3µ3)

2∏
i=1

1F̃1 (j + µk;µi;−κiµi)

(16)

fZ(z) =
2

z
∏3

i=1 Γ (2µi)

∞∑
j=0

(−1)j

j!

2∑
k=1

Γ
(
2(−1)k (µ1 − µ2)− j

)
Γ (j + 2 (µk + µ3))

(
zE3

E1E2

)2(j+2µk)

× 2F1

(
−
(
j

2
+ µk

)
,−

(
j − 1

2
+ µk

)
;
1

2
+ µ3;

H2
3

h2
3

) 2∏
i=1

2F1

(
j

2
+ µk,

1 + j

2
+ µk;

1

2
+ µi;

H2
i

h2
i

) (17)

FZ(z) =
1∏3

i=1 Γ (2µi)

∞∑
j=0

(−1)j

j!

2∑
k=1

Γ
(
2(−1)k (µ1 − µ2)− j

)
Γ (j + 2 (µk + µ3))

j + 2µk

(
zE3

E1E2

)2(j+2µk)

× 2F1

(
−
(
j

2
+ µk

)
,−

(
j − 1

2
+ µk

)
;
1

2
+ µ3;

H2
3

h2
3

) 2∏
i=1

2F1

(
j

2
+ µk,

1 + j

2
+ µk;

1

2
+ µi;

H2
i

h2
i

) (18)

fZ(z) =
2

zΓ (2µ3)

∞∑
j=0

(−1)j

j!

2∑
k=1

Γ
(
(−1)k (µ1 − µ2)− j

)
Γ (j + µk + 2µ3)

(
zE3

K 1K 2

)2(j+µk)

× 2F1

(
−1

2
(j + µk) ,

1

2
(1− j − µk) ;

1

2
+ µ3;

H2
3

h2
3

) 2∏
i=1

1F̃1 (j + µk;µi;−κiµi)

(19)

FZ(z) =
1

Γ (2µ3)

∞∑
j=0

(−1)j

j!

2∑
k=1

Γ
(
(−1)k (µ1 − µ2)− j

)
Γ (j + µk + 2µ3)

j + µk

(
zE3

K 1K 2

)2(j+µk)

× 2F1

(
−1

2
(j + µk) ,

1

2
(1− j − µk) ;

1

2
+ µ3;

H2
3

h2
3

) 2∏
i=1

1F̃1 (j + µk;µi;−κiµi)

(20)

fZ(z) =
2

zΓ (2µ2)

∞∑
j=0

(−1)j

j!

2∑
k=1

Γ
(
(−1)k (µ1 − 2µ2)− j

)
Γ (j + kµk + µ3)

(
zK 3

E2K 1

)2(j+kµk)

× 1F̃1 (j + kµk;µ1;−κ1µ1) 1F̃1 (−j − kµk;µ3;−κ3µ3) 2F1

(
1

2
(j + kµk) ,

1

2
(1 + j + kµk) ;

1

2
+ µ2;

H2
2

h2
2

) (21)
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FZ(z) =
1

Γ (2µ2)

∞∑
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Γ
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