Filtro de ressonância de modo guiado feito de FSS dielétrica: Caracterização e projeto.

Domingos Marcos Canga e Felipe Beltrán Mejía

Resumo — Neste trabalho apresentamos o desenvolvimento de um filtro de ressonância monolítico. O filtro projetado apresenta uma atenuação na ordem de 36 dB na frequência de ressonância de 1.5 GHz e alta transmissão no resto da faixa de frequência. Este filtro também apresenta um bom desempenho quando submetido a potências elevadas. Além disso, o filtro pode ser impresso a baixo custo usando impressoras 3D convencionais.

Palavras-Chave — Superfícies seletivas em frequência (FSS), Filtro de ressonância de modo guiado, Projeto do filtro, Análise de tolerância, Estruturas dielétricas.

Abstract — In this paper we present the design of a monolithic resonant filter. The proposed stop-band filter exhibits a 36 dB attenuation peak for a 1.5 GHz resonance frequency and high transmittance in the rest of the frequency band. Also, this filter exhibits a good performance when exposed to high power radiation. Furthermore, it is a cost-effective design that can be printed using a conventional 3D printer.

Keywords — Frequency selective surfaces (FSSs), Guided mode resonance filters, Filter design, Tolerance analisis, Periodic structures.

I. INTRODUÇÃO

As superfícies seletivas em frequência (FSS) são estruturas metálicas ou dielétricas compostas por elementos periódicos com a finalidade de filtrar as ondas eletromagnéticas incidentes sobre uma superfície [1, 2]. As FSS são utilizadas em uma ampla margem do espectro eletromagnético, desde as microondas, ondas milimétricas e a faixa óptica. A sua aplicação tem despertado grande interesse, por reduzir sinais interferentes na filtragem ou bloqueio de ondas eletromagnéticas, tais como divisores de feixes ópticos[3], sistemas de identificação por radiofrequência (RFID) [4], lentes [5], construção de radomes [6], sub-refletores para antena Cassegrain multibanda [7] e proteção contra as interferências eletromagnéticas.

A maior parte das FSS são construídas com arranjos metálicos periódicos ou matrizes de dipolos com o objetivo de explorar as interações entre as ondas eletromagnéticas e os metais [8]. Porém, as FSS metálicas apresentam alta absorção quando submetidos a potências elevadas [9]. Para resolver este problema, tem sido criado as FSS dielétricas construídas com materiais de baixas perdas para garantir o seu bom desempenho. Conforme será apresentado na seção seguinte, o desenho de FSS sem o uso de materiais metálicos é baseado na condição de ressonância de modo guiado [1].

Este artigo propõe o projeto do filtro de ressonância de modo guiado, analisa a tolerância de parâmetros e estabelece o ajuste da estrutura dielétrica usando o método de análise rigorosa de ondas acopladas (RCWA) [10]. Devido à sua eficiência computacional, o método RCWA é utilizado na resolução da dispersão do campo elétrico de estruturas tridimensionais (3D).

Este trabalho foi organizado em cinco seções: a Seção II aborda o filtro de ressonância de modo guiado. A Seção III apresenta o projeto do filtro e a Seção IV a análise de tolerância. Os ajustes necessários são objeto da Seção V e na Seção VI discutem-se as principais conclusões do trabalho.

II. FILTRO DE RESSONÂNCIA DE MODO GUIADO

Os filtros de ressonância de modo guiado são estruturas planares constituídos por uma grade e um guia de ondas. Estas estruturas são altamente compactas, simples de serem construídas através de materiais dielétricos de baixas perdas de modo a garantir a alta performance [11].

A. Ressonância de modo guiado

Existem dois mecanismos dependentes que descrevem o comportamento da ressonância de modo guiado [12]. O primeiro consiste na difração de uma onda incidente sobre uma grade conforme ilustrado na Fig. 1, onde a amplitude do campo propagado possui as mesmas variações da grade. Portanto, a partir das equações de Maxwell pode-se calcular a amplitude e a fase de cada modo difratado, e a direção pode ser determinada pela equação da grade [13],

$$n_{\rm g}\sin\theta_m = n_1\sin\theta_{\rm inc} - m\frac{\lambda_0}{\Lambda},$$
 (1)

onde n_g é o índice de refração da grade, n_1 é o índice de refração no vácuo, θ_{inc} é o ângulo da onda incidente, λ_0 é o comprimento de onda no vácuo, Λ é o período da grade e θ_m é o ângulo que corresponde ao modo *m* difratado pela grade.

Domingos Marcos Canga e Felipe Beltrán Mejía, Grupo de Eletromagnetismo Aplicado, Instituto Nacional de Telecomunicações (INATEL), Santa Rita do Sapucaí-MG, Brasil, E-mail: domingosm@gee.inatel.br. Este trabalho foi parcialmente financiado pela Finep, com recursos de Funttel, contrato No 01.14.0231.00, sob o projeto Centro de Referência em Radiocomunicações (CRR).

O segundo mecanismo é o guia de ondas, onde a luz se propaga ao longo de um caminho confinado por reflexão total interna [14]. Portanto, para que a onda seja guiada pelo guia, o índice efetivo do modo guiado deve ser maior ao meio circundante e inferior ao índice de refração do núcleo. Com isto, pode se escrever uma condição para o guiamento das ondas,

$$\max[n_1, n_2] \le \left| \frac{\beta_m}{k_0} \right| \le n_g, \qquad (2)$$

sendo β_m a constante de propagação do modo m, n_2 é o índice de refração do substrato e $k_0 = 2\pi/\lambda_0$. Neste contexto, um modo guiado pode ser considerado como um raio de luz que se propaga com o ângulo θ_m [15], tal que,

$$\frac{\beta_m}{k_0} = n_g \sin \theta_m . \tag{3}$$

A ressonância de modo guiado ocorre quando existe uma ordem difratada com o mesmo ângulo de um modo guiado. Portando, substituindo (3) em (1) tem-se uma nova equação que é substituída em (2). Após isto, obtém-se uma desigualdade que estima a região onde pode ocorrer a ressonância de modo guiado,

$$\max[n_1, n_2] \le \left| n_1 \sin \theta_{\text{inc}} - m \frac{\lambda_0}{\Lambda} \right| \le n_g .$$
(4)

Com base em (4) foi gerada a Fig. 2, que ilustra as regiões de ressonância em função do ângulo incidente e o comprimento de onda normalizado (λ_0 / Λ) , onde $n_1 = 1$, $n_2 = 1.7$ e $n_g = 2.0$.

Fig. 2. Região de ressonância do filtro de ressonância de modo guiado.

Os ângulos dos modos difratados dependem da ordem de difração, tipo de material, comprimento de onda e o período da grade [1]. À medida que o período da grade aumenta em relação ao comprimento de onda, o número de ressonância aumenta exponencialmente [12]. Com o auxílio da Fig. 2, obteve-se a expressão que estima o período da grade inicial:

$$\Lambda = 0.7\lambda_o \quad , \tag{5}$$

onde o valor encontrado foi $\Lambda = 14.0$ cm.

B. Análise Rigorosa de Ondas Acoplada (RCWA)

A modelagem do comportamento óptico de dispositivos de ressonância de modo guiado é obtida através de métodos de

simulação no domínio da frequência. Os mais utilizados são diferenças finitas no domínio da frequência (FDFD) [16] e a análise rigorosa de ondas acoplada (RCWA) [10].

Neste trabalho foi utilizado o método RCWA devido à sua eficiência computacional para estruturas tridimensionais (3D). Este é um método semi-analítico que serve para resolver a dispersão do campo elétrico nas estruturas dielétricas periódicas. A estrutura do filtro foi simulada utilizando o software ANSYS HFSS [17] que possui o método RCWA.

III. PROJETO DO FILTRO

Para desenvolver um filtro de ressonância de modo guiado é necessário a escolha do tipo de material dielétrico e a frequência de ressonância do filtro. A frequência escolhida foi 1.5 GHz por ser consideravelmente baixa para fabricação e manipulação da estrutura. O material escolhido foi Acrilonitrila Butadieno Estireno (ABS), porque é de baixo custo, é fácil de conseguir no formato de filamento para impressora 3D e possui um baixo coeficiente de absorção [18]. A constante dielétrica para este material é $\varepsilon_2 = 2.8$. Com estes dados, o filtro foi implementado em três etapas.

Primeiro, foi modelada a transmissão de duas camadas para obter a mínima reflexão na banda de interesse utilizando o método da matriz de transferência [19]. Seguidamente, para minimizar a reflexão da estrutura dielétrica, foram determinados os parâmetros constante dielétrica efetiva (ε_1), e os parâmetros geométricos d_1 e d_2 usando o método de otimização de mínimos quadrados. Após a aplicação do método foram encontrados os seguintes valores: $\varepsilon_1 = 1.44$, $d_1 = 2.0$ cm e $d_2 = 5.50$ cm.

Fig. 3. Dimensões do filtro de ressonância de modo guiado: a) Estrutura com as extremidades retas e b) Estrutura com as extremidades chanfradas.

Segundo, tendo ε_1 é possível determinar o fator de preenchimento da grade a partir da teoria do meio efetivo [1],

$$f = \frac{\varepsilon_1 - \varepsilon_{\text{inc}}}{\varepsilon_2 - \varepsilon_{\text{inc}}},\tag{6}$$

onde ε_{inc} é a constante dielétrica do ar e $f = L/\Lambda$ é o fator de preenchimento da grade. Logo, o fator de preenchimento encontrado foi de 24.4%.

Terceiro, o período da grade inicial foi determinado utilizando (5). Para ajustar o período da grade na frequência de 1.5 GHz foi aplicado o método RCWA, obtendo $\Lambda = 16.0$ cm.

IV. ANÁLISE DE TOLERÂNCIA

Nesta seção do artigo fez-se a comparação dos coeficientes de transmissão e reflexão obtidos na Fig. 4, com os melhores coeficientes encontrados depois de fazer uma variação paramétrica para d_1 , $f \in \Lambda$. Após simular a estrutura da Fig. 3a, obteve-se os parâmetros S e suas respectivas fases em

função da frequência. Os coeficientes de transmissão (S_{21}), reflexão (S_{11}) e suas fases correspondentes são ilustrados na Fig. 4 onde S_{21} = - 7.9 dB e S_{11} = - 2.3 dB para 1.56 GHz. Estes resultados estão longe do esperado, porque o filtro está ressoando fora da frequência desejada e está refletindo 58% da potência incidente e apenas 42% é transmitida pela estrutura. Quando se espera obter uma ressonância em 1.5 GHz e uma boa transmissão no resto da faixa de frequência. Assim, para o funcionamento adequado do filtro, o coeficiente de transmissão (S_{21}) deve estar abaixo de -10 dB e a reflexão próxima de zero na frequência definida.

Fig. 4. Parâmetros S e as fases em função da frequência para uma grade com $d_1 = 2.0$ cm, $d_2 = 5.50$ cm, f = 24.4%, $\Lambda = 14.0$ cm e L = 3.40 cm.

Na Fig. 3b trata-se de um cenário real onde as extremidades da estrutura possuem vértices curvos, devido ao processo de fusão por deposição de material (FDM) usado pela impressora 3D. Os parâmetros de transmissão e reflexão obtidos com esta estrutura são respectivamente, $S_{21} = -12.3$ dB e $S_{11} = -2$ dB. Houve melhoria nos coeficientes encontrados em relação aos coeficientes obtidos na Fig. 4. Porém, estes coeficientes tendem a piorar à medida que as curvas das extremidades forem acentuadas, degradando assim o campo elétrico transmitido. Por esta razão, resolveu-se utilizar o modelo da Fig. 3a para análises posteriores.

A. Variação do parâmetro d_1

A alteração deste parâmetro influi diretamente na resposta em frequência da estrutura, onde a espessura da grade (d_1) foi variada no intervalo de 2.0 cm a 3.0 cm com passos de 1 mm. Escolheu-se este intervalo, porque espessuras maiores provocam grandes variações na resposta de magnitude do filtro em função da frequência. Porém, observou-se que à medida que varia a espessura da grade, a frequência de ressonância mantém-se constante na faixa de frequência de 1 a 2 GHz. Os coeficientes de transmissão e reflexão variam conforme o aumento da espessura da grade. Sendo que a melhor variação ocorreu em $d'_1 = 3.0$ cm com os seguintes coeficientes de transmissão e reflexão, $S_{21} = -16.8$ dB e $S_{11} = -1.2$ dB. Na Fig. 5 tem-se a comparação entre os coeficientes de transmissão e reflexão com $d_1 = 2.0$ cm e $d'_1 = 3.0$ cm. Na Fig. 6 tem-se a comparação entre as fases destes coeficientes em função da frequência. É visível o impacto que este parâmetro causa na magnitude do filtro, mesmo tendo mantido todas as especificações iniciais do filtro. Obteve-se uma melhoria considerável em relação ao encontrado na Fig. 4.

Fig. 5. Comparação dos coeficientes de transmissão e reflexão vs frequência para $d_1 = 2.0$ cm e $d'_1 = 3.0$ cm.

Fig. 6. Comparação de fases vs frequência para $d_1 = 2.0$ cm e $d'_1 = 3.0$ cm.

B. Variação do parâmetro f

O fator de preenchimento foi variado no intervalo de 24% a 40% com incremento de 1%. Intervalos maiores de fatores de preenchimento provocam grandes variações na resposta em frequência. No entanto, à medida que aumenta o fator de preenchimento a frequência de ressonância diminui gradativamente, permitindo o surgimento de novas ressonâncias na estrutura. O melhor resultado obtido foi S_{21} = - 16.2 dB e S_{11} = - 1.5 dB para f = 38% e 1.41 GHz. Na Fig. 7 tem-se a comparação entre os coeficientes de transmissão e reflexão com f = 24% e f' = 38%. Na Fig. 8 tem-se a comparação entre as fases destes coeficientes em função da frequência. Percebe-se que com a variação deste parâmetro, obtém-se uma ótima resposta de magnitude do filtro em relação ao resultado encontrado na Fig. 4.

Fig. 7. Comparação dos coeficientes de transmissão e reflexão vs frequência dos fatores de preenchimento: f = 24 % e f' = 38 %.

Fig. 8. Comparação de fases vs frequência dos seguintes fatores de preenchimento: f = 24 % e f' = 38 %.

C. Variação do parâmetro Λ

A variação deste parâmetro também afeta diretamente o comprimento da grade, onde o período da grade (Λ) foi variado no intervalo de 14.0 cm a 16.30 cm com passos de 1 mm. Para intervalos maiores de período da grade ocorrem grandes variações na resposta em frequência. À medida que aumenta o período da grade a frequência de ressonância diminui linearmente e os coeficientes de transmissão e reflexão melhoram em alguns pontos. Assim, a melhor variação do período da grade ocorreu em $\Lambda' = 16.10$ cm. Exatamente na frequência de ressonância de 1.5 GHz com os de seguintes coeficientes transmissão e reflexão respectivamente, $S_{21} = -14.8 \text{ dB} \text{ e} S_{11} = -1.6 \text{ dB}$. Na Fig. 9 tem-se a comparação entre os coeficientes de transmissão e reflexão com $\Lambda = 14.0$ cm e $\Lambda' = 16.10$ cm. Na Fig. 10 temse a comparação entre as fases destes coeficientes em função da frequência. Com a variação deste parâmetro obtém-se uma ótima resposta de magnitude do filtro em relação ao resultado obtido na Fig. 4.

Fig. 9. Comparação dos coeficientes de transmissão e reflexão vs frequência dos seguintes períodos da grade: $\Lambda = 14.0$ cm e $\Lambda' = 16.10$ cm.

Fig. 10. Comparação de fases vs frequência para $\Lambda = 14.0$ cm e $\Lambda' = 16.10$ cm.

V. AJUSTE DA ESTRUTURA DIELÉTRICA

Para se obter a ressonância na frequência de 1.5 GHz manteve-se os valores de $f e d_1$. Os valores ajustados foram $d_2 = 5.59$ cm, $\Lambda = 16.0$ cm e L = 3.90 cm. Os coeficientes de transmissão e reflexão podem ser encontrados na Fig. 11, com os respectivos valores $S_{21} = -36$ dB e $S_{11} = -0.0011$ dB. A ressonância do filtro ocorreu na frequência de 1.5 GHz conforme previsto no projeto, permitindo com que a potência incidente seja totalmente refletida para fora da grade, e transmitindo nas demais frequências.

Fig. 11. Parâmetros S e suas fases em função da frequência, com o filtro ressoando na frequência de 1.5 GHz com os seguintes parâmetros: $d_1 = 2.0 \text{ cm}, d_2 = 5.59 \text{ cm}, f = 24.4\%, \Lambda = 16.0 \text{ cm} \text{ e } L = 3.90 \text{ cm}.$

VI. CONCLUSÃO

O filtro de ressonância de modo guiado foi proposto e desenvolvido numericamente. O design obtido, além de ser uma excelente alternativa para substituir os materiais metálicos, apresenta uma forte ressonância na frequência projetada. O filtro apresentou uma atenuação na ordem de 36 dB na frequência de ressonância de 1.5 GHz. Ou seja, fora da ressonância a maior parte da radiação será transmitida e só será refletida a radiação com a frequência projetada, e essa radiação ocorre na direção normal com a polarização TE. A sua largura de banda é aceitável para o comportamento rejeitafaixa de banda estreita esperado. Este filtro pode ser utilizado em sistemas de comunicações que exigem uma forte resposta em frequência. O trabalho futuro será focado no desenvolvimento de dispositivos operando com múltiplas ressonâncias.

VII. REFERÊNCIAS

- J. H. Barton, R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, "All-dielectric frequency selective surfaces with few number of periods," *Progress In Electromagnetics Research B*, vol. 41, pp. 269–283, 2012.
- B. Munk, "Frequency Selective Surfaces: Theory and Design," Wiley, New York, 2005.
- [3] G. G. Cox, P. J. Russel, and N. Tucker, "Millimeter wave research demonstrator: antenna and optics subsystem.," *Marconi Space System research report*, setembro 1988.
- [4] I. Jalaly and I. D. Robertson, "RF barcodes using multiple frequency bands," *Microwave Symposium Digest*, 2005.
- [5] D. M. Pozar, "Flat lens antenna concept using aperture coupled microstrip patches," *Electronics Letters*, vol. 32, no. 23, pp. 2109– 2111, Nov. 1996.
- [6] D. L. Raynes and J. DeLap, "Design of a finite array with a radome incorporating a frequency selective surface," *IEEE 2nd European Conference on Antennas and propagation*, pp. 1–5, 2007.
- [7] V. Agrawal and W. Imbriale, "Design of a dichroic Cassegrain subreflector," *IEEE Transactions on Antennas and Propagation*, vol. 27, no. 4, pp. 466–473, Jul. 1979.
- [8] L. B. Wang, K. Y. See, J. W. Zhang, A. C. W. Lu, and S. T. Ng, "Full-wave modeling and analysis of screen printed EMI shield," in 2010 Asia-Pacific Microwave Conference, 2010, pp. 1348–1351.

- [9] S. Pugh, "Using FSS in HPM applications," MS Thesis, Air Force Institute of Technology, 2010.
- [10] M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," *Journal of the Optical Society of America A*, vol. 12, no. 5, pp. 1068–1076, May 1995.
- [11] S. Tibuleac and R. Magnusson, "Reflection and transmission guidedmode resonance filters," *Journal of the Optical Society of America A*, vol. 14, no. 7, pp. 1617–1626, Jul. 1997.
- [12] R. C. Rumpf and E. G. Johnson, "Modeling fabrication to accurately place GMR resonances," *Optics Express*, vol. 15, no. 6, pp. 3452– 3464, Mar. 2007.
- [13] H. P. Herzing, Micro-Optics: Elements, Systems And Applications, (Taylor & Francis, Philadelphia, PA, 1998).
- [14] R. E. Collin, Field Theory of Guided Waves, Second ed., *IEEE Press*, New York 1991.
- [15] K. Okamoto, Fundamentals of Optical Waveguides 2nd Edition, Academic Press, New York 2000.
- [16] R. Rumpf, "Design And Optimization Of Nano-optical Elements By Coupling Fabrication To Optical Behavior," *Electronic Theses and Dissertations*, Jan. 2006.
- [17] ANSYS HFSS. High frequency electromagnetic field simulation. http://www.ansys.com/Products/Electronics/ANSYS-HFSS, Acessado em 10/03/2017.
- [18] P. I. Deffenbaugh, R. C. Rumpf, and K. H. Church, "Broadband Microwave Frequency Characterization of 3-D Printed Materials," *IEEE Transactions on Components, Packaging and Manufacturing Technology*, vol. 3, no. 12, pp. 2147–2155, Dec. 2013.
- [19] J. Hao and L. Zhou, "Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4 x 4 transfer-matrix method," *Phys. Rev. B*, vol. 77, no. 9, p. 94201, Mar. 2008.