XL SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25-28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAI, MG

Distributed Internet of Things Applications
Experimentation Tool

Jonas L. de Vilas Boas, Antdonio M. Alberti, Joel J. P. C. Rodrigues

Abstract— The complementarity of distributed ledger technolo-
gies such as Blockchain and the Internet of Things has gained
increasing attention in the literature. In order to facilitate the
immutable validation and registration of the data collected by
the devices, the so-called smart contracts have been used and
distributed applications have been developed to increase the
adhesion of the actors. Thus, this work presents a tool for
experimentation to evaluate the performance and scalability of
distributed applications in the context of the Internet of Things.
The proposed tool is flexible and allows experimentation with
different technologies and configurations. This work contributes
to the convergence among immutable information recording, de-
terministic computation, and sensing of physical world quantities.

Keywords— Blockchain, Distributed Ledger Technology, Inter-
net of Things, Smart Contracts, Distributed Applications.

I. INTRODUCTION

Distributed Ledger Technologies (DLTs) have revolution-
ized the storage and distribution of digital information. In
the financial sector, this technology has been used to create
a network of trust among participants, removing the need for
a central regulatory authority. Since its first implementation,
proposed in [1], the characteristics of data immutability and
transparency, as well as self-regulation and consensus among
the participants were already present and are evolving with
each new solution.

In the context of the Internet of Things (IoT), the use of DLT
can be very advantageous. 10T applications bring weaknesses
and vulnerabilities that can be addressed by using DLTs. For
example, Peer to Peer (P2P) networks maintained by DLTs
solve the single point of failure problem common in Cloud-IoT
architecture and the problem of attacks for interception and
data tampering can be solved by encryption mechanisms and
consensus promoted by DLT nodes [2]. Despite the integration
problems of these two technologies, such as the hardware
limitation of the devices and the computational requirement of
the mechanisms of the DLTs [3], standards have been proposed
to bring good practices in the use of DLTs in applications of
IoT [4].

On the other hand, the second generation of DLTs [5]
brought the Smart Contracts (SCs), allowing the programming

J. L. Vilas Boas, Information and Communications Technology Laboratory,
Instituto Nacional de Telecomunicacdes, Santa Rita do Sapucai - MG, e-mail:
jonas.lopes @dtel.inatel.br; A. M. Alberti, Information and Communications
Technology Laboratory, Instituto Nacional de Telecomunicagdes, Santa Rita
do Sapucai - MG, e-mail: alberti@inatel.br; J. J. P. C. Rodrigues, Senac Fac-
ulty of Ceard, Fortaleza-CE, Brazil; Instituto de Telecomunicacdes, Portugal,
e-amil: joeljr@ieee.org. Este trabalho foi parcialmente financiado pela RNP,
com recursos do MCTIC (01245.010604/2020-14).

of deterministic routines (which cannot be changed after being
published on the network) to facilitate the registration and
consultation of data. Among the most diverse applications,
SCs have been used to mediate communication between IoT
solutions and DLTs [6]. In addition, Distributed Applications
(DApps) are based on SCs to deliver a user-friendly solution
for monitoring chain actors to interact with data in the DLT
[7].

In research on 6G networks, which considers scenarios with
a large number of active devices, the complications of IoT
applications are exponentially increased [8]. DLTs nodes can
be deployed at the edge and fog of 6G networks [9] and
have the potential to meet the security, decentralization, and
immutability requirements needed for these networks [10]. In
Brasil 6G project !, DLT nodes will be deployed at the edge
of the network to provide different services, especially for IoT
data management.

Despite the number of proposals involving DApps and SCs
in the IoT scenario, there is still a need for simulation, ex-
perimentation, and evaluation tools for these solutions. These
tools evaluate the performance and scalability of solutions in
a controlled environment, which is essential for testing the
operation of applications in general, but also for surveying
infrastructure requirements, identifying critical situations, and
developing contingency plans. Different solutions have already
been studied and analyzed in the literature [11], but they have
limitations, such as results that are far from reality and low
flexibility, for example. In this context, this work presents a
simple experimentation tool to evaluate the performance and
scalability of DApps in the context of IoT. The goal is to bring
the benefits of DLTs to the IoT world flexibly and practically.
Thus, the proposed tool meets the following requirements:

o Flexibility: It allows for different device configurations
and network topologies, as well as different DLTs. Setting
up different experiments should be simple, just configur-
ing the startup parameters.

o Easy instantiation: It runs the necessary procedures and
set up the experiment environment automatically, given
the input parameters, without the need for manual con-
figurations.

o Similarity with a real scenario: It closes to the maximum
of the operation in a real environment, so that the col-
lected results can more accurately reflect the performance
of the applications.

To meet these requirements, the proposal combines different
technologies and tools, such as Docker, the Cooja simulator,

Uhttps://inatel.br/brasil6g/

XL SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25-28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAI, MG

Shell Script, Python commands, and the Web3 library. With
this, it is possible to assemble a complete scenario of a DLT-
based IoT application in a flexible and easy-to-configure way.

The organization of the rest of this work is described below.
Section II presents some important concepts for understanding
the proposal. In Section III some related works are discussed.
The IV section presents the proposed tool and the V section
presents a usage scenario, validating the tool and illustrating
the convergence between loT, DLTs, and SCs. Finally, Section
VI presents the final considerations of this work.

II. BACKGROUND

The concepts of IoT and DLT are introduced in this section,
as well as aspects of SCs and DApps and how each of these
concepts connects. In addition, some tools and implementa-
tions used in the scope of this work are presented.

The term IoT [12] is used to describe a series of information
and communications technologies organized in an architecture
that allows everyday objects to collect data related to the
physical properties of the environment in which they are
inserted and transmit this data to human users or other objects.
Furthermore, this data can be applied to control these objects,
changing their state and behavior. The components that support
this architecture are generally simple low-cost microcontrollers
with embedded software, equipped with batteries, sensors,
actuators, and communication technologies, usually wireless.

In the proposed tool, the Contiki Cooja simulator is applied,
an open-source operating system for IoT devices with limited
resources, low cost, and low power consumption. Several
different Contiki libraries can be compiled and loaded in the
same Cooja simulation, representing different types of sensor
nodes, forming heterogeneous networks. Node firmware can
be implemented to send data externally using TCP/UDP ports.

DLT [13] was proposed to serve as a decentralized digital
ledger, that is, a kind of database maintained by multiple
participants. This makes data breaches more difficult as each
participant has a copy of all records. This technology is
distributed across multiple users using P2P networks (overlay
networks where computers communicate and exchange data
with each other directly) so that all changes in the ledger
are reflected in all copies on the network. What makes the
technology interesting is the possibility of establishing a con-
sensus protocol, applying transaction rules to avoid conflicting
information, and allowing the nodes of its distributed computer
network to self-inspect the entire operation, without the pres-
ence of a central server or certification authority, quickly and
globally. The Blockchain technology [1] is considered a DLT,
which is distinguished by using a specific data structure, which
consists of a chain of blocks, where each block is linked to
the hash code generated from the content of a previous block.
Currently, there are also proposals for DLT based on Directed
Acyclic Graph (DAG), where transactions are linked directly,
without the need to form blocks. The objective is to make the
rate of transactions accepted per second higher, in addition to
making the consensus mechanisms lighter.

SCs [14] are tools for structuring rules in programming
code, registered in a DLT, such as Blockchain. The main pur-
pose of SCs is to automate the execution of rules and clauses,

in addition to allowing those involved to follow the process of
execution of each clause. SCs work in such a way that when a
predetermined event occurs, another predetermined action will
occur automatically, safely, and immutably. In practical terms,
the SC "code" is compiled, generating an Application Binary
Interface (ABI), and is recorded in a DLT as a transaction.
Thus, each node that has access to the records can interact with
this interface, executing SC methods. Because they run from
DLT, SCs offer a higher level of security, as they cannot be
changed at runtime (this concept is also known as deterministic
execution, since in current operating systems there is no
guarantee that the running program has not changed).

In this scenario, without centralized servers, data can be
accessed and manipulated by a DApp. These applications
are usually installed on the device of the interested users,
avoiding the need for a hosting server, and can implement
communication mechanisms with any node on the network
directly, accessing the information registered in the wallet
(ledger) or entering new transactions, using the credentials of
users on the network in question, usually mediated by SCs.

When building the tool, the DLT nodes and applications,
such as the Cooja simulator, are instantiated using Docker
containers. Docker is a set of platform-as-a-service products
that use operating-system-level virtualization to deliver soft-
ware in packages called containers. Containers are isolated
from each other and bundle their programs, libraries, and
configuration files. This technology allows for automation
of the configuration and initialization of the networks and
components used in the experimentation processes.

III. RELATED WORKS

Other works in the literature have already proposed to
implement test networks to analyze the performance or scala-
bility of solutions in this scenario. The most famous solution
is BlockSim [15]. Although the solution has the advantage
of being much lighter than full scenarios, such as testbeds,
and being suitable for performance analysis of consensus
mechanisms, it has some disadvantages such as difficulty in
extension, failure to monitor all relevant aspects, and important
metrics in a Blockchain system. In [16], an extension to
BlockSim was proposed, called BlockPerf. The extension is
based on six layers (Application, Contract, Incentive, Consen-
sus, Node/Data, and Network) and, despite achieving more
realistic results compared to BlockSim, the solution still has
some limitations. It does not implement support for other non-
Blockchain-based data structures such as DAG. In addition, the
solution also does not support testing with Smart Contracts,
which are very important in current applications.

In [17] a tool for experimenting with proposals for future
Internet architectures in the IoT context is presented, where
the eXpressive Internet Architecture (XIA) was evaluated.
In the proposal, Docker images were used to implement a
network and monitor data traffic between client nodes and
IoT gateways, emulated through the Cooja tool. In [18] an
improvement of the tool was proposed to make the architecture
used in the experimentation more flexible and a significant
increase in the scale of the experiments. The proposed solution

XL SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS

presents a flexible and extensible structure, being able to
be adapted for tests with different architectures and network
topologies.

IV. PROPOSED TOOL

The tool proposed in this work assists in the configuration,
execution, and monitoring of an experimentation environment
for DApps in the IoT context. The goal is to evaluate the
scalability of a solution that is based on SCs deployed in
a DLT to intermediate the registration and query of data
provided by IoT devices. The tool is based on open-source
programs and Linux shell script commands. In addition, the
tool is an adaptation of the solution presented in [18], taking
advantage of the network structure and making the necessary
modifications to meet the DLT scenario. The source code of
the tool are available on github 2.

Before running the tool, it is necessary to include the
SC ABI and bytecode and to create Docker images of the
components. After that, the configuration parameters are given,
and the tool performs the activities necessary to create the
experimentation environment, starts the experiment, and col-
lects the results, as Figure 1 shows. Tool activities are coded
in Shell Script and parameters are provided at the command
prompt during code execution, followed by indication flags,
as shown in Table I. Given the example values shown for
the parameters, Figure 2 illustrates the architecture of the
environment generated by the tool. The design decisions are
presented below, as well as the details of each of the tool
components.

Get conﬁguratlon Create
para meters Galeways Network
Create each
Galeways Router

Connecls each
Gateways Router to
Core and Gateways

Networks

3

Configure a chain
among the Nodes

¥

Create Observer

!

Create Gateways
connected to
Gateways Network

Create
Core Network

Create
Nodes Network

Create each
Nodes Router

e

Start collecting stats
until Gateways finish
requests

Create Nodes
connected to
Nodes Network

Connects each
Nodes Router to Core
and Nodes Network

Fig. 1. Proposed tool activities.

A. Design decisions

The proposal provides scalability and flexibility of exper-
imentation scenarios, efficiently using hardware resources to
validate the performance of DApps in scenarios with a large
number of participating nodes. For this, the Docker platform
was adopted to perform the virtualization of each component
of the architecture. Containers can share resources among
themselves and have performance and resource utilization

Zhttps://github.com/jonaslopess/diotappet

- SBrT 2022, 25-28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAI, MG

TABLE I
TOOL CONFIGURATION PARAMETERS.

Flag | Parameter Value
-N Number of routers in the DLT network 1
-n Number of DLT nodes per router 1
-G Number of routers in the gateways network 1
-g Number of gateways per router 1
-m Number of motes per gateway 9
-r Number of requests 100
Gateway Router

DLT Node Router

Fig. 2. Architecture of an example environment generated by the tool.

optimization advantages compared to virtual machines. Fur-
thermore, they can be easily instantiated and replicated.

To emulate the IoT devices, the Cooja tool was used, which
implements the Contiki operating system in the IoT nodes.
With this tool it is possible to run different programs on
the sensor nodes, allowing flexibility both in the topology of
the simulated device network and in the behavior of each of
the emulated nodes. The selected link-layer technology was
6LoWPAN, to facilitate the communication with the motes.
The scripts to enable communication between devices and
DLT nodes and to automate the deployment of SCs were
implemented in Python, using the web3.py library.

Finally, to implement each of the nodes of the DLT network,
IOTA’s open source software was chosen. The nodes will form
the network needed to deploy the DApp support SCs and
perform the consensus mechanisms for recording transactions.
This DLT was chosen because of its great synergy with
applications in the context of IoT, allowing for lightweight
consensus mechanisms, high transaction rates per second,
and fee-less. Currently, at version 2.0, the IOTA network is
evolving into a truly decentralized version (early versions
use nodes maintained by the IOTA foundation that serve as
coordinators). In version 2.0, network nodes, called validators,
will form committees to carry out the consensus mechanisms.
Wasp is the implementation of IOTA 2.0 validator nodes,
created to enable the deployment of SCs. It is possible to form
a network of Wasp nodes, with committees for the validation
of transactions and to connect this network with the public
network of IOTA through Goshimmer nodes. The Goshimmer
nodes form the main network that keeps the network state
up to date, enabling communication between different Wasp
networks. In this tool, a dummy Goshimmer node was used to
represent the main net and a private Wasp network was created
to deploy the SCs.

XL SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25-28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAI, MG

B. Components

The tool is composed of four components built as Docker
images. Starting from these images, the components can be
instantiated as containers and the topology can scale with
the replication of these containers. All images are based on
Ubuntu operating system. Docker networks are created to al-
low connection between them. The components are described
following.

o DLT Node: Runs the DLT software to communicate with
other network nodes to perform the validation and con-
sensus mechanisms. Provides communication interfaces
for interacting with SCs.

« Router: Implements network routing functions to forward
packets from IoT devices to DLT nodes. The two types
of routers needed in the experimentation environment are
instantiated from the same image based on different input
parameters for configuration. Images are configured to
send data to routers, ignoring default configuration.

o Observer: It is configured as a Docker volume, used as
a file repository shared between containers. Test results
are stored in this repository, as are configuration files.
For architectural simplification purposes, this component
is also used as a Remote Procedure Call (RPC) provider,
necessary to provide interaction routines with the DLT
nodes.

o Gateway: Runs the IoT network simulation tool, com-
posed of IoT Motes that emulate Contiki nodes. Motes
are configured as echo servers, that is, they receive and
return the same data, just to check network latency. One
of the IoT Motes is configured as an edge router and
communicates with the Gateway through the tunslip6
application. Also, when creating the Gateway, scripts are
executed to deploy an SC in the DLT. Each Gateway
interacts with a specific SC. Finally, an application in
the Gateway serves as an echo client, sending requests to
random Motes and, upon receiving the Mote’s response,
interacts with the SC, through its address, to register the
data in the ledger maintained by DLT nodes. All inter-
action with the DLT happens through the RPC provider
present in the Observer.

V. USE CASE

This section illustrates the application of the tool in an
experimentation environment. The DApp to be analyzed in
this experiment simply records dummy data collected by the
devices’ sensors to keep a track of some environmental condi-
tions. This DApp can be used in the logistics of products with
restrict transport and storage conditions. For this, a SC must
be developed with methods that help in these operations. Two
SCs were developed to have their performance compared. The
diagram in Figure 3 shows SC 1, only with methods to record
and return the temperature value. The diagram in Figure 4
shows the more flexible SC 2, in which each device can have a
list of properties to be monitored (sensors such as temperature,
brightness, and humidity, for example). The properties are set
by the addMonitoredProperty function. SC can update the
value of a given property (setMonitoredProperty) or return

the value of that property (getMonitoredProperty). With the
proposed tool, it is possible to analyze the impact on the
scalability of this DApp with the use of each SC.

loTDevice

+ owner: address

+ getTemperature(): int

+ setTemperature(value : int)

Fig. 3. Smart Contract 1 applied to the proposed scenario.

loTDevice ki
g
+ owner: address <]
o
3
+ addMonitoredProperty(<]
property: string, < MonitoredProperty
description : string =
) + property: string
L

+ getMonitoredProperty(+ description : string

property: string

) int + value: int

+ setMonitoredProperty(
property: string,
value: int

)

Fig. 4. Smart Contract 2 applied to the proposed scenario.

The first step to run the experiment is to insert the SC to be
evaluated in the system. The SC must be compiled, generating
the files with the ABI and the bytecode, necessary in the
process of deploying SC replicas and interacting with their
functions. Both files are placed in the gateway files repository
to be copied during image creation and later replicated in
each container. The Python script of the gateway must also be
modified to define which SC method(s) should be called. In
this case, for the first SC to be analyzed, it was defined that
the setTemperature method must be called on each request,
passing a random integer value as a parameter. For the second
SC, it was defined that the addMonitoredProperty method
must be called initially, passing the "Temperature" parameter
and the setMonitoredProperty method must be called on each
request, passing the "Temperature" property and a random
integer value as parameters.

Subsequently, the Docker images of each component must
be generated. Images can be assembled only once and used
for different experimentation scenarios, except for the gateway
image, which must be generated again whenever a new SC is
to be evaluated. With the images mounted, the configuration
parameters are adjusted for the desired experimentation envi-
ronment. Table I shows the parameters used in the proposed
scenario. In the example, a simple scenario was defined with
only one DLT node, connected to a router. One gateway will
be instantiated, will be connected to another router, and nine
motes will be initialized in the Cooja application. The Python
script will perform 100 requests to random motes and send

XL SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25-28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAI, MG

data to the SC.

Once the tool is started, the containers are instantiated and
the network between them is established. Then the settings
to establish a chain between the nodes of the DLT are made.
When starting each of the gateways, the SCs are deployed
and a new monitored property is added. Then, the gateway
application starts to interact with the motes and with the SC,
to record the fictitious temperature in the DLT. As soon as the
last request is made, the tool ends, recording the data about
the system, collected during the experiment, and removing all
created containers.

Table II shows the results collected during the execution
of the experiment for each of the analyzed SCs. As shown,
the second SC takes an average of 5.65 seconds to register
temperature data on the DLT, taking 799 seconds to register
all 100 requests, while the first only takes an average of
0.7 seconds, taking 293 seconds in total. In addition, if the
DLT adopted has transaction costs, a difference of 4331.48
GAS 3 on average between the two SCs. The volume of data
transmitted is also bigger in the second scenario. Although the
second SC is more flexible and can be applied in scenarios
with different sensors, the first SC is more efficient.

TABLE I
COLLECTED RESULTS.

Parameters SC1 SC2
Average delay to))
register data to DLT 0.7 365
Average cost to
register data to DLT 28811.32 GAS | 33142.8 GAS
Experiment total time 293 s 799 s
Total data flow on Rpc 1620 kB 1786 kB

VI. CONCLUSION

A new experimentation tool for DApps in the context of IoT
was proposed in this work. The tool is flexible and allows the
use of different device configurations and network topologies.
The use case shows that the tool allows for quick setup and
startup. Just by entering the ABI and bytecode of the SC to
be analyzed, informing the methods that must be invoked,
and informing input parameters, the experiments can be easily
modified and scaled. The collected results can be analyzed
easily.

Although the tool allows the use of different DLTs, this
work only considers the software of the IOTA network. It is
necessary to evaluate the use of the tool for other DLTs in
future works. By fixing the topology, the number of compo-
nents, and the SC structure, it will be possible to compare the
performance of different DLTs for a given application.

ACKNOWLEDGEMENTS

Acknowledgment to Ramon P. Chaib, Tiago B. da Silva
and Antonio M. Alberti for providing the code that served
as the basis for this work. This work was partially sup-
ported by RNP, with resources from MCTIC, Grant No. No

3GAS is the unit used in Ethereum to represent the amount of computational
power used to register a transaction on the ledger.

01245.010604/2020-14, under the 6G Mobile Communica-
tions Systems project of the Radiocommunication Reference
Center (Centro de Referéncia em Radiocomunicac¢des - CRR)
of the National Institute of Telecommunications (Instituto Na-
cional de Telecomunicacdes - Inatel), Brazil; by FCT/MCTES
through national funds and when applicable co-funded EU
funds under the Project UIDB/50008/2020; and by Brazilian
National Council for Scientific and Technological Develop-
ment - CNPq, via Grant No. 313036/2020-9.

REFERENCES

[1] S. Nakamoto et al., “Bitcoin: a peer-to-peer electronic cash system
(2008),” 2008.

[2] B. Farahani, F. Firouzi, and M. Luecking, “The convergence of IoT and
distributed ledger technologies (DLT): Opportunities, challenges, and
solutions,” Journal of Network and Computer Applications, vol. 177,
p. 102936, Mar. 2021.

[3] A. Reyna, C. Martin, J. Chen, E. Soler, and M. Diaz, “On blockchain
and its integration with IoT. challenges and opportunities,” Future
Generation Computer Systems, vol. 88, pp. 173-190, Nov. 2018.

[4] A. Panarello, N. Tapas, G. Merlino, F. Longo, and A. Puliafito,
“Blockchain and IoT integration: A systematic survey,” Sensors, vol. 18,
p. 2575, Aug. 2018.

[5] S. Aggarwal and N. Kumar, “Blockchain 2.0: Smart contracts,” in
Advances in Computers, pp. 301-322, Elsevier, 2021.

[6] Z. Gao, Z. Zhuang, Y. Lin, L. Rui, Y. Yang, C. Zhao, and Z. Mo, “Select-
storage: A new oracle design pattern on blockchain,” in 2021 IEEE 20th
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), pp. 1177-1184, IEEE, 2021.

[71 W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. M. Le-
ung, “Decentralized applications: The blockchain-empowered software
system,” IEEE Access, vol. 6, pp. 53019-53033, 2018.

[8] R. Sekaran, R. Patan, A. Raveendran, F. Al-Turjman, M. Ramachandran,
and L. Mostarda, “Survival study on blockchain based 6g-enabled
mobile edge computation for IoT automation,” IEEE Access, vol. 8,
pp. 143453-143463, 2020.

[9] T. Nguyen, N. Tran, L. Loven, J. Partala, M.-T. Kechadi, and S. Pirt-

tikangas, “Privacy-aware blockchain innovation for 6g: Challenges and

opportunities,” in 2020 2nd 6G Wireless Summit (6G SUMMIT), 1EEE,

Mar. 2020.

T. Hewa, G. Gur, A. Kalla, M. Ylianttila, A. Bracken, and M. Liyanage,

“The role of blockchain in 6g: Challenges, opportunities and research

directions,” in 2020 2nd 6G Wireless Summit (6G SUMMIT), IEEE, Mar.

2020.

R. Paulavicius, S. Grigaitis, and E. Filatovas, “A systematic review

and empirical analysis of blockchain simulators,” IEEE Access, vol. 9,

pp- 38010-38028, 2021.

[12] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things

(IoT): A vision, architectural elements, and future directions,” Future

Generation Computer Systems, vol. 29, pp. 1645-1660, Sept. 2013.

D. Burkhardt, M. Werling, and H. Lasi, “Distributed ledger,” in 2018

IEEE International Conference on Engineering, Technology and Inno-

vation (ICE/ITMC), pp. 1-9, IEEE, June 2018.

S. Rouhani and R. Deters, “Security, performance, and applications of

smart contracts: A systematic survey,” IEEE Access, vol. 7, pp. 50759—

50779, 2019.

C. Faria and M. Correia, “BlockSim: Blockchain simulator,” in 2019

IEEE International Conference on Blockchain (Blockchain), IEEE, July

2019.

[16] J. Polge, S. Ghatpande, S. Kubler, J. Robert, and Y. L. Traon, “Block-

Perf: A hybrid blockchain emulator/simulator framework,” IEEE Access,

vol. 9, pp. 107858-107872, 2021.

R. P. Chaib and A. M. Alberti, “A simple solution for iot experimentation

in the context of future internet architectures,” in Anais do VIII Workshop

de Pesquisa Experimental da Internet do Futuro, SBC, 2017.

T. B. da Silva, R. P. dos Santos Chaib, C. S. Arismar, R. da Rosa Righi,

and A. M. Alberti, “Toward future internet of things experimentation

and evaluation,” IEEE Internet of Things Journal, vol. 9, pp. 8469-8484,

June 2022.

[10]

[11]

[13]

[14]

[15]

(17]

(18]

