
XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

An IoT Middleware Template Proposal
Gustavo S. Cardoso, Luiz C. B. C. Ferreira, Fernando Bauer N., Eduardo R. Lima, Luís G. P. Meloni and

Paulo Cardieri

Abstract— There are several different IoT middleware plat-
forms available for IoT systems. However, most of these platforms
require high computational hardware to be implemented, making
their use in low-cost and computationally restricted devices
difficult. This motivated us to develop an IoT architecture and
template suitable for computationally restrained hardware to be
a tool that can facilitate the development of new IoT middlewares.
We tested the proposed architecture in two application scenarios,
using hardware with low computational power. The results, in
terms of RAM and CPU usage rates and response time, show the
proposed architecture makes good use of the available resources.

Keywords— Middleware, Internet of Things, Frameworks.

I. INTRODUCTION

In the IoT scene, the basic principle of operation consists
in things communicating with each other. Currently, there are
a lot of IoT devices from different manufacturers available
in the market [1]. This diversity brings one of the greatest
issues in IoT, which is the need for interoperability among
several products from different manufacturers that use different
protocols of communication [2].

In this context, the middleware platforms have a crucial role
for interoperability between systems and devices. The mid-
dleware acts as a layer of software (SW), which interconnects
devices and applications in an IoT solution. It also offers a
standardized way of access to data and services. Therefore,
details like device implementation and configuration, such
as network protocols and hardware (HW) definitions, are
abstracted from the application developer’s point of view. This
abstraction helps the middleware to bring interoperability for
the development of the system [3].

Another important issue in the IoT scenario is the
role played by computationally restrained hardware plat-
forms/devices used in IoT applications. These devices are
generally low-cost, which enable the deployment of large-
scale systems [4]. The important role played by this kind of
hardware is further reinforced by the tendency of using an
edge computing approach in some IoT cases [5], [6], [7].
This approach has many advantages, such as reduction of
dependency from external communications and the response
time between parts of the system [5].

A great number of middleware platforms are created for
Cloud or Fog computing paradigms [8]. These approaches li-
mit or preclude their use by restrained hardware. Furthermore,
the lack of middleware for edge computing creates a scenario

Gustavo Cardoso, Luiz Ferreira, Luís Meloni e Paulo Cardieri, Departa-
mento de Comunicações, Universidade Estadual de Campinas, Campinas-SP,
e-mail: {gustavo_16a@hotmail.com, carlinho@decom.fee.unicamp.br, me-
loni@unicamp.br, cardieri@unicamp.br}; Fernando Bauer, Copel Distribui-
ção, Curitiba-PR, e-mail: fernando.bauer@copel.com; Eduardo Lima, Instituto
de Pesquisas Eldorado, Campinas, SP, eudardo.lima@eldorado.org.br.

where developers need to develop their own solutions for a
specific application [5], [6], [7], [9], [10].

In light of the scenario discussed above, this work proposes
an edge IoT middleware architecture and template, aimed
to facilitate the development of edge middleware solutions
in IoT. The architecture was designed to be suitable for
computationally restrained hardware. Additionally, two similar
middleware platforms using Python and the Django REST fra-
mework were developed. These middleware platforms follow
the proposed architecture and template requirements and serve
as a proof of concept of this work.

The proposed Middleware Template is part of the research
project “Open Middleware and Energy Management System
for the House of the Future.” This project is carried out via a
partnership involving the University of Campinas, the Instituto
de Pesquisas Eldorado, and the Brazilian energy provider
Companhia Paranaense de Energia (COPEL).

The remainder of this work is organized as follows: Sec-
tion II presents a literature review and related works on
edge middleware for IoT. Section III describes the proposed
middleware architecture and template. Section IV details the
experiments and the results achieved. Finally, in Section V the
main conclusions are presented.

II. LITERATURE REVIEW AND RELATED WORKS

In an IoT environment, the middleware acts as a transla-
tor, being responsible by making applications and/or devices
(APPs) exchange data with each other exclusively through the
middleware. Therefore, a middleware abstracts the comple-
xities of communications. A scenario without a middleware
makes the communication between different APPs a tricky
task, as every time a certain APP makes a requisition to other
APP it will have to communicate through specific protocols of
this other APPs. This process generates a situation in which
the developer needs to create not only the applications, but also
ways for them to communicate with other APPs. [11]. Figure
1 illustrates the scenarios with and without middleware.

Therefore, middleware is a layer of software that enables
different systems to interact with each other and work together.
Thus, the role of a middleware in IoT scenarios is essential
for the creation of fast, scalable, and secure solutions, enabling
simplicity and modularity [11], [12].

In [11], [12], the authors discuss general requirements for
IoT middleware development, using distinct approaches. In
[11], the authors classify the requirements as functional and
non-functional; in [12], the authors view the requirements as
architecture and services-related, the latter being further divi-
ded into functional and non-functional. The main requirements
found in these works are: scalability, interoperability, security



XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

Fig. 1. Communication among APPs: (a) without middleware (b) with
middleware [11]

and privacy, data management, real-time operation and context
awareness.

There are several different IoT middleware proposals avai-
lable in the literature, but they generally have minimum
hardware requirements, which makes their use almost im-
possible in an edge computing scenario. Even in specific
middleware solutions using an edge computing approach, most
of the works employ hardware with minimal computational
restrictions. However, this issue is relevant and works found
in the literature show the importance of middleware proposal
for computationally restrained hardware [10], [7], [5]. Table I
lists relevant works in the area of middleware for edge devices
applied in several different scenarios, with the respective
specification of the hardware used to implement each one.

TABLE I
USED HARDWARE IN EDGE MIDDLEWARE APPROACHES IN LITERATURE

Ref. Hardware
[5] Raspberry Pi3 - ARM Cortex-A53 4-Core 1.2 GHz 1GB RAM
[8] Intel Xeon E5-1620 v3 4-Core 3.5GHz 32GB RAM
[6] Raspberry Pi3
[7] AMD Athlon (tm) 64 X2 2-Core 2.21GHz 1GB RAM
[9] Raspberry Pi3

In [5], the authors proposed a modular and scalable archi-
tecture based on microservices and docker for all IoT layers
(Edge, Fog, Cloud) at the same time. The Raspberry Pi3
was used as edge devices, being the hardware with minimum
computational power used.

In [8], the authors presented metrics for comparing 11
different middleware proposals. All those middlewares were
tested in a system with high computational power. Metrics like
packet size, response-time, error rate in requests were used to
compare the performance of each middleware.

The authors of [6] proposed a 3-layer architecture to support
IoT Wireless applications. The Raspberry Pi3 was the minimal
hardware used with this middleware.

In [7], a comparison was made between five different
middlewares. Data like CPU usage, RAM usage, and bytes
send by requisition were used for comparison. The Open DDS
middleware achieved the best results.

In [9] is proposed a middleware architecture using docker
and microservices running on a Raspberry Pi3 to limit the

amount of sent data in different communication protocols.

TABLE II
MINIMUM REQUIREMENTS FOR POPULAR IOT MIDDLEWARES

Ref. Requirements

oneM2M
[13]

It is a set of specifications.
One of the most famous applications, the Eclipse OM2M

needs an environment of execution JAVA 1.7 and Maven 3

dojot
[14]

For a 500 devices setup with intervals of 15s.
Dojot lighter version needs: 1 CPU x86-64 3,5 GHz,

1GB RAM 10GB of free space on disk
Kaa
[15]

SO 64-bits; 256MB RAM third-party remotely.
or 4 GB RAM third-party on the same device.

Zabbix
[16]

Setup with MySQL InnoDB for 500 devices
suggests a dual core CPU and 2GB RAM
and at least 256 MB of free-space on disk

EcoDif
[17]

CPU 2,5 GHz; 4GB RAM; 100GB of disk;
SO: Ubuntu 12.04 or superior or

Windows 2003 Server / XP (or superior)

Table II shows the minimum hardware necessary for ready-
made popular middleware platforms. These platforms were
designed to run on powerful devices with high computational
capacity. The platforms in this table and those in Table I
reveal the necessity of a tool that could ease the development
of edge middleware platforms with low minimum hardware
requirements to run on low-cost and computationally restricted
platforms.

III. MIDDLEWARE ARCHITECTURE AND TEMPLATE
PROPOSAL

The middleware template and architecture were created for
a scenario of data aggregation and command sending to IoT
devices, which take measurements.

The middleware architecture was developed based on some
requirements in the presented literature. Other requirements
were proposed due to the context in which the proposal
was created. For a data aggregation edge middleware, some
of the main requirements found in the related works are:
Data management, scalability, interoperability and security. In
addition to these requirements, other that helped the archi-
tecture development were: low resources consumption, high
portability to use in HW and SW, ease of maintenance and
new functionalities aggregation.

From these requirements, the modular architecture was
created (see Figure 2) to supply the demands of requirements
and allow the Template implementation. It is worth mentioning
that a given requirement does not create a particular module
in the architecture, but rather a module works to partially or
fully fulfill a requirement, thus guaranteeing the middleware
operation according to the requirements

The middleware is composed by seven components, which
can communicate with each other. The idea of this modulari-
zed architecture is to facilitate the additions of new modules
and the location of operation faults. Each of these modules
must perform tasks independently of others, increasing the
middleware operation reliability and contributing to its sca-
lability. Each element and its basic functionality are presented
next.



XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

Fig. 2. Middleware Architecture proposed

• Communication Management - Application: This module
handles middleware communications with external appli-
cations for data transfer or reception via protocols such
as MQTT and CoAP. Furthermore, it manages the requi-
sitions of data solicitation made by these applications.

• Data Management: This module manages and stores data
collected from devices.

• Device Management: This module is responsible for
managing the connected devices via low-level protocols
(e.g., RS232 and Wi-SUN), as well as devices that use
high-level protocols (REST APIs). It is also responsible
for providing status and the available resources of devi-
ces.

• Communication Management - Devices: It is respon-
sible for the low-level communications with devices.
The module must provide methods for data reception,
communication protocol configurations, devices packets
registration.

• Security: Security is a critical component and must be
present in all modules. There is no single security tool
capable of handling all the system, thus it is necessary to
use different techniques by the middleware modules.

• REST APIs: The middleware has REST APIs that pro-
vide functions for sending and receiving data, changing
middleware operating parameters, among others functi-
ons. The REST APIs provide a standardized method for
requests via HTTP protocol in the middleware, providing
interoperability with a wide range of devices.

The Middleware Template, which is a set of UML diagrams,
ease the implementation of the architecture in any technology,
and creates a path to follow during all the development of
the solution. Using the template as reference and modifying it
according to the application simplify the process, reduce the
time of development and facilitate fault location.

Figure 3 shows the general use case diagram for a data
aggregation edge middleware. This diagram presents the basic
functions that the middleware should perform. The middleware
must provide this functions to the user/developer who will

Fig. 3. Middleware Template general use case diagram

utilize them for retrieving data and sending commands from
and to devices. The use cases will be described next.

• Device Registration: The user can (un)register a device
in the middleware.

• Data Request: The user requests data from a particular
device to the middleware.

• Command Request: The user requests a certain command
from a device to the middleware.

• Data Reception: The device returns the information from
a requested command or measurement to the middleware.

• Data Query: The user queries the available data on
middleware via some way of access.

Figure 4 shows the middleware modules and the relati-
onships among them. The Middleware Template is basically
composed of six modules and the REST APIs.

Fig. 4. Middleware Template Package diagram

The device communication module is responsible for recei-
ving data and sending commands to devices. This module is
also modularly implemented, as it allows different communica-
tions protocols, including new ones, to be used, such as Wi-Fi,
Bluetooth, Zigbee, TCP/IP, RS232/485, Wi-SUN FAN/HAN.
This facilitates the use of heterogeneous devices, meeting the
interoperability requirements.

Figure 5 shows the Middleware Template main use case
diagram. This diagram presents the interactions of the
user/developer and the devices directly with the modules use
cases. The user communicates with the middleware in the
REST APIs and the Manage Communications Application use



XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

cases. The devices uses the APIs and the Manage Communi-
cations Device use case to communicate with the middleware.
All modules use cases are managed by the Middleware Tem-
plate orchestrator use case, which makes all these modules
operate in harmony with them and with the system

Fig. 5. Middleware Template: main use case diagram.

.

IV. EXPERIMENTS AND OUTCOMES

Two case studies were developed in order to proof the
concept of the proposal. Two middlewares with similar struc-
tures were developed for the tests. One for a smart outlet
system and another for a biomedical devices system. The
middlewares modules for these two cases were developed in
Python, with the databases implemented in SQLite3 and the
APIs were implemented using the Django REST framework.
The tests were carried out in a NXP i.MX6ULL hardware
platform, which is equipped with a single-core Cortex-A7
ARM CPU and 512MB RAM, being a very resource limited
hardware, even more than the Raspberry Pi3. The Operational
system was based on Yocto Linux. Therefore, the platform on
which the middlewares ran had low computational power.

The metrics used in the experiments were average res-
ponse time, CPU Usage and RAM usage of the Middlewares
processes. These metrics were chosen to evaluate how the
middlewares perform regarding to time response and resources
consumption.

The Jmeter software was used to perform the tests, whose
objective was to stress the middlewares, sending data to them
from devices. Since the number of real devices were limited
(there were only six real outlets in the smart outlet system,
and two devices in the biomedical devices system), simulated
devices were also used. The Jmeter was used to simulate up
to 400 devices. The tests consisted of each simulated and real
device sending data to the middleware and measuring the time
elapsed until the confirmation that the data was received by
the middleware. The total response time for one round of test
is the sum of the elapsed times of the devices. We carried out
ten rounds of tests and computed the average response time.

The first scenario is the smart outlet system. The commu-
nication protocols used in this case were the Wi-SUN HAN for
the real outlets and the HTTP through the REST APIs for the
simulated devices. In the latter case, the number of simulated

devices were 10, 50, 100, 200, 350, 400. The real devices sent
data to the middleware every 5 seconds, while the simulated
ones were tested with two intervals: 0.5 and 5 seconds. Each
package has a total size of 392 bytes of data. Table III show
the results for this scenario.

The second case is the biomedical device system. The
communication protocols used in this case were the RS-232
for the real devices and the HTTP for the simulated ones. In
this case the number of simulated devices were 10, 25, 40.
The real and simulated devices sent a package of data to the
middleware every 100 milliseconds. The package size was 20
bytes (100 bytes if the headers for the HTTP protocol is taken
into account). Table IV shows the results for this scenario.

TABLE III
RESULTS FOR THE SMART OUTLETS CASE

Case Interval of 5s

. Devices
(Sim + Real)

Error
(%)

Avg.
Time

(seconds)

Sys.
Usage
(%)

Midd
Usage
(%)

RAM
Usage
(%)

10 + 5 0 5.94 63.37 47.19 23.93
50 + 5 0 27.44 47.92 35.57 27.63

100 + 5 0 50.92 56.54 44.49 25.24
200 + 5 0 93.97 67.88 49.75 26.30
350 + 5 0 188.19 82.38 67.28 26.15
400 + 5 4.38 194.51 80.50 64.95 25.33

Case Interval of 0.5s

Devices
(Sim + Real)

Error
(%)

Avg.
Time

(seconds)

Sys.
Usage
(%)

Midd.
Usage
(%)

RAM
Usage
(%)

10 + 5 0 4.71 54.31 42.55 28.55
50 + 5 0 26.84 46.02 32.97 27.82

100 + 5 0 38.73 65.03 48.20 28.22
200 + 5 0 147.96 60.46 49.97 28.94
350 + 5 0 165.65 82.87 63.21 26.51
400 + 5 2.56 150.26 82.74 67.13 27.53

TABLE IV
RESULTS FOR THE BIOMEDICAL DEVICES SYSTEM

Devices
(Sim + Real)

Error
(%)

Avg.
Time

(seconds)

Sys.
Usage
(%)

Midd.
Usage
(%)

RAM
Usage
(%)

10 + 2 0 6.14 75.68 38.19 33.13
25 + 2 0 15.56 73.07 43.38 31.92
40 + 2 0 28.21 76.32 46.20 34.58

The results in Table III show that the middleware can handle
up to 350 devices without errors in the Smart Outlet scenario.
Although the average times presented for this scenario are
high, especially for more than 50+5 devices, these results show
the proposed middleware’s ability to handle a large number
of devices without errors. A more powerful hardware system
must be used if a shorter response time is required. On the
other hand, Table IV (biomedical devices scenarios) shows
that the middleware can handle up to 40 devices without errors
and with an average time response below 30 seconds, which is
maximum response time to consider that a device is presenting
data in real-time [18].

The results also showed that, for both systems, (i) the
system CPU usage did not exceed 85%, (ii) the Middleware
RAM Usage was under 35%, and (iii) the Middleware usage
was under 68%. Therefore, the proposed middleware makes



XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

good use of the available resources, even when handling a
considerable amount of devices.

Concerning the ease of development using the base case
Template, which is the Template in its pure form, the only
additions made to the Middlewares were: (1) implementation
of the Wi-SUN FAN protocol for communication with the
outlets, for the smart outlet system; (2) increase of the RS-
232 protocol in the communications management - devices
module, for the biomedical devices system. These modificati-
ons to the Middleware are what allow it to communicate with
different devices.

The changes made to the system are only possible because
of the developed modular architecture and because when the
first communication between middleware and devices occurs,
the latter must send packets containing the description of how
data and commands are transmitted to and from these devices.

Therefore, according to the results, the developed middlewa-
res work with acceptable performance in a mixed commu-
nication protocol environment with multiple devices. It also
is suitable for different usage scenarios, as the test cases
were different from each other. The usage in distinct cases
is a consequence of the support and easiness of development
provided by the Template. This facilitates the employment
of new devices through the addition of new communications
protocols as sub-modules of the Template modules. Thus, the
Template and architecture can be used as a flexible starting
point tool that might need only minor changes to run in other
scenarios.

V. CONCLUSIONS

This work presented the issues for edge middleware deve-
lopment. Also it has shown that the popular available platforms
have high computational requirements. Thus, developers need
to create their own platforms. This showed that a tool for Edge
middleware development could help to accelerate and facilitate
this process.

In this study, a middleware architecture and Template were
developed to address part of the aforementioned issues. The ar-
chitecture is composed by seven elements and is modularized,
which makes the architecture flexible, as it can be changed
according to the usage if needed. The Template is a set of
diagrams to follow and how to code the the solution.

The developed middlewares based on the architecture and
Template have low computational hardware requirements.
The results showed that both are suitable to develop low
requirements middlewares. The results also showed that the
middlewares performance are acceptable in both cases, which
demonstrates that the architecture and the Template could be
used in different scenarios without difficulties regarding the
implementation.

Therefore, according to the results presented, the proposed
work could be used as a tool to ease edge middleware
development and it also could help the beginning of the
development of another architecture.

ACKNOWLEDGMENTS

We are thankful to Companhia Paranaense de Energia
(COPEL) for support and financial assistance in this research

project, Project Copel ANEEL PD-02866-0508/2019.
This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CA-
PES) – Finance Code 001

REFERENCES

[1] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar, “Iot devices recog-
nition through network traffic analysis,” in 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 2018, pp. 5187–5192.

[2] O. Bello, S. Zeadally, and M. Badra, “Network layer inter-operation of
device-to-device communication technologies in internet of things (iot),”
Ad Hoc Networks, vol. 57, pp. 52–62, 2017.

[3] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta, “Role of
middleware for internet of things: A study,” International Journal of
Computer Science and Engineering Survey, vol. 2, no. 3, pp. 94–105,
2011.

[4] A. Polianytsia, O. Starkova, and K. Herasymenko, “Survey of hardware
iot platforms,” in 2016 Third International Scientific-Practical Confe-
rence Problems of Infocommunications Science and Technology (PIC
S&T). IEEE, 2016, pp. 152–153.

[5] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen,
“Orchestration of microservices for iot using docker and edge compu-
ting,” IEEE Communications Magazine, vol. 56, no. 9, pp. 118–123,
2018.

[6] P. Bellavista, C. Giannelli, S. Lanzone, G. Riberto, C. Stefanelli, and
M. Tortonesi, “A middleware solution for wireless iot applications in
sparse smart cities,” Sensors, vol. 17, no. 11, p. 2525, 2017.

[7] I. Ungurean, N. C. Gaitan, and V. G. Gaitan, “A middleware based
architecture for the industrial internet of things,” KSII Transactions on
Internet and Information Systems (TIIS), vol. 10, no. 7, pp. 2874–2891,
2016.

[8] M. A. da Cruz, J. J. Rodrigues, A. K. Sangaiah, J. Al-Muhtadi, and
V. Korotaev, “Performance evaluation of iot middleware,” Journal of
Network and Computer Applications, vol. 109, pp. 53–65, 2018.

[9] A. S. Gaur, J. Budakoti, and C.-H. Lung, “Design and performance
evaluation of containerized microservices on edge gateway in mobile
iot,” in 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData). IEEE, 2018, pp. 138–145.

[10] C. Perera, P. P. Jayaraman, A. Zaslavsky, P. Christen, and D. Georgako-
poulos, “Mosden: An internet of things middleware for resource cons-
trained mobile devices,” in 2014 47Th hawaii international conference
on system sciences. IEEE, 2014, pp. 1053–1062.

[11] M. A. da Cruz, J. J. P. Rodrigues, J. Al-Muhtadi, V. V. Korotaev, and
V. H. C. de Albuquerque, “A reference model for internet of things
middleware,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 871–
883, 2018.

[12] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Mid-
dleware for internet of things: a survey,” IEEE Internet of things journal,
vol. 3, no. 1, pp. 70–95, 2015.

[13] M. B. Alaya, Y. Banouar, T. Monteil, C. Chassot, and K. Drira,
“Om2m: Extensible etsi-compliant {M2M} service platform with self-
configuration capability,” Procedia Computer Science, vol. 32, no. 0,
pp. 1079 – 1086, 2014, the 5th International Conference on Ambient
Systems, Networks and Technologies (ANT-2014). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050914007364

[14] Dojot, Installation Guide - dojot v0.7.0 documentation, 2021. [On-
line]. Available: https://dojotdocs.readthedocs.io/en/latest/installation-
guide.html#hardware-requirements

[15] Kaa, System installation - Kaa, 2021. [Online].
Available: https://kaaproject.github.io/kaa/docs/v0.10.0/Administration-
guide/System-installation/

[16] Zabbix, Zabbix Manual - 2 Requirements, 2021. [Online]. Available:
https://www.zabbix.com/documentation/current/en/manual/installation/-
requirements

[17] P. F. Pires, F. C. Delicato, T. V. Batista, B. C. C.
Costa, T. A. Barros, and E. R. S. Cavalcante, GT-EcoDiF–
Ecossistema Web de Dispositivos Físicos, Manual Técnico, 2013.
[Online]. Available: https://silo.tips/download/gt-ecodif-ecossistema-
web-de-dispositivos-fisicos-manual-tecnico

[18] ISO 80601-2-61:2017, “Medical electrical equipment – Part 2-61: Par-
ticular requirements for basic safety and essential performance of pulse
oximeter equipment,” International Organization for Standardization,
Geneva, CH, Standard, 2017.


