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Abstract— Sound source tracking is a classical problem in
the array processing field that finds applications from human-
robot interaction to acoustic navigation. The emergence of deep
learning has produced a new class of state-of-the-art solutions,
including the Cross3D, based on a convolutional neural network
architecture. In this article, the authors present a new system
for sound source tracking via microphone array that modifies the
pre-processing stage of Cross3D by using MUSIC maps as inputs,
and applying appropriate minor modifications to its architecture.
The proposed system, called Spectral Cross 3D, improves overall
accuracy by 18%, when compared with the original solution.
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I. INTRODUCTION

The applications of sound source localization (SSL) include
security surveillance [1], rescue robotics [23] and indoor
navigation [20], among others. With moving acoustic sources,
the problem evolves to sound source tracking (SST), and both
applicability and complexity increase. In either case, the core
of the hardware used are microphone arrays [4].

In SSL, there is a distinction between finding the 3D
coordinates of a source or finding the direction of arrival
(DOA) of its sound in terms of azimuth and elevation angles.
While the former approach is more general, the latter is
sufficient for most applications. Also, whenever the source is
far away from the microphone array, it is preferable to resort
to DOA estimation.

In general, classical solutions for SSL fall into 3 categories:
1) Time delay estimation: Time-difference of arrival

(TDOA) is estimated from cross correlation functi-
ons [14] and mapped to the source location [12]. This
approach has low complexity, but is prone to errors when
TDOAs are not precisely estimated.

2) Beamforming: A spatiotemporal filter that estimates the
energy from a specific direction is steered to different
positions in a grid. Among these methods, the steered
response power (SRP) is the most robust, but requires
strategies to simplify the grid search and thus reduce its
high complexity [15], [5].

3) Subspace methods: Exploring the eigenstructure of the
narrowband spatial correlation matrix, they generate a
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frequency-dependent heatmap of source directions in a
grid. An important example of this family is the multiple
signal classifier (MUSIC) method [4].

Although there exist methods for specific microphone ar-
rangements (e.g. the spherical array [12]), the aforementioned
methods can be applied to a broader range of arrays.

For the tracking problem, the most common approach is
based on Bayesian filters [21]: the preferred choices are the
Kalman filter and its variants [11] among parametric, and
particle filters [6] among non-parametric solutions.

Although each approach has its pros and cons, they tend
to behave poorly in scenarios where the signal-to-noise ratio
(SNR) is low and/or strong reverberation is present. In order
to increase performance under these more stringent conditions,
the use of deep neural networks (DNN) has been proposed
in the literature, for both SSL and SST tasks. Specifically,
different classes of convolutional neural networks (CNN) and
recurrent neural networks (RNN) have found applicability.

In the pre-processing stage, a wide range of features are
used with the different models. The short-time Fourier trans-
form (STFT) is the input attribute in many systems, using
either phase information only [16], [17] or the full spec-
trogram [2], [3]. The eigenvalues of the narrowband spatial
correlation matrix are a low-level feature in [19], and the SRP
with phase transform (SRP-PHAT) maps are used in [8], [24].

In this work, we combine the MUSIC method (as a pre-
processing stage) with an architecture based on that of the
Cross3D [8] (with minor modifications to accommodate the
change in dimensionality) to tackle the DOA tracking problem.
As the MUSIC power maps are frequency dependent, we
generate maps across all the discrete spectrum to serve as input
features to the model. A set of experiments demonstrate that,
at the cost of an increase in complexity, our proposed solution
(called Spectral Cross3D) performs consistently better than the
original Cross3D, especially in low-SNR environments.

Following this introduction, the paper is organized as fol-
lows. In Section II, we describe the pre-processing methods
used in our approach as well as in Cross3D, and detail
their architecture. Section III is dedicated to explaining the
simulations and training setups. We analyze the results in
Section IV, and draw the final remarks on Section V.

II. METHODS

Consider an anechoic environment in which a single sound
source at position rs emits signal s(t). The acoustic scene is
captured by an M -microphone array whose m−th microphone
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receives signal

ym = αms(t− t1 − τ∗m1) + vm(t), (1)

where αm is the attenuation of the sound wave from the
source to the mth microphone (which can be taken as 1
for most applications); vm is the noise picked up by the
mth microphone (usually modeled as white and uncorrelated
with the source signal); t1 is the time of flight (TOF) of
the sound wave from the source to the first microphone, and
τ∗m1 = tm− t1 is the time-difference of arrival (TDOA) of the
sound wave at the m and first microphones.

A. Steered Response Power – Phase Transform

The steered response power method is based on a delay-
and-sum (DS) beamformer [4] whose output is given by

zDS(r, t) =
1

M

M∑
m=1

ym(t+ τm1(r)), (2)

where τm1(r) is the expected TDOA expected from a potential
sound source positioned at r (such that τm1(rs) = τ∗m1). This
expression evidences the main idea of the DS beamformer:
aligning the signals from the different microphones in time.

From the Fourier Transform of (2), it is possible to evaluate
the average power of zDS(r, t) for any position as

PSRP(r) =

∫ ∞

−∞
|ZDS(r, ω)|2dω. (3)

In DOA estimation, r = (ϕ, θ); for a grid of Rϕ azimuth and
Rθ values, the SRP map will have RϕRθ elements.

In the classical formulation, one performs a grid search in
the map defined by (3) and estimate the source location as

r̂s,SRP = argr maxPSRP(r) (4)

If in the more general form of (3) given by [9]

PSRP(r) =

M∑
m=1

M∑
l=1

∫ ∞

−∞
Ψlm(ω)Yl(ω)Y

∗
m(ω)ejωτml(r)dω

(5)
a spectral weighting function

Ψlm(ω) =
1

|Yl(ω)Y ∗
m(ω)|

(6)

is applied, this so-called phase transform (PHAT) eliminates
the disturbing effects of magnitude (unnecessary to identify
time relations) from the energy map. The resulting SRP-PHAT
method generates much sharper maps than the original SRP.

B. Cross3D

The use of the SRP-PHAT map as input feature for a
CNN was proposed in the Cross3D [8]. It was shown that
the resolution attained by the trained system surpassed that of
the original DOA maps, indicating that map patterns could be
learned in order to improve the estimation of the DOA.

As the position of the maximum of the SRP-PHAT map is
crucial to the determination of the DOA but the argmax func-
tion is non-linear and difficult to learn conventionally, in [8]
additional channels inform to the network the relative position

of the maxima as constant tensors, as seen in Figure 1a. Voice
activity detection (VAD) is also used in the pre-processing
stage, since inference in quiet frames is error-prone.
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Fig. 1: Preprocessing

In order to capture the temporal evolution for DOA tracking,
3D causal temporal convolutions is used. The implemented
architecture can be seen in Figure 2a. CNNs commonly use
pooling layers to reduce dimensionality through the neural
path. In order to avoid a consequent reduction in spatial
resolution, the network is split in two paths, each performing
pooling in one DOA dimension. The output of the network is
a 3 × 1 vector pointing to the direction of the sound source
present in the acoustic scene.

C. MUSIC

Defining y⇀(ω) =
[
Y1(ω) Y2(ω) . . . YM (ω)

]T
, the

MUSIC localization method explores the eigenstructure of the
narrowband spatial correlation matrix (SPCM) given by1 [4]

Ry = E[y⇀y⇀
H
] = σ2

sς(rs)ς(rs)
H + σ2

vI = Rs +Rv, (7)

where

σ2
s = E[|S(ω)|2],

ς(rs) =
[
e−jωτ11(rs) . . . e−jωτM1(rs)

]T
,

σ2
v = E[|V1(ω)|2] = . . . = E[|VM (ω)|2].

(8)

The so-called steering vector ς(r) is essential to the method. It
is clear from equation (7) that the Rs is rank deficient, while
Rv has M eigenvalues equal to σ2

v . This leads to a specific
eigenvalue decomposition of Ry:

B =
[
b1 b2 . . . bM

]T
(9)

Λ = diag[λs + σ2
v , σ

2
v , . . . , σ

2
v ], (10)

where bm, m = 1, . . . ,M , are the eigenvectors ordered
according to the eigenvalues in matrix Λ. Since bm, m ≥ 2,
are associated with matrix Rv , they are often called the noise

1The dependency on ω is omitted in order to keep the notation uncluttered.
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Fig. 2: Architectures

subspace eigenvectors. Applying the eigenvalue equation for
them to (7) and using the result in (9), we arrive at

bH
mς(r)

{
= 0 r = rs

̸= 0 elsewhere.
(11)

Equation (11), which is the core of the MUSIC method,
states that the steering vectors for the actual source position
are orthogonal to the noise subspace eigenvectors. This allows

to define a power-like map

P (r) =
1

M∑
m=2

|bH
mς(r)|2

, (12)

from which source position can be estimated by

r̂MUSIC = argr maxPMUSIC(r). (13)

D. SpectralCross3D

Dependence on frequency is inherent to the MUSIC method:
it succeeds if λs ≫ σ2

v for a specified value of ω. The
broadband nature of signals such as speech and music makes
it particularly difficult to determine a suitable frequency for
tracking. Furthermore, the typical non-stationarity of such
signals would require frame-by-frame frequency selection. To
circumvent this issue, we calculate power-maps for all F
frequencies of the discrete spectrum, an feed them to the CNN
as different channels, as seen in Figure 1b (where the green
block highlights the modified step). Although using some
criteria to select a subset of frequencies may allow for the
reduction of the overall complexity, the authors chose to keep
the full spectrum in this first approach.

Given the greater dimensionality of our input tensors, it is
reasonable to increase the number of parameters in the subse-
quent CNN. For this reason, as illustrated in Figure 2b (where
green blocks highlight the modified steps), the authors added
two convolutional layers to the original Cross3D architecture,
with filters selected so as to not increase the temporal receptive
field. Also, the maximum positions on the different frequency
maps are fed directly into later layers of the network, instead
of at the input as originally in Cross3D.

III. TRAINING

We followed the same data generation setup presented
in [8], which can be described as follows. The sound source
signals used for training were provided by the train-clean-
100 partition of the LibriSpeech [18] corpus, a collection of
audio-book chapter readings sampled at fs = 16 kHz; at each
epoch, one random 20 s excerpt is taken from each chapter
reading. Random trajectories were generated by interpolating
with random 3-directional oscillations the path between two
points r0 and rL randomly chosen within the boundaries of
the simulated room; in 25% of cases, a stationary source is
simulated instead. To simulate the room impulse responses,
gpuRIR [7] was used; the audio signals received at the array
microphones are simulated by the convolution of the source
signal with the respective impulse responses, degraded by
additive omnidirectional random noise. The SNR was set to
40 dB during the first 39 epochs, and sampled uniformly
between 30 dB and 5 dB afterwards. The WebRTC VAD [22]
was used to detect silent frames; whenever more than 66% of
a given frame was considered silent, its associated maps were
multiplied by zero.

Although the methods can be adapted to any geometry,
the array used in the simulations is a pseudo-spherical 12-
microphone array, as described in [10]. The resolution of the
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input maps is determined by Rθ = 32 and Rϕ = 642. Since
256-point discrete Fourier transforms were used, F = 128
channels are delivered to the network.

For the network training, the mean squared Cartesian
distance loss function and the ADAM optimizer [13] were
chosen, similarly to [8]. However, we used them together with
a step learning rate (LR) scheduler and early stopping. The
root mean squared angular error (RMSAE) in the test set was
used as stopping criterion. The values of the hyperparameters
selected are shown in Table I.

Parameter Value
Initial LR 0.0003

Mini batch size 25
Step Size 10 epochs

LR decay factor 0.8
Minimal relative decrease 0.001
Early Stopping Patience 15 epochs

TABLE I: Parameters used in training procedures.

IV. RESULTS

The training of Spectral Cross3D took 176 epochs, which
translated to approximately 4 days in a system using an Intel
Core i7 processor and a NVIDIA TITAN Xp GPU3.

Having retrained the original Cross3D model using the
same parameters specified in Section III, which took around
the same number of epochs and approximately 2 days, we
observed a slight reduction in the error metrics, specially
under harder environmental conditions (low SNR and higher
T60). So, to allow for a fair comparison, we will use the
results attained by the retrained version of Cross3D. Whenever
necessary, SpC3D denotes the proposed Spectral Cross3D,
C3D the original Cross3D, and C3D* the retrained Cross3D.

A. First Experiment: Test Set

Model performances were compared using the test-clean
LibriSpeech dataset [18] for several values of SNR and T60,
in some cases extending the ranges followed by the training
samples. We present the corresponding results in Figure 3,
where the orange lines refers to Spectral Cross3D model and
the blue ones to the retrained Cross3D. Figure 4 illustrates one
example trajectory used in the test set.

It can be seen that for every value of SNR evaluated there
is a consistent reduction in the error metric, which decreases
with the increase of the T60 value. Even for SNR values
not observed in the training phase, we notice a decrease in
RMSAE. The average relative decrease of RMSAE in the
selected scenarios is presented in Table II, including both
retrained and original Cross3D models.

B. Second Experiment: LOCATA dataset

The acoustic source localization and tracking (LOCATA)
challenge [10] took place in 2018, and provided a small set

2In [8], the authors demonstrated that finer resolutions did not improve the
tracking capabilities significantly.

3https://www.nvidia.com/en-us/titan/titan-xp/

Fig. 3: Comparison of root mean squared angular errors in the
test dataset, for multiple values of T60 and SNR

Fig. 4: DOA tracking performed by both models on a sample
from the test set, with SNR of 5 dB and T60 of 0.9 s

SNR Reduction in RMSAE (%) Reduction in RMSAE (%)
(SpC3D versus C3D*) (SpC3D versus Cross3D)

30dB 14.73 19.35
15dB 15.30 19.77
5dB 16.29 20.68
0dB 14.39 18.52
−5dB 11.09 15.12
Average 14.36 18.69

TABLE II: Average relative decrease in RMSAE, when com-
paring both versions of Cross3D with Spectral Cross3D.

of audio samples for competitors to evaluate their SSL and
SST solutions. Even if the test dataset consists of a small
number of recorded signals, comparing the performances of
Spectral Cross3D and the baseline (BL) model of the LOCATA
Challenge can give an idea of how well our proposed solution
operates under completely unseen conditions. We computed
the Mean Absolute Azimuthal Error [10] (MAAE) attained on
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the single source tasks (i.e. Tasks 1, 3 and 5), using the same
microphone array selected for training. The results, presented
in Table III, indicate that our system performs similarly to
the baseline model, exhibiting errors in the same order of
magnitude.

Task MAAE (SpC3D) MAAE (BL)
Task 1 6.6◦ 4.2◦

Task 3 4.5◦ 9.4◦

Task 5 4.2◦ 5.4◦

TABLE III: Mean Absolute Azimuthal Error in the LOCATA
Challenge.

V. CONCLUSIONS

We presented a new sound source tracking system called
Spectral Cross3D, which combines a state-of-the-art neural
network architecture [8] with a novel preprocessing stage
that delivers MUSIC power-like maps as network input. Our
solution has been shown to attain a lower RMSAE metric
than the original system in the same test dataset, and results
comparable to the baseline provided in the LOCATA challenge
dataset.

It should be noticed that in its present form the Spectral
Cross3D requires a larger number of parameters (6,591,188
against 5,626,148 of the Cross3D), which increases both
training time and memory consumption. The fact that multiple
SPCMs have to be estimated and eigendecomposed in order
to generate the input maps also increase the system overall
complexity. One possible solution to tackle this issue could be
the inclusion of a frequency selection mechanism to restrict the
input maps to an appropriate subset of the full spectrum. This
has the potential to reduce the number of parameters without
significantly impacting performance.

Another aspect to be addressed in the continuation of this
work is the acoustic simulator used for data generation. It is
known that reverberation is a frequency-dependent phenome-
non. The traditional image source method used in gpuRIR
is fast enough to be used for on-line data generation, at
the expense of a simple reverberation model that does not
consider the frequency dependence of reflection coefficients.
For a better assessment of model capabilities, a more realistic
simulator should be used in future works. Moreover, the set of
MUSIC narrow-band power-like maps provide the necessary
flexibility to describe frequency dependent phenomena. Once
this information is taken into account on simulations, a better
generalization is expected to be attained in Spectral Cross3D.
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