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Pathological Voice Classification Based on
Recurrence Quantification Measures
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Abstract— This paper presents an analysis of speech signals
based on quantification measures of recurrence plots. A com-
parison between healthy voices and voices affected by laryngeal
pathologies (Reinke’s edema, nodule and vocal fold paralysis) is
made. In order to classify these signals as pathological or healthy,
seven recurrence quantification measures are used: Determinism,
maximum length of the diagonal structures, Shannon entropy of
line distribution, slope of line of best fit, laminarity, length of
longest vertical line segment and mean vertical line length or
trapping time. Discriminant analysis methods (linear and qua-
dratic) are applied to each feature individually, and to the vectors
formed by feature combination with cross-validation classification
rates up to 95.71+4.94% (95% confidence interval). Results show
that the employed measures present a significant discriminative
potential to distinguish healthy voices from pathological ones.

Keywords— Speech signal analysis, laryngeal pathologies, re-
currence quantification measures.

I. INTRODUTION

Voice is considered the main tool of human communication.
From a health science standpoint, the human voice has been
shown to carry much information about the general health and
well-being of an individual. Our voice reveals who we are and
how we feel, providing considerable insight for the structure
and function of certain parts of the body [1].

Several factors can affect the voice quality including unhe-
althy social habits such as smoking and alcoholism, vocal
abuse, and larynx diseases. Early diagnosis of laryngeal patho-
logies can positively influence the treatment and cure of disea-
ses. Some medical examinations (e.g. fiberoptic laryngoscopy)
applied to observe the larynx and help the diagnosis are
considered invasive, causing discomfort to patients. In the last
decades, methods based on digital signal processing techniques
have been developed to provide an auxiliary and noninvasive
tool to detect vocal disorders caused by laryngeal pathologies.
Some of these methods are based on linear model of speech
production [2], [3] or they can be based on nonlinear dynamic
analysis of speech [4], [5].

Acoustic analysis of speech signals to detect their disorders
caused by vocal fold pathologies are based on perturba-
tion measures obtained from fundamental frequency or their
perceptual correlate pitch such as jitter, shimmer, amplitude
perturbation quotient (APQ), pitch perturbation quotient (PPQ)
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and others [6], [7]. However, some pathological signals are so
disordered that the pitch obtention is difficult or sometimes
impossible in the presence of some pathologies. Other applied
methods are based on inverse filtering [8]. Nevertheless, the
fact that linear prediction coding (LPC) based on inverse
filtering has as assumption a linear model, such methods do not
behave well when pathology is present due to nonlinearities
introduced by the pathology itself [2].

Since the original suggestions of Titze et al [9] to improve
our understanding of voice disorders with nonlinear dynamic
concepts and analysis methods, researchers have been studying
new techniques to differentiate healthy and pathologic voices
and diagnose laryngeal pathologies [10].

The correct classification rate obtained in previous resear-
ches to distinguish between pathological and healthy voices
varies significantly: 85,8% [11], 89,1% [12], 91,8% [13],
99,44% [14], 90,1% (Healthy x Nodule), 85,3% (Healthy x
Edema) and 88,2% (Healthy x Pathological) [15]. However,
the comparison among the researches carried out is very
complex due to the wide range of measures, data sets and
classifiers employed.

Although there are several methods for acoustic analysis
of voices affected by laryngeal diseases, different measures
respond to different disorders in different ways [13]. The re-
search to find out which voice characteristics or a combination
of them that best detect a voice disorder, caused by a specific
pathology, is still an open field.

A new method based on nonlinear data analysis has become
popular: Recurrence Plots (RPs). Recurrence is a fundamen-
tal property of dissipative dynamical systems. Recurrence
plots visualize recurrent behavior of dynamical systems. The
method allows the identification of system properties that can-
not be observed using other linear and nonlinear approaches
and it is especially useful for analysis of nonstationary systems
with high dimensional and/or noisy dynamics [16].

Recurrence plots were firstly used as a tool to visualize the
behavior of phase-space trajectories. Zbilut and Weber [17]
and later Marwan et al [18] have consolidated the method
as a tool in nonlinear data analysis with the application
of quantification measures to analyze the RPs. Recurrence
quantification analysis (RQA) can be applied to almost every
kind of data such as: biological systems including elec-
tromiography (EMG) [19], intracranial electroencephalogram
recordings (EEG) [20], cardiac sound evaluation [21], Earth
sciences [22], Finances [23] and computer networks [24].
Recently, but still little explored, these have been applied to
speech signals analysis [25], [26], [13].

In this work, quantification measurements of recurrence
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plots are applied to detect the vocal disorders associated to
three different laryngeal pathologies (Reinke’s edema, nodule
and vocal fold paralysis). Seven recurrence quantification
measures are used: Determinism (DET), maximum length of
the diagonal structures (L4, ), entropy (ENTR), slope of line
of best fit (TREND), laminarity (LAM), length of longest
vertical line segment (V,,,,) and mean vertical line length
or trapping time (77). A discriminant analysis based classifier
is carried out to discriminate pathological voices from healthy
voices employing Linear Discriminant Analysis (LDA) and
Quadratic Discriminant Analysis (QDA). The measures are
applied individually to discriminate pathological from healthy
voices and then they are combined in order to improve the
classification performance.

The paper is organized as follows. In Section II, a brief re-
view of recurrence plots and their quantification measurements
are carried out. The employed methodology and database are
presented in Section III. Results are shown in Section IV,
followed by the conclusions in Section V.

II. RECURRENCE QUANTIFICATION ANALYSIS
A. Review of Recurrence Plots

A recurrence plot (RP) is a two-dimensional squared matrix
with black and white dots and two time-axes, where each
black dot at the coordinates (i, j) represents a recurrence of
the system state x(i) at time j [16]:

R =0~ % - 7l), ZeR™, i,j=1...N. (1)

where:

. N is the number of considered states Z;;

. ¢ is the neighborhood radius (threshold) at the point T;;
Il - || is the norm in the neighborhood, usually the
Euclidean norm;

. O(+) is the Heaviside function;

. m is the embedding dimension of the system (degrees of
freedom).

Figure 1 shows recurrence plots examples of healthy and
pathological signals, respectively. From the examples in Figure
1, it is possible to detect the presence of small diagonal lines in
the RP of the healthy speech signal. However, in the recurrence
plot of the pathological speech signal there is a predominance
of isolated points.
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Fig. 1. Recurrence plots of 400 ms of the sustained vowel /ah/ (a) Healthy
voice and (b) Pathological voice (paralysis).

Recurrence plots (RP) visualization is a subjective method
and has the disadvantage that the user had to detect and
interpret the pattern and structures revealed by them. Zbilut
and Webber [27], with the quantification of the RP structures,
provided an objective and modern tool of nonlinear data
analysis [28]. The quantification measures are described below.

B. Recurrence Quantification Measures

In this work, the recurrence quantification analysis applied
to healthy and pathological voices is fulfilled by using the
following measurements [16], [29]:

The density of recurrence points in a recurrence plot within
a specified radius is represented by Recurrence Rate (REC)
or per cent recurrences. This measure simply counts the black
dots in the recurrence plot. This coincides with the correlation
sum and is given by:

1 N
REC:aN5§:

ij=1

m,e
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Determinism (DET) - It is related with the determinism of
the system, which is the fraction of recurrence points forming
diagonal lines. Processes with stochastic behaviour cause none
or very short diagonals, whereas deterministic cause longer
diagonals and less single, isolated recurrence points. The
ratio of recurrence points that form diagonal structures to all
recurrence points is given by:

N
Sl L% P
N m,e
Zi,j Ri;
where P<(1) represents the frequency distribution of diagonal
structures lengths [ in the RP and [,,,;,, is the minimum number
of points to form a diagonal structures in the RP.

Maximum diagonal line length (L,4,) - corresponding to a
mean prediction time or to the inverse of the divergence of the
system. Eckmann [30] has stated that this measure is related
to the largest Lyapunov positive exponent:

Linaz = max({liai = 1a ) Nl}) “)

DET = , 3)

Entropy (ENTR) - The Shannon entropy of frequency dis-
tribution of the diagonal line lengths measures the complexity
of the deterministic structure in the system:

N
==, P(O)np(l),
£ 5)
where p(l) = D (
p( ) ZjV:l’NL’L’IL PE(Z)

Slope of line of best fit (TREND) - It is a linear regression
coefficient over the recurrence point density REC of the
diagonals parallel to the mean diagonal (line of identity, LOI).
It gives information about a nonstationarity in the process,
especially a drift:

ENTR =

>N (i — N/2)(REC; — (REC}))
SN (i - NJ2)?

Laminarity (LAM) - Represents the fraction of recurrence
points forming vertical lines (the ratio between the recurrence

TREND =

(6)



XXX SIMPOSIO BRASILEIRO DE TELECOMUNICACOES - SBrT’12, 13-16 DE SETEMBRO DE 2012, BRASILIA, DF

points forming the vertical structures and the entire set of
recurrence points). Vertical lines are typical for intermittency.
Therefore, LAM is related to the amount of laminar states in
the system:

Z'l])\[:'um'in v X Pe('l})
N m,e
25 Rij

where P°(v) is the frequency distribution of lengths of the
vertical structures v in the RP and v,,;, is the minimal length
to compute a vertical structure.

Trapping time (77), which is the mean length of vertical
lines. 7T measures the mean time that the system is trapped
in one state or changes only very slowly.

N
szvmm v x P* (v)
N .
2 vy PE(0)
Other recurrence measure is the maximum length of vertical

structures in the recurrence plot. It is computed similarly to
Lz, in Eq. (4), by means of the equation:

Vinae = mazx({V;;1=1...L}). )

LAM =

; (7

TT = (8)

III. MATERIAL AND METHODS
A. Database

In this work, the quantification recurrence measurements
are extracted of sustained vowels of speech signals recordings
from Disordered Voice Database, Model 4337, developed by
Kay Massachusetts Eye and Ear Infirmary (MEEI) Voice
and Speech Lab [31]. The database includes samples from
patients with a wide variety of voice disorders. All samples
were collected in a controlled environment with the following
features: low-noise-level, constant microphone distance, direct
digital 16-bit sampling and robust signal conditioning.The
duration of these vowel samples was 3 s for healthy voices and
1 s for pathological voices. A 25 or 50 (kHz) sampling rate was
employed to pathological and healthy voices, respectively. All
the files were down-sampled to 25 kHz and a single 400 ms
frames of analysis was considered for each signal.

The selected cases comprise 118 patients with pathological
voices (45 with vocal fold edema, 18 with nodule and 55
patients with vocal fold paralysis) and 53 patients with healthy
voices.

B. Methodology

The methodology applied in this work is summarized in
Fig. 2. First, the embedding dimension (m) and the optimum
time delay (7) for each signal are extracted using the Visual
Recurrence Analysis software (VRA) [32]. After obtaining 7
and m, N vectors of dimension m are formed from s(z) and
with their 7,27,...,(m — 1)7 delayed versions [33].

The quantification measures mentioned in Section II are
extracted keeping the maximum recurrence rate at 1% using
Recurrence Quantification Analysis software (RQA) [29].

Discriminant analysis is applied by using the classify func-
tion of MATLAB 2009 (Mathworks) using two different
discriminant function: linear (LDA) and quadratic (QDA).

Speech signals

Embedding Parameters Extraction
(1, m)

Quantification Recurrence Analysis
(Measurements Extraction)

Discriminant Analysis based Classifier
(Linear, Quadratic)

Classification
(Healthy, Edema, Nodule, Paralysis)

Fig. 2. Classification system based on recurrence quantification analysis.

The MQR classification performance is evaluated by means
of 10-fold cross-validation experiments. Firstly, for each of
individual features and then, to improve the classifier perfor-
mance, the features are combined two-by-two, three-by-three,
four-by-four, five-by-five, six-by-six and, finally, all the seven
measures, forming hybrid vectors.

IV. RESULTS

Results, obtained by the discriminant analysis, employing
linear and quadratic functions to discriminate between healthy
voices from voices affected by edema (Healthy x Edema),
nodule (Healthy x Nodule) and vocal fold paralysis (Healthy
x Paralysis) are presented below.

A. Individual Measures Classification

The overall classifcation performance obtained by means
of cross-validation (95% confidence), for each discriminant
function (LDA and QDA), to individual features are shown in
Tables I-II1.

TABLE I
CORRECT CLASSIFICATION RATE (%) FOR INDIVIDUAL FEATURES -
HEALTHY X EDEMA.

Measures LDA QDA
DET 78.78 +£9.21 79.33 £7.53
Lmaz 82.78 £7.65 82.44 £7.99
ENTR 80.89 £10.85 | 80.44 £5.74
TREND 65.22 +£10.37 | 62.11 +11.04
LAM 57.22 +9.48 57.11 + 10.12
Vimaz 73.44 £9.97 71.33 £6.76
T 65.11 +14.31 65.44 £ 8.81

It can be observed, in Table I, that the best classification
rate (maximum mean accuracy) obtained is 82.78+7.65% for
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using L,,q, and LDA classifier. To this case, it was obtained a
mean false positive rate of 23.671+13.32% and 8.00£13.82%
to false negative rate.

TABLE II
CORRECT CLASSIFICATION RATE (%) FOR INDIVIDUAL FEATURES -

HEALTHY X NODULE.

Measures LDA QDA

DET 84.46 + 5.84 84.64 £7.23
Lmaz 85.89 £11.81 93.04 £5.27
ENTR 87.32 £5.79 87.14 £10.17
TREND 61.96 + 6.82 56.43 £+ 12.85
LAM 53.39 £7.19 53.75 £ 11.96
Vimaz 74.64 +10.53 75.89 £ 8.54
T 63.21 £12.17 | 63.21 4 15.52

In the case of Healthy x Nodule discrimination (Table II), a
maximum mean accuracy of 93.04+5.27% was obtained using
Ly, and QDA. The mean false positive and false negative
rates were 7.33+6.82% and 5.00%11.31%, respectively.

TABLE III
CORRECT CLASSIFICATION RATE (%) FOR INDIVIDUAL FEATURES -
HEALTHY X PARALYSIS.

Measures LDA QDA

DET 81.36 £ 6.40 85.18 £+ 3.41
Lmaz 90.82 £6.14 92.64 £5.15
ENTR 89.82 £4.79 88.09 £+ 4.36
TREND 67.73 £9.83 65.55 £ 9.69
LAM 52.91 £ 10.58 | 60.45 4+ 10.73
Vimaz 80.45 £ 10.05 78.91 £ 7.38
T 65.91 £ 8.96 61.36 £13.73

The results obtained in the Healthy x Paralysis discrimina-
tion presented in the Table III give a maximum mean accuracy
of 92.64+5.15%, when employing L,,., and QDA. For this
case, the mean false positive and false negative rates obtained
were 9.67+9.96% and 5.33£6.18%, respectively.

As it can be seen in Tables I-1II, the use of L,,,, measure
followed by ENTR and DET provides, individually, the best
results concerning the task of discriminating healthy voices
from pathological ones.

B. Results of Combined Measures

In order to get better classification rates, the measures were
combined. Figures 3-5 summarize the best results obtained for
the individual and combined cases. For the Healthy x Edema
(Fig. 3) rates, the maximum mean accuracy obtained was

91.78+£5.69%, combining five measures: DET, L,,q., ENTR,
Vimae and TT, using the LDA classifier. In this case, a mean
false positive rate of 6.00+£6.91% and a mean false negative
rate of 11.004+8.40% were obtained.

Healthy x Edema
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Measure Combination

Fig. 3. Correct Classification rate (%) for the best results to the individual
and combination methods - Healthy x Edema.

For the Healthy x Nodule classification results (Fig. 4),
a maximum mean accuracy of 95.71£4.94% was obtained
with four different combinations: DET and L,,qz; Lyae and
ENTR; L4, and LAM; and L,,,, and TT, using the QDA
classifier. The mean rates to false positive and false negative
were 4.004+6.03% and 5.00£11.35%, respectively.

The same maximum mean accuracy of 95.71+4.94%
was given by the combination of DET, L,,,, and ENTR.
In this case, however, the false positive rate decrea-
sed to 2.00£4.52%, but the false negative increased to
10.004:15.08%.
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Fig. 4. Correct Classification rate for the best results to the individual and
combination methods - Healthy x Nodule.

For Healthy x Vocal fold paralysis classification (Fig. 5), a
maximum mean accuracy of 95.454+3.43% was obtained when
applying the same five measure combination which presented
the best result to Healthy x Edema, namely, DET, L., 4,
ENTR, V,,... and TT. But, in this case, the classifier was a
QDA based instead of an LDA one. The mean rates of false
positive and false negative obtained were 1.67£3.77% and
7.33+6.82%, respectively.
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Fig. 5. Correct Classification rate (%) for the best results to the individual
and combination methods - Healthy x Paralysis.

V. CONCLUSION

In this paper, the recurrence quantification measures were
applied to discriminate between healthy and pathological voi-
ces. In the classification by means of the individual features,
the maximum diagonal line length (L,,,,,) provided the higher
correct classification rates. This measure also appears in all the
best results obtained by feature combinations. As expected,
the combination of a set of appropriate measures increased
the classification system performance related to the individual
cases. Besides, the high standard deviation rates obtained by
the individual classifiers, probably caused by the different
degrees of severity of the pathologies, were reduced after
feature combination. The obtained results suggest that the
applied method provide a good potential for discrimination
between groups of healthy voices and voices affected by
edema, nodule and vocal fold paralysis.
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