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Abstract—Kernel Adaptive Filtering is an effective so-
lution for nonlinear channel equalization, offering re-
markable results in scenarios where linear filters often
fail. In this context, the Kernel Maximum Correntropy
(KMC) is an efficient and resilient technique. In most
cases, the Gaussian kernel is used to calculate corren-
tropy. In this article, we propose to use the Epanechnikov
kernel to estimate correntropy and analyze its perfor-
mance. The filter performance is compared to the KMC
with Gaussian kernel and also to the Kernel Least-Mean-
Square algorithm.
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I. INTRODUCTION

Adaptive filtering is used in a broad range of appli-
cations in the signal processing field, including channel
equalization. Because of its quick convergence and accu-
racy, the least mean squares (LMS) is one of the most used
methods [1]. However, the potential of linear algorithms
is limited, since many real-world problems demand more
expressive hypothesis spaces than linear functions [1].
Since this approach is based on a linear model, it performs
poorly when the underlying system is highly nonlinear
[2]. In order to solve this problem, numerous methods
have been proposed, with the kernel adaptive filtering
(KAF) algorithms becoming increasingly popular in recent
years for their universal approximation capability and con-
vex optimization nature [1]. Furthermore, input data can
be implicitly/nonlinearly mapped to a higher-dimensional
space (referred to as reproducing kernel Hilbert space -
RKHS) using kernel functions, where appropriate linear
operations can be performed [3]. In this context, the
algorithm Kernel Least-Mean-Square (KLMS) is a well-
known example.

Choosing the right cost function is critical in kernel
adaptive filtering. For example, KLMS uses the Mean
Squared Error (MSE) as a cost function. However, MSE-
based kernel adaptive filters will have poor performance
in a non-Gaussian scenario [4]. To work around this
issue, criteria based on Information Theoretic Learning
(ITL) have been used to replace traditional second-order
statistical measures like MSE. Capturing higher-order
statistics may provide potentially significant performance
improvements in the adaptation [2], [5]. Unlike the MSE-
based criterion, that uses error energy as the cost function,
ITL uses the estimated probability density function (pdf)
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of the data, which is computed using the Parzen kernel
estimator [6].

In this context, the maximum correntropy criterion
(MCC) has gotten a lot of attention in recent years because
of its simplicity and robustness [2], [4], [7]. Correntropy
is a generalized correlation measure induced by a kernel
function that is capable of extracting various statistical
moments from signals and explore their temporal struc-
ture. Face recognition [8], categorization [9], and robust
principal component analysis [10] are just a few of the
situations where MCC has been applied effectively. For
that reason, the Kernel Maximum Correntropy (KMC)
algorithm was proposed combining MCC with kernel adap-
tive filtering [7], demonstrating a good performance in
impulsive noise environment.

Due to its smoothness and rigorous positive definition,
the Gaussian kernel is commonly used as the kernel
function in the estimation of correntropy [7], [8], [11].
However, is this a good decision, given the availability of
alternative kernel functions? In [4], the authors propose
using the generalized Gaussian density (GGD) function
as the kernel, implying that the Gaussian kernel is not
always the best approach. In pdf estimation through
algorithms based on Parzen windows, the Epanechnikov
kernel has outperformed the Gaussian kernel in some
situations [12], [13]. To the best of our knowledge, there
is no detailed investigation of kernel adaptive filtering
algorithms within this context in the literature. As a
result, given the work done in [13] and [14], it becomes
interesting to develop the Kernel Maximum Correntropy
using the Epanechnikov kernel.

Thus, the aim of this article is to analyze the perfor-
mance of this new criteria, and compare it with the results
obtained using the Gaussian kernel and the KLMS algo-
rithm in the channel equalization problem. To this end, the
work was structured as follows: Section II presents the
maximum correntropy criterion, its kernel-based version
and also the KLMS. The new proposed algoritm, KMC
with the Epanechnikov kernel, is discussed in Section
III. The relationship between the algorithm using the
Epanechnikov kernel and KLMS is exhibit in Section IV.
Section V shows the performance of the algorithms in the
equalization of different scenarios. Finally, the conclusions
of the work are presented in Section VI.

II. FOUNDATIONS

In this section we will first present the channel equal-
ization problem and the well known Maximum Corren-
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tropy Criterion (MCC), together with the Kernel Adaptive
Filters presented in the literature.

A. Channel Equalization Problem

In Fig. 1, a block diagram of the channel equalization
performed by a Kernel Adaptive Filter is shown. In an
effort to recover the initially transmitted signal d,, the
algorithm updates the KAF using the channel output u, =
h,TLsn and the error e,, computed between d,, and the filter
output yj,.

: /
d n u, Yn
Channel Kernel Adaptive Filter

[

»  Algorithm

Y

Fig. 1. Block Diagram of Communication System.

B. Maximum Correntropy Criterion

Correntropy, introduced initially in [15], is a generalized
correlation measure that probabilistically estimates the
similarity between two arbitrary random variables. This
metric is linked to the Parzen window method to calculate
Rényi’s quadratic entropy [16]. Correntropy has been ap-
plied to channel equalization because it can also exploit
the temporal characteristics of the signal [15], making it
suitable for dealing with correlated signals. The following
equation can be used to obtain this measure:

Vo(X,Y)=E[xs (X -Y)]I, (o))

where o is the kernel width, X and Y are two arbitrary
random variables, E[-] is the expectation operator, «(:) is a
symmetric positive definite kernel function. Correntropy is
calculated using the Gaussian kernel in most works found
in the literature [15], [17] :

_ (x-v)2
e 272 2)

xkg(X,Y) =
2no

One of the most important parameters in estimating
correntropy is g, commonly known as kernel size or width,
which influences the performance of the criterion in a
significant way. It is important to mention that using the
Gaussian kernel implies using all even order statistical
moments of the signal [14]. The measure presented in (1)
can be estimated using a time average of N signal samples

of a discrete-time stochastic process:

R 1Y
VN o (X,Y) = ﬁZKU(xi_yi) 3)
=1

The maximum correntropy criterion (MCC), in this
context, aims to maximize the correntropy between the

transmitted signal d; and the estimated signal y; at
the output of the equalizer, leading to the following cost
function:

1 n
Juw)=— Y

Ko (d;, i) (4)
Ni:n—N+1 e

where w is the set of filter weights and y; = wlu; is the
filter output. The gradient ascent approach may be used to
update the equalizer coefficients based on the cost function
given by (4).

The MCC method is similar to the LMS algorithm in
terms of computational simplicity [7]. This criterion is a
robust statistical approach due to the smooth dependence
of correntropy on the kernel bandwidth. Experiments have
shown that MCC has an advantage in linear adaptive
filters when compared to other criteria [7].

C. KMC with Gaussian Kernel

Linear adaptive filters cannot achieve high performance
if the mapping between d and u is nonlinear. For that
reason, kernel methods are a strong choice for this task
due to their universal approximation and convex optimiza-
tion capabilities [1]. According to the Mercer’s Theorem,
the kernel-induced mapping transforms the input data
u; to a high-dimensional feature space IF as ¢(u;) in
kernel adaptive algorithms [1], [2]. This feature space
is known as reproducing kernel Hilbert space (RKHS).
Furthermore, a linear model is also constructed in the
RKHS to compute the system output using the trans-
formed data [1], [7]. As discussed in [1], the KAF algorithm
creates a growing radial-basis function (RBF) network
that increases linearly with the number of training data.
Following the representer theorem [1], [7], the linear filter
weights applied in the feature space can be described by:

Q=) c;<p;),.>= ) cixo(u;,.) (5)
ieN ieN

where c¢; are weight coefficients obtained from the training
data and « is a symmetric positive definite kernel function.
Then, using the gradient ascent approach, the coefficients
can be updated iteratively:

Q,=Qp_1+pVd, (6)

where p is the step size. With the new paired sample
{p(u,),d,}, the adaptive filter weights Q is computed
using the MCC criterion and the stochastic gradient ap-
proximation [7]:
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where ¢; is a simplified notation for ¢(u;), e, =d,—QL ¢,
and kg is the Gaussian kernel. The system output is now
obtained using the "kernel trick", which can be expressed
in terms of the inner product between the new input and
the previous inputs weighted by prediction errors [1], [3],

[7]:

T
Yn+1= Qn+1<Pn+1
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This algorithm, named Kernel Maximum Correntropy
(KMC) [7], will be addressed as KMC-GAU since it uses
the Gaussian kernel.

D. KLMS

The Kernel Least-Mean-Square (KLMS) is one of the
most popular kernel adaptive filtering methods due to its
robustness and simplicity [7]. Since it is based on the LMS
algorithm, the KLMS uses the same criterion based on
minimizing the MSE between the desired signal and the
filter output [3]:

N N
Jow)=Y e? =Y (di-w'u;)? €)
i=1 i=1

where N is the size of training data. Then, transforming
the input into a high dimensional feature space, the adap-
tive filter weights can be calculated using the gradient
based algorithm [3]:

Qy=0
ep=d, _Qn(p(un)
Q,=Q, 1 +uen@n
n
=py eipi (10)
i=1

The system output, y, can be computed through the
"kernel trick".
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(11)

where x(-) is a symmetric positive definite kernel function.
It is important to point out that the kernel used by the
KLMS in this work is the Gaussian kernel. Section IV will
explore such issue in more details.

III. KMC WITH THE EPANECHNIKOV KERNEL

The Epanechnikov kernel has been used in numerous
applications involving algorithms based on Parzen window
[12], [13], demonstrating that it can be used to achieve
good results. According to the study carried out in [18],
using the average mean integrated squared error (AMISE)
of the estimation of pdfs, the Epanechnikov kernel is
considered optimal. This kernel is a quadratic polynomial
function given by:

2
kg(X,Y)= i(1—(X_Y) ) —0<X-Y<o (12)
40 o

where o is the kernel width. Outside of the support,
xg(X,Y) = 0. Further information on the kernel charac-
teristics can be found in [18].

Considering the stochastic gradient given by (7) and
using the Epanechnikov kernel (12), the gradient is given
by:

oxg(dn, QL p,)
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where kg is the Epanechnikov kernel. Similar to the KMC-
GAU (8), the “kernel trick” is used to obtain the following
system output:

Yn+1 = Q£+1(,0n+1
3

n
T
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n
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The algorithm with the Epanechnikov kernel will be
called KMC-EPA.
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IV. COMPARISON BETWEEN ALGORITHMS

We start by comparing the algorithm KMC imple-
mented with the Epanechnikov kernel (KMC-EPA) with
the KLMS. Observing equations (14) and (11), it is possible
to notice that both equations are similar. Considering that
the coefﬁment 3= can be incorporated to the step size and
that the KLMS is using the Epanechnikov kernel, both
equations become identical:

YKMC-EPA = YKLMS-EPA

n n
.uz%ZeiKE(ui,un+1)=uZeiKE(ui,unﬂ) (15)
0% =1 i=1

Thus, using the Epanechnikov kernel, both algorithms
lead to exactly the same equations, i.e., maximising the
correntropy of the error or minimizing the mean-square-
error are equivalent. This result comes from the fact that
the Epanechnikov kernel is a second-order polynomial
(12). Thus, using it to estimate correntropy is equiva-
lent to obtain the mean square error. In addition, the
Epanechnikov kernel is given by a constant minus the
squared error, what explains the fact that, even though
one criterion is given by a maximization and the other is
a minimization, both result in the same expression.

For this reason, we will only consider the analysis of the
KMC-EPA (and not the KLMS-EPA). The KLMS algorithm
will always be computed using the Gaussian kernel.

V. SIMULATION RESULTS

In this section, we will analyze the performance of the
KMC-EPA algorithm in linear and nonlinear scenarios.
We compare it with KMC-GAU and KLMS, the latter
due to its popularity and robustness. After varying their
parameters and obtaining the ones that led to the best
result, the performance will be evaluated by measuring
the MSE and speed of convergence. In order to obtain
the best parameters, the kernel width was varied between
0.1 <0 <5 and the step size between 0.001 < <0.9.

A. Linear Channel Equalization

First, we will use a Binary Phase Shift Keying (BPSK)
signal d,, distorted by the channel H(z) = 0.2+1z71+0.4z72
in the presence of impulsive noise [7], whose probability
density function is given by:

Prnoise =0.94(0,01) +0.14(0,02) (16)

with g9 = 0.8 and 01 adjusted to obtain a resulting SNR of
20 dB. To improve the performance of the three algorithms
on a nonminimum-phase channel, the error is calculated
with 1-sample delay in d,, i.e., e, =d;-1 —Qpp(u,). Sim-
ulations varying from 0 to 3 showed that this delay led to
the best performance. In Fig. 2, we see the results obtained
in an average of 1000 simulations for the algorithms KMC-
GAU, KMC-EPA and KLMS.

For KMC-GAU the parameters used were p = 0.9 and
0 =0.4; for KMC-EPA 11 =0.01 and 0 =0.5 and for KLMS,
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Fig. 2. Convergence curve in linear channel with impulsive noise using
uncorrelated signal.

¢ =0.1 and o = 0.3. Analysing Fig. 2 it is possible to
notice that all algorithms converge to a similar MSE
threshold. In terms of speed, KMC-GAU converges slightly
faster than the others. It is important to mention that
the KMC-EPA tends to diverge after a certain number
of iterations, which means that the algorithm may suffer
from numerical instability. In this case, it is necessary
to apply regularizations to control the size of the radial-
basis function network created by the algorithm [1]. Such
techniques are not applied in the present work and we
intend to explore them in the future.

In Fig. 3, we used a temporally correlated d,, given by a
signal BPSK filtered by F(z) = 1+0.5z"1. The channel was
kept the same. For KMC-GAU we used 4y =0.7 and 0 =1;
KMC-EPA, 1 =0.09 and 0 =1.4 and KLMS, y=0.6 and 0 =
1. Fig. 3 shows an average of 1000 simulations. In this case
KMC-GAU and KLMS converge at the same speed and
to the same MSE level. Both KMC-GAU and KLMS are
faster than KMC-EPA, although KMC-EPA achieves the
lowest MSE level. This indicates that the Epanechnikov
kernel might be able to preserve the temporal dependency
more efficiently.

B. Nonlinear Channel Equalization

In this experiment, we will use a binary signal d, in
a nonlinear channel model, defined by z, =d, +0.2d,-1,
Uy = zn—0.92,21+v0, where v, is an additive white Gaussian
noise (AWGN) . An SNR of 20 dB was considered. KMC-
GAU parameters were defined as u=0.7 and o =1; KMC-
EPA used p=0.09 and 0 =1.4 and KLMS, p=0.6 and
o = 1. Fig. 4 represents an average of 1000 simulations.
We can note that KMC-GAU and KMC-EPA converge to
the same MSE level, and both performed better than the
KLMS. Furthermore, KMC-EPA converges faster than the
KMC-GAU, presenting the best performance among the
three algorithms in a nonlinear scenario.
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Fig. 3. Convergence curve in linear channel with impulsive noise using
correlated signal.
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Fig. 4. Convergence curve in nonlinear channel with AWGN.

VI. CONCLUSION

Kernel Adaptive Filtering is an efficient approach for
nonlinear channel equalization, due to its universal ap-
proximation and convexity, achieving notable results in
scenarios where linear filters normally fail. Among this
class of algorithms, there is the Kernel Maximum Cor-
rentropy, an efficient and robust algorithm that is based
on the generalized correlation measure called correntropy.
Normally in literature, it is common to estimate the cor-
rentropy using the Gaussian kernel. In this work, we pro-
posed to estimate the correntropy using the Epanechnikov
kernel and analyzed its performance. For this reason,
we compare the resulting algorithm with the KMC using
the Gaussian kernel and the Kernel-Least-Mean Square
algorithm in different scenarios. Using an uncorrelated
signal, with linear channel and impulsive noise, the three
algorithms converge to the same MSE level. When using a
correlated signal, even if the algorithm using the Epanech-
nikov kernel achieves the lowest MSE level, it needs more

samples to converge. However, this might indicate that
the Epanechnikov kernel is able to preserve the temporal
structure of the data in comparison with the Gaussian
kernel. Finally, in a nonlinear scenario with additive white
Gaussian noise, the algorithm using the Epanechnikov
kernel presented the best performance.
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