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Adaptive Filter Theory and Application for the
Identification of Sparse Systems
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Abstract— One of the most popular adaptive techniques avai-
lable is the stochastic gradient algorithm, particularly a very
simple implementation, the Least Mean Squares (LMS). In this
paper, we focus on identifying sparse systems, as is often the
case in telecommunications and acoustics applications. In this
context, conventional adaptive filters, such as the LMS, are not
able to exploit prior knowledge on the system sparsity, so sparse
AFs have been shown to be more advantageous, as discussed
in this paper. Initially, we offer a concise review on the AFs
theory, including some sparse algorithms. Next, we propose a
sparse AF derived from the LMS algorithm and the SparseStep
approximation of the `0-pseudo-norm penalty. The proposed AF
takes sparsity into account both to accelerate convergence and
improve performance. Finally, the proposed filter is numerically
validated by comparing it with well-known AFs.

Keywords— Adaptive Filters, System Identification, Sparsity,
LMS Algorithm.

I. INTRODUCTION

A useful approach for solving filter-optimization problems
is to try to minimize the mean-squared error (MSE) between
the filter output and the desired (or reference) signal. The
resulting Wiener filter is optimum in the mean-squared sense
under stationary conditions, but required a priori knowledge of
the input signal statistics. In practice, a more effective solution
resorts on the use of an adaptive filter (AF) that is able to
self-tune its response through a recursive algorithm, thus also
adjusting for non-stationary scenarios [1], [2], [3], [4].

One of the most popular AF techniques available is the
stochastic gradient algorithm, particularly a very simple im-
plementation, the Least Mean Squares (LMS) and its variant,
the Normalized LMS (NLMS). Both filters are widely used in
various applications in telecommunications and acoustics, such
as system identification, channel equalization, echo and inter-
ference cancellation, multiple-input multiple-output (MIMO)
channel estimation, and so forth. Note that, although other
adaptive algorithms, such as the Recursive Least Squares
(RLS), may have superior performance, in most practical
applications, LMS-based algorithms are chosen due to their
simplicity, low computational cost, good performance and
robustness.

Nevertheless, many of the unknown systems to be identified
in telecommunications and acoustics are sparse, i.e. few of the
impulse response coefficients have large magnitude while most
of them are close to zero, as in broadband wireless and digital
TV channels subject to multipath and echo effects. In this
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context, conventional AFs, such as the LMS, although widely
used in practice, are not able to exploit prior knowledge about
the sparsity of the system. For example, [5] shows that the
direct application of NLMS to a sparse system identification
problem (long echo cancellation) resulted in unsatisfactory
performance, due to adaptation noise of close-to-zero coef-
ficients.

Several works in the literature discuss the use of sparse
AFs, as in [6], [7], [8]. A common approach to achieve the
sparsest set of the system’s dominant coefficients is to directly
penalize the number of non-zero elements in the solution, i.e.
the `0-pseudo-norm of the coefficients vector. However, this
approach requires high computational cost (exhaustive search
in the space of solutions), thus being a non-polynomial (NP)-
hard problem. Another approach is to penalize the sum of
the magnitudes of the elements in the solution, that is, the
`1-norm of the coefficients vector, by means of the least-
absolute shrinkage and selection operator (LASSO) [11]. This
paper proposes sparse AFs derived from a cost function that
is penalized by an approximate `0-pseudo-norm, using the
SparseStep approximation from [9], [10], which is a simple
but precise continuous function that allows the problem to be
computationally tractable. Comparing to the other approaches
above, the proposed method is more attractive for adaptive
estimation due to its lower complexity. This way, the proposed
AFs take advantage of the sparsity knowledge, both to accele-
rate the convergence of the algorithm and improve the systems
identification performance, with wide range of applications in
telecommunications and acoustics.

The contributions of this paper are twofold: (a) We offer a
concise review on the AF theory, including sparse techniques;
(b) Furthermore, we propose an update equation for a new
sparse AF based on an approximation of the `0-pseudo-norm.
Finally, the performance of the proposed filter is numerically
validated by comparison with well-known AFs.

This paper is organized as follows. Section 2 provides
background on the theory of adaptive filters; in Section 3,
the proposed update equation is derived. Section 4 provides
numerical simulation and results, followed by Section 5, where
final conclusions are drawn.

II. PROBLEM FORMULATION

In the optimal linear least-squares filter problem, we sup-
pose that the desired signal d(n) at a discrete time n is a
realization of a scalar complex-valued random variable (RV)
with zero mean and variance σ2

d = E[|d(n)|2] (where E[·]
is the expectation operator). The desired signal has to be



XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

estimated by the linear filter from the complex-valued input
vector u(n), of size M × 1, also a sequence of realizations
of a RV with zero mean, whose positive-definite covariance
matrix is Ru , E[u(n)uH(n)] > 0 (where (·)H is the
complex-conjugate transpose) and cross-covariance vector is
Rdu , E[u(n)d∗(n)] (where (·)∗ is the complex-conjugate).
Assuming the signals are stationary, the problem of estimating
d from u in the linear least mean squares sense is defined as:

(1)min
w∈CM×1

J(w) , E[e(n)e∗(n)],

where w is the M × 1 vector of the underlying
finite-impulse response (FIR) filter tap-weights, u(n) =[
u(n) u(n− 1) . . . u(n−M + 1)

]T
is the tap-input

vector (where (·)T is the transpose) and e(n) = d(n) −
wHu(n) is the estimation error. As per eq. (1), the cost
function J(w) associated with this estimation corresponds to a
mean-squared error. The problem is to determine the operating
conditions for which J(w) is minimum; expanding the term
on the right leads to:

(2)J(w) = σ2
d −RH

duw −wHRdu + wHRuw,

in which J(w) is a scalar-valued quadratic function of w.
Now, using Wirtinger calculus to differentiate with respect to
wH , while formally treating w as a constant, and equating
to zero, we obtain the optimal Wiener solution wo for the
tap-weight vector, as given by the well-known Wiener-Hopf
(normal) equation:

(3)wo = R−1u Rdu.

The solution wo is the global minimum of the cost function
with minimum mean-squares error (MMSE) J(wo) = σ2

d −
RH
duR

−1
u Rdu.

Next, to avoid the computationally challenging inversion of
the matrix Ru required in eq. (3), as well as be able to track
time variations of the input signals’ statistics, we resort on the
steepest descent method. Firstly, the cost function at successive
iterations is enforced to be monotonically decreasing, i.e.:

(4)J(w(n+ 1)) < J(w(n)),

where w(n) is a guess of wo at iteration time n and w(n+1)
is its update at n+1. The procedure for updating the estimated
values is linear (affine) of the form:

(5)w(n+ 1) = w(n) + µp(n), i ≥ 0,

where the positive scalar µ is the step-size parameter that con-
trols convergence and p(n) is an update direction vector. Now,
from eq. (2), the gradient vector ∇wHJ(w) = −Rdu+Ruw
and, reinforcing eq. (4), it follows that the update direction
p(n) must satisfy:

(6)p(n) = −B∇wHJ(w(n)),

where B is a positive-definite Hermitian matrix. This way, at
each iteration, p(n) points to the steepest descent direction.
For B equals to the identity matrix, eq. (5) results in:

(7)w(n+ 1) = w(n) + µ(Rdu −Ruw(n)), n ≥ 0,

with an initial guess w0. Note that, if, instead, B is chosen as
the inverse of the Hessian matrix, the resulting update equation

w(n+ 1) = w(n) + µR−1u (Rdu −Ruw(n)) corresponds to
the Newton’s method.

So far, the steepest descent formulation relies explicitly on
the knowledge of second-order moments of the inputs, Rdu

and Ru, not available in many practical cases. Next, adaptive
filter algorithms replace the input signal statistics by stochastic
gradients, i.e., the following instantaneous approximations:
R̂u = u(n)uH(n) and R̂du = u(n)d∗(n). This way, from
eq. (7), the complex-LMS update recursion (Widrow-Hoff
algorithm), results:

(8)ŵ(n+ 1) = ŵ(n) + µê∗(n)u(n),

where ŵ(n) is an estimate of the filter weights at iteration
n, ê(n) = d(n) − ŵH(n)u(n) and µ is a positive step-size.
Note that the transversal tap-weights ŵ(n) in eq. (8) denotes
an approximation of the w(n) in eq. (7), where deterministic
gradients are used. In practice, the LMS filter suffers from
sensitivity to time-varying scaling of the input signal, thus
leading to the NLMS update equation:

(9)ŵ(n+ 1) = ŵ(n) +
µ

ε+ ‖u(n)‖22
ê∗(n)u(n),

where ε is a regularization factor that prevents division by
zero and ‖·‖2 is the Euclidean norm. In summary, as in
Figure 1, an adaptive filter applied to the task of unknown
system identification comprises of two iterative procedures: (1)
a filtering step, which involves computing at each instant n an
estimated output y(n) = d̂(n) using the tap input u(n), as well
as computing the corresponding estimation error ê(n) between
the estimated AF output and the reference signal (typically
contaminated by measurement noise v(n)) and (2) an update
step, which involves the adaptive adjustment of the filter’s tap-
weights ŵ, using a weight update equation.

Unknown
system

Adaptive
filter
(ŵ)

u

v

ê

d

y = d̂

Fig. 1: System identification block diagram.

A. Sparse Adaptive Filters

Often, the unknown systems to be identified in telecommu-
nications and acoustics are sparse, as in broadband wireless
and digital TV applications, where the impulse responses to be
estimated are typically subject to multipath and echo effects. In
this case, the conventional AFs discussed so far are not able to
exploit the prior knowledge on the sparsity of the system, that
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is, about the channel dispersion. By adding a sparsity-inducing
penalty to the AF cost function, several algorithms for sparse
channel estimation have been proposed in the literature, e.g.,
[6], [7], [8]. As discussed in this section, LMS-based AFs for
sparse channels can be based on different sparsity-inducing
penalties [12], among the most prominent are:
- The `1-norm regularization. Since the `0-pseudo-norm mi-

nimization is a well-known NP-hard problem, the first ap-
proach is the convex relaxation, replacing it by the `1-norm
[11], given by ‖w(n)‖1 =

∑M−1
i=0
|wi(n)|. This penalty is

incorporated into the LMS cost function, resulting in the
zero-attracting LMS (ZA-LMS) method [13], as follows:

(10)ŵ(n+1) = ŵ(n)+µê∗(n)u(n)−λsgn(ŵ(n)),

where λ is a regularization parameter and sgn(·) is
the component-wise complex signum function. Note that
sgn(wi(n)) = wi(n)/|wi(n)| when wi(n) 6= 0 and
sgn(wi(n)) = 0 when wi(n) = 0, for i = 0, . . . ,M −
1, where M is the filter length. In eq. (10), the term
−λsgn(ŵ(n)) attracts the tap coefficients towards zero.

- The `0-pseudo-norm approximation. The `0-pseudo-norm or
counting norm (i.e., the number of non-zero elements in
w(n)) can be approximated in several ways, as proposed
in the literature. For example, the following approximation
function [14] can be used:

(11)‖w(n)‖0 ≈
M−1∑
i=0

(1− e−β|wi(n)|),

where β is a positive parameter and M is the filter length,
which leads to the update equation:

ŵ(n+ 1) = ŵ(n) + µê∗(n)u(n)− λβsgn(ŵ(n))e−β|ŵ|.

(12)

Besides, other `0 approximations can be found in [15], [16].
- Heuristic approaches. We consider the re-weighted ZA-LMS

(RZA-LMS) method [13] that attracts to zero only the less
relevant tap-weights, as follows:

(13)ŵ(n+1) = ŵ(n)+µê∗(n)u(n)−λ sgn(ŵ(n))

1 + δ|ŵ(n)|
,

where δ limits the coefficient magnitudes that are attracted
to zero. Note that starting from the NLMS algorithm, one
can obtain the ZA-NLMS and RZA-NLMS AFs, which
are counterparts of the above algorithms. Another heuristic
approach, the proportionate NLMS (P-NLMS) [17], [18]
allows the adaptation step-size for each tap-weight to be
calculated proportionally to the previous value of the tap-
weight, thus allowing active coefficients to be adjusted faster
than non-active ones.

III. PROPOSED SPARSE AF WITH `0 APPROXIMATION

In this paper, we investigate a new sparse AF algorithm,
derived from a smooth and continuous approximation of the
`0-pseudo-norm through a weighted version of the `2-norm.
Comparing to other `0-pseudo-norm approximations from the
literature, the one we adopted inherits a leakage term from
the leaky-LMS algorithm, also discussed in this section, that

is known to improve the stability and robustness of the
LMS algorithm. The approximation adopted in this paper is
proposed in [9] as the SparseStep:

(14)‖w(n)‖0 ≈
M−1∑
i=0

w2
i (n)

w2
i (n) + γ

,

where 0 < γ � 1. Note that for decreasing values of γ,
the approximation of the counting norm becomes increasingly
more accurate. Thus, the regularized cost function with the
weighted `2-norm term becomes:

(15)J(w) =
1

2
|e(n)|2 + λ

M−1∑
i=0

w2
i (n)

w2
i (n) + γ

,

which allows efficient convex optimization techniques. In fact,
this is a weighted version of the leaky-LMS cost function:

(16)J(w) =
1

2
|e(n)|2 + λ‖w(n)‖22,

where the `2-norm term that is added prevents any excessive
growth of the weight coefficients and λ is the corresponding
positive leakage factor. From eq. (15), the proposed SparseStep
LMS (SS-LMS) AF update equation is given by:

(17)ŵ(n+ 1) = ŵ(n) + µ(ê∗(n)u(n)− λΘ(n)ŵ(n)),

where Θ(n) is a diagonal matrix, whose elements are the
weights:

(18)θi,i(n) =
γ2

(w2
i (n) + γ2)2

.

Comparing to the leaky-LMS, the identity matrix is replaced
by Θ(n).
Additionally, we also apply a variable step-size (VSS) tech-
nique [19] to the proposed algorithm, expected to speed up
convergence at the first iterations and improve the steady-
state performance, leading to the SS-VSS-LMS AF, in which µ
from eq. (17) is replaced by a variable step-size µ̂(n) ∈ (0, µ),
to be computed at each iteration, as follows:

(19)µ̂(n) = µ
p̂H(n)p̂(n)

p̂H(n)p̂(n) + k
,

where k is a positive threshold parameter that relates to the
estimated SNR by k ∝ 1/snr (where snr is in linear scale)
and µ is the maximum step-size value. The vector p̂(n) at
iteration n is computed as:

(20)p̂(n) = βp̂(n− 1) + (1− β) ê
∗(n)u(n)

‖u(n)‖22
,

where β ∈ (0, 1).
Equivalently, combining eqs. (9) and (18), the SS-NLMS

filter update equation is given by:

ŵ(n+ 1) =

ŵ(n) +
µ

ε+ ‖u(n)‖22
(ê∗(n)u(n)− λΘ(n)ŵ(n)),

(21)

while its VSS version can be obtained by replacing µ with
µ̂(n) from eq. (19).
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IV. NUMERICAL RESULTS

The objective of this section is to validate the proposed
estimator through numerical simulations of channel estimation
under several operating conditions, given by signal-to-noise
ratios (SNR) and sparsity levels (Sp). In this study, Sp is the
percentage of sparsity in the channel, as defined by:

(22)Sp , (1−K/L)100%,

where K is the number of dominant coefficients, L is the
channel length and the channel is said to be K-sparse.

The simulation experiments are run for all combinations of
SNR in the range {5, 10, 15, 20, 25, 30} (in dB) and Sp in the
range {0, 20, 40, 60, 80} (in %). We report the performance of
the estimators using the mean square error (MSE) between the
desired and the estimated outputs, the mean square deviation
(MSD) between the optimal and the estimated channel coeffi-
cients, defined as MSD = E{‖w−ŵ(n)‖22}, and the number
of iterations until filter convergence. For each SNR and Sp
combination, a grid of values of the filters hyper-parameters
µ and λ is tested and the best values are selected, as follows.
First, we run the conventional LMS and NLMS filters for each
value in their µ ranges and find the best µ values, taking into
account the achieved MSEs and required numbers of iterations
until convergence. These µ values are then used for all the
LMS- and NLMS-based filters under analysis. Next, we run
the LMS- and NLMS-based sparse filters for each value in
their λ ranges and determine for each filter the best λ value
based on the MSE. Each simulation experiment consists of
100 independent Monte Carlo runs, each of which consisting
of 1,000 iterations of the AFs, and the results are averaged.
The simulations are presented for a channel length L = 20.
For each simulation run, the positions of the K dominant taps
in the sparse channel are randomly selected and the channel
coefficients follow a real-valued Gaussian distribution with
variance σ2

d = 1/
√
K. The additive noise is also Gaussian

with σ2
n = 10−SNR/10. In each case, the performance metrics

MSD, MSE and numbers of iterations are reported for each
AF, as follows.

Figure 2 shows the heat-maps of MSD performance
obtained with the LMS, RZA-LMS, SS-LMS and
SS-VSS-LMS filters for each combination of SNR
and Sp. The simulations are run with LMS hyper-
parameters µ = {1e−2, 2e−2, 3e−2, 4e−2, 5e−2} and
λ = {1e−4, 2e−4, 3e−4, 5e−4, 1e−3, 2e−3, 3e−3, 5e−3},
the best values being selected as described above. Additional
parameters are δ = 20 for RZA-LMS, γ = 0.015 for
SS-LMS, β = 0.95 and k ranging from 1e−5 to 1e−4
for the SS-VSS-LMS. Figure 3 shows the heat-maps of
MSD performance obtained with the NLMS, RZA-NLMS,
SS-NLMS and SS-VSS-NLMS filters for each combination
of SNR and Sp values, run with the NLMS hyper-parameters
µ = {0.1, 0.2, 0.3, 0.4, 0.5} and same λ range as for the
LMS. Additional parameters are ε = 1e−4 and δ = 20
for RZA-NLMS and the other parameters as for the LMS.
Figures 4 and 5 show the heat-maps of corresponding MSE
performance, respectively, for the LMS- and NLMS-based
filters for each combination of the SNR and Sp values, using

the same parameter values above. Next, Figure 6 depicts the
MSD ensemble learning curves of the LMS algorithms for
a grid point at SNR=15dB and Sp=80%. Finally, Table I
presents the numbers of iterations required until convergence
at a few grid points.

Fig. 2: Heat-maps of MSD (dB) for LMS-based sparse AFs.

Fig. 3: Heat-maps of MSD (dB) for NLMS-based sparse AFs.

The following summary of observations can be drawn from
the numerical simulations:
- All AFs simulated were highly sensitive to SNR.
- NLMS-based AFs performed better than the corresponding

LMS ones.
- Sparse LMS and NLMS outperformed conventional LMS

and NLMS as Sp increased, as observed in Figures 2 and 3
(MSD) and Figures 4 and 5 (MSE). Moreover, the proposed
SS-LMS and SS-NLMS outperformed their ZA (not shown)
and RZA counterparts, as well as the P-NLMS (not shown).

- The proposed SS-VSS-LMS and SS-VSS-NLMS outperfor-
med the step-invariant AFs, as shown in the figures above
and detailed by the ensemble learning curves in Figure 6.

- The numbers of iterations until convergence were equivalent
for the step-invariant AFs and slightly larger for the VSS,
as illustrated in Table I.
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Fig. 4: Heat-maps of MSE (dB) for LMS-based sparse AFs.

Fig. 5: Heat-maps of MSE (dB) for NLMS-based sparse AFs.

Fig. 6: MSD ensemble learning curves for LMS-based AFs
(SNR=15dB, Sp=80% and µ = 2e−2).

V. CONCLUSIONS

In this study, we proposed the SS-LMS and SS-NLMS
AFs, derived from the SparseStep approximation for the `0-
pseudo-norm penalty. We also extended these filters to ac-

Table I: Numbers of iterations of LMS-based AFs.

SNR (dB) Sp (%) LMS RZA-LMS SS-LMS SS-VSS-LMS
5 80 283 286 280 304
10 40 307 335 347 364
15 80 353 331 388 408
20 60 391 367 366 425

commodate variable step-size by defining the SS-VSS-LMS
and SS-VSS-NLMS AFs. Finally, the proposed filters were
evaluated through numerical simulations for various SNRs and
sparsity levels, outperforming some well-known sparse AFs.
A complexity analysis will be addressed in future work.
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