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Abstract— This work proposes a Global Navigation Satellite
Systems (GNSS) reflectometry (GNSS-R) approach using only
the reflected signals received by a dual-polarization antenna
that moves along a surface with different electrical properties.
In order to estimate the parameters of interest, a maximum
likelihood estimator is derived and its performance is evaluated.
The results show that the proposed approach can successfully
retrieve the electrical information of dielectric materials. In
case of materials with high conductivity the performance of the
proposed approach is reduced due to the lower identifiability of
the applied signal model parameters.

Keywords— GNSS Reflectometry, Remote sensing, Dual-
Polarization, Maximum Likelihood Estimator, Reflection coeffi-
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I. INTRODUCTION

The use of satellites as a data source for soil studies has
a great advantage, since levels of equal or close global cov-
erage, temporal stability, and homogeneous spatial range are
almost impossible to achieve with traditional remote sensing
techniques [1]. The most widespread studies, which use Global
Navigation Satellite Systems reflectometry (GNSS-R) for re-
mote soil sensing, are related to obtaining the moisture content
through a configuration called multipath reflectometry (GNSS-
MR) [2]. This configuration is based on the simultaneous
reception of multiple paths - direct propagation and indirect
reflection - which are tracked through a single signal replica,
so the main observable involves constructive and destructive
interference between two coherent paths. The interference
pattern is usually observed through the signal-to-noise ratio
(SNR).

This paper presents a new approach for the characterization
of reflective surfaces using GNSS-R. We propose to estimate
the relative permittivity, ϵr, and the electrical conductivity,
σ, of the surface using only the reflected GNSS signals.
According to [3], the Earth’s surface can be characterized
by three parameters, namely: magnetic permeability, µ, the
electrical permittivity, ϵ, and the electrical conductivity, σ. The
magnetic permeability of the Earth’s surface can normally be
considered equal to the permeability in a vacuum. The relative
permittivity (or dielectric constant) represents the measure of
interest in the energy storage capacity of a dielectric medium
under the effect of a electric field [4]. Zavorotny et al. showed
in [5] that the Earth’s surface reflectivity at the GPS frequency
is sensitive to the dielectric properties of the soil. Electrical
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conductivity is a parameter very little explored in GNSS-
R, but obtaining its value is very important for agricultural
system’s management as an extremely relevant indicator in
the classification of soil quality [6].

For all GNSS the transmitted signals are right-hand cir-
cularly polarized (RHCP). Upon reflection the polarization
changes and the signal becomes elliptically polarized, which
can be represented by a superposition of a RHCP and a
left-hand circularly polarized (LHCP) signal. In many cases
the LHCP signal in this superposition is dominant. However,
due to the rough surface scattering mechanisms and the soil
dielectric constant, there is a non-negligible scattered RHCP
signal that can be detected and used to estimate the bio-
geophysical parameters [7]. The hypothesis that obtaining soil
moisture content can be improved when the LHCP and RHCP
components of the reflected signal are collected was proposed
by [5] and experimentally confirmed in [7]. This is because
the ratio of these two signals is sensitive to soil moisture,
mitigating the need to estimate nuisance parameters related
to the effects of surface roughness [8]. In [9], [10] both
polarizations of the reflected signal are used, but the technique
used involves constructive/destructive interference between the
direct and reflected signals. Techniques using only the reflected
signal considering the RHCP and LHCP components have not
been studied systematically yet. Therefore, this paper presents
a new approach that uses only the reflected GNSS signals
received by a dual-polarization antenna (LHCP and RHCP) to
characterize the reflective surface through the estimation of its
electrical properties.

II. SIGNAL MODEL

A dual-polarization antenna is receiving the reflected GNSS
signals and additive noise is introduced by the antenna and the
low-noise amplifier (LNA). The signal at the RHCP output and
the LHCP output of the antenna after downconversion can be
given as

xL(t) = aL(t)c(t− τ(t)) + nL(t) ∈ C (1)
xR(t) = aR(t)c(t− τ(t)) + nR(t) ∈ C, (2)

where

aL(t) = γ(t)Rl(ϵref (t), ϑ(t)) ∈ C (3)
aR(t) = γ(t)Rr(ϵref (t), ϑ(t)) ∈ C (4)

are the complex amplitudes of the signals received after the
reflection of the satellite signal on ground as a function of time
t, γ(t) ∈ C is the complex amplitude of the satellite signal
before reflection on ground, τ(t) is time-delay of the signal,
c(t) ∈ R is a pseudo random (PR) spreading sequence used by
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the respective GNSS satellite, and nR(t) ∈ C and nL(t) ∈ C
denote the complex noise terms that can be modelled as
complex white Gaussian noise. Rl(ϵref (t), ϑ(t)) ∈ C and
Rr(ϵref (t), ϑ(t)) ∈ C denote the circular reflection coeffi-
cients corresponding to the LHCP and RHCP, respectively,
given by

Rl(ϵref (t),ϑ(t))=
cos(ϑ(t))−

√
ϵref (t)−sin2(ϑ(t))

2(cos(ϑ(t))+
√

ϵref (t)−sin2(ϑ(t)))

−
ϵref (t) cos(ϑ(t))−

√
ϵref (t)−sin2(ϑ(t))

2(ϵref (t) cos(ϑ(t))+
√

ϵref (t)−sin2(ϑ(t)))

(5)

and

Rr(ϵref (t),ϑ(t))=
cos(ϑ(t))−

√
ϵref (t)−sin2(ϑ(t))

2(cos(ϑ(t))+
√

ϵref (t)−sin2(ϑ(t)))

+
ϵref (t) cos(ϑ(t))−

√
ϵref (t)−sin2(ϑ(t))

2(ϵref (t) cos(ϑ(t))+
√

ϵref (t)−sin2(ϑ(t)))

(6)

where ϑ(t) is the reflection angle and1

ϵref (t) = ϵr(t)− j
σ(t)

2πfcϵ0
∈ C (7)

with the vacuum permittivity ϵ0 = 8.854187817×10−12 F/m,
the relative conductivity σ(t), the relative permittivity ϵr(t),
and fc being the carrier frequency of the signal.

The signals xR(t) and xL(t) are correlated over a period of
time Td with the replica PR spreading sequence generated at
the receiver based on an estimate of the time-delay τ̂(t). Thus,
the signals after correlation, yR[k] and yL[k] can be given as

yL[k]= 1
Td

∫ Td
2

(2k+1)

Td
2

(2k−1)
aL(t)c(t−τ(t))c(t−τ̂(t))dt

+ 1
Td

∫ Td
2

(2k+1)

Td
2

(2k−1)
nL(t)c(t−τ̂(t))dt=ãL[k]+ñL[k] (8)

and

yR[k]= 1
Td

∫ Td
2

(2k+1)

Td
2

(2k−1)
aR(t)c(t−τ(t))c(t−τ̂(t))dt

+ 1
Td

∫ Td
2

(2k+1)

Td
2

(2k−1)
nR(t)c(t−τ̂(t))dt=ãR[k]+ñR[k], (9)

where k = 0, 1, . . . ,K − 1. As we are considering two
separate receiver chains for the RHCP and LHCP signals with
independent amplification we consider

E[ñL[k]ñR[k]] = 0. (10)

Assuming that γ(t) is constant during the correlation of
duration Td and thus it can be given as γ[k] for for a duration
Td we can further define[

yL[k]
yR[k]

]
︸ ︷︷ ︸

=y[k]

= γ[k]ϱ[k]g[k]

[
Rl(ϵref [k], ϑ[k])
Rr(ϵref [k], ϑ[k])

]
︸ ︷︷ ︸

=r(ϵref [k],ϑ[k])

+

[
ñL[k]
ñR[k]

]
︸ ︷︷ ︸

=n[k]
(11)

where ϱ[k] ∈ [0, 1] is the correlation loss at period k as τ̂(t) ̸=
τ(t). In case the estimation error of τ is small ϱ[k] ≈ 1.

Assuming that r(ϵref [k], ϑ[k]) is constant for K periods and
collecting several periods the signal can be written in matrix
notation as

Y = r(ϵref , ϑ)γT + N (12)

1Neglecting polarization losses

with

Y = [y[1] · · · y[K]] ∈ C2×K (13)
N = [n[1] · · · n[K]] ∈ C2×K (14)
γ = [γ[1], . . . , γ[K]]T ∈ CK×1. (15)

III. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

Instead of the real and imaginary part of the complex
amplitude γ[k] we will consider

γ[k] = α[k]ejϕ[k] (16)

with amplitude α[k] and phase ϕ[k]. We define the vectors
collecting the amplitudes and phases as

α = [α[1], . . . , α[K]]T (17)

ϕ = [ϕ[1], . . . , ϕ[K]]T. (18)

Also instead of the real and imaginary part of ϵref we will
consider

ϵref = |ϵref |ej arg{ϵref} (19)

with the absolute value |ϵref | and the phase arg{ϵref} of ϵref .
Assuming a random variable Y with a complex multivariate
Gaussian probability density function (pdf) parameterized by
the parameter vector

θ = [αT,ϕT, |ϵref |, arg{ϵref}, ϑ, σ2
n]

T (20)

we get

pY(Y;θ)= 1

(πσ2
n)2K

×exp
(
− 1

σ2
n
||Y−r(|ϵref |,arg{ϵref},ϑ)γT||2F

)
, (21)

where ||.||2F is the Frobenius norm. The likelihood function
with respect to the parameter vector θ can be given as

L(Y;θ) = pY(Y;θ). (22)

and the maximum likelihood estimator for θ is

θ̂ = argmax
θ

{L(Y;θ)} = argmax
θ

{log(L(Y;θ))} . (23)

The cost function of the estimator can be reformulated as
J(θ) = log(L(Y;θ)) = −2K log(πσ2

n)

− 1

σ2
n

||Y − r(|ϵref |, arg{ϵref}, ϑ)γT||2F .
(24)

Differentiating J(θ) with respect to σ2
n and equating it to zero

we get the estimate

σ̂2
n =

1

2K
tr{(Y − r(|ϵref |, arg{ϵref}, ϑ)γT)×

(Y − r(|ϵref |, arg{ϵref}, ϑ)γT)H}.
(25)

Substituting (25) into the cost function we get

J(θ) = − 1

K
tr{(Y − r(|ϵref |, arg{ϵref}, ϑ)γT)×

(Y − r(|ϵref |, arg{ϵref}, ϑ)γT)H}.
(26)

Now, differentiating J(θ) with respect to γT and equating to
zero we get the estimate

γ̂T = (rH(|ϵref |, arg{ϵref}, ϑ)r(|ϵref |, arg{ϵref}, ϑ))−1×
rH(|ϵref |, arg{ϵref}, ϑ)Y.

(27)
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Substituting (27) into the cost function (26) and dropping the
terms that are not dependent on θ we get

J(θ) =
rH(|ϵref |, arg{ϵref}, ϑ)R̂YYr(|ϵref |, arg{ϵref}, ϑ)

||r(|ϵref |, arg{ϵref}, ϑ)||22
(28)

with
R̂YY =

1

K
YYH. (29)

To solve the derived non-linear problem we can employ an
iterative approach based on the space-alternating general-
ized expectation-maximization (SAGE) algorithm [11], [12].
Hence, we need to solve sequentially and iteratively the
following one-dimensional problems

ϑ̂=argmax
ϑ

{
rH(|ϵ̂ref |,arg{ϵ̂ref},ϑ)R̂YYr(|ϵ̂ref |,arg{ϵ̂ref},ϑ)

||r(|ϵ̂ref |,arg{ϵ̂ref},ϑ)||22

}
,

(30)

|ϵ̂ref |=arg max
|ϵref |

{
rH(|ϵref |,arg{ϵ̂ref},ϑ̂)R̂YYr(|ϵref |,arg{ϵ̂ref},ϑ̂)

||r(|ϵref |,arg{ϵ̂ref},ϑ̂)||22

}
,

(31)

arg{ϵ̂ref}=arg max
arg{ϵref}

{
rH(|ϵ̂ref |,arg{ϵref},ϑ̂)R̂YYr(|ϵ̂ref |,arg{ϵref},ϑ̂)

||r(|ϵ̂ref |,arg{ϵref},ϑ̂)||22

}
.

(32)

IV. RESULTS

Several simulations were performed to assess the perfor-
mance of the proposed maximum likelihood estimator un-
der various conditions. We considered a signal-to-noise ratio
(SNR) of 15 dB for y[k] and an observation interval of the
signal of KTd with K = 500. We assumed that the variation
in the angle of reflection is insignificant during the observa-
tion interval and thus r(ϵref [k], ϑ[k]) can also be considered
constant. Furthermore, we observed that with initialization
of ϑ far from the global maximum, the estimator could not
converge, therefore, the initialization of ϑ was performed using
the positioning estimate based on the received satellite signals.
Thus, a good convergence of the algorithm for the parameters
necessary to characterize the reflecting surface (parameters of
interest), namely |ϵref | and arg{ϵref}, could be achieved.

Fig. 1 shows the simulation scenario considered in this
work. The dashed line represents the trajectory of the receiving
antenna on the reflective surface. The receiving antenna was
simulated moving along a square area of 100 m2 collecting
the signals at p = 1, . . . , 144 points along the surface. This
reflective surface was simulated for two cases, on the one
hand considering a homogeneous composition, i.e., ϵref 1 =
ϵref 2, and on the other hand considering two different surface
characteristics, i.e., ϵref 1 ̸= ϵref 2.

Fig. 2 presents the expectation of the estimates of the
parameters |ϵref | and arg{ϵref} for a homogeneous surface
whose composition is a medium dry ground. The graphs in
the first column of Fig. 2 present the scenario with the true
values of the parameters to be estimated. The first and second
row of graphs refer to the parameters |ϵref | and arg{ϵref},
respectively, whose actual values are 7.0369 and -0.1024 in
radian, respectively. In the first column, showing the true val-
ues of the reflective surface, the blue points correspond to the
reflection points referring to the satellite with pseudo-random

Fig. 1. Simulation scenario.

noise code (PRN) 14 calculated according to the Forward
Scatter Geometry [13] and the orange points correspond to
the reflection points referring to the satellite with PRN 24.
We can observe that the estimator is capable of estimating the
surface characteristics quite well in case the elevation angle
of the satellite θ is not too high (PRN 24, θ > 60◦) which
means that the angle of reflection ϑ is small, since ϑ and θ are
complementary angles (ϑ = π/2−θ) according to the Forward
Scatter Geometry [13]. The results for the satellite with PRN
24 suggest that the estimator for |ϵref | and arg{ϵref} becomes
biased for large θ and thus small ϑ, i.e., the identifiability of
the model parameters |ϵref | and arg{ϵref} is reduced for large
θ and thus small ϑ.

This performance characteristic of the estimator with respect
to ϑ and/or θ can also be observed for all other materials,
but for different values of ϑ and θ. Based on the analysis of
the estimator’s performance and an analysis of the respective
cost functions, one can identify a range of ϑ and θ for which
the proposed estimator presents good results. For concrete,
e.g., according to the simulations performed, it presents good
results around ϑ = 70◦ presenting a root mean square error
(RMSE) of |ϵ̂ref |, RMSE |ϵ̂ref | = 0.14, where the true value
is |ϵref | = 3. For fresh water the RMSE |ϵ̂ref | ≈ 2.5, where
the real value is |ϵref | = 80. Fig. 3 shows for each material
the range of ϑ for which the RMSE of |ϵ̂ref | tends to be small.

On the other hand, the RMSE arg{ϵ̂ref} shows that the
estimator does not perform well for estimating these parame-
ters when the materials with very low conductivity are used.
Concrete, dry ground as well as fresh water are materials with
very low conductivity σ compared to the relative permittivity
ϵr. For these materials the |ϵref | is practically equal to ϵr,
therefore, σ for these materials is not a significant parameter
in the estimation of ϵref , since the estimator had a good
performance in estimating |ϵref |. For other materials analyzed,
such as sea water and wet ground, the estimator showed
satisfactory results both for |ϵref | and arg{ϵref}, because
value of σ is larger compared to the value of ϵr.

The behavior of the respective cost functions justifies our
results, since the larger the curvature of the cost function, the
larger the estimation error variance of the algorithm is. In Fig.
4 we show the cost functions considering ϑ = 78◦ (θ = 12◦)
generated for wet ground (σ = 2 × 10−1 S/m) and for a
metallic object (σ = 3.23× 105 S/m). For a reflection angle
ϑ = 12◦ (θ = 78◦), the cost functions for the considered
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Fig. 2. Estimation result for a reflective surface composed of medium dry ground.

Fig. 3. Behavior of the RMSE |ϵ̂ref | for high values of ϑ. In the legends
the numbers in parentheses are the actual values of |ϵref |.

materials vary in the sixth decimal, that is, they present an
imperceptible curvature, especially, taking into account a noisy
scenario. This behavior can also be observed for materials
with very high conductivity σ, i.e., metal surfaces. The cost
functions for metallic materials only vary in the sixth decimal
as well, even for a reflection angle ϑ = 78◦ (θ = 12◦).
Hence, even considering a low elevation angle, the estimator
was not capable to estimate the parameters with high accuracy
when metallic materials are considered. Although it is not
possible to estimate the parameters of a metallic material with
high accuracy (low estimation error variance), it is possible to
detect metals when they are present in a dielectric medium.
The estimator is provide means for the detection of the

Fig. 4. Cost function analysis for materials with low and high conductivity.

variation in the reflective surface composition, both when this
composition has quite different parameters like a metal object
on medium dry ground, as well as when this composition
varies between materials with similar parameters such as a
medium dry ground and wet ground. The results are shown
in Fig. 5. The first row of graphs in Fig. 5 shows a surface
whose composition is a medium dry ground, represented in
blue color, together with a metallic object in red color. In the
second row, a surface composed of medium dry ground in blue,
together with wet ground represented in red is shown. The
points in orange correspond to the reflection points referring to
the satellite using PRN 10 and the points in green correspond
to the points of reflection referring to the satellite using PRN
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Fig. 5. Performance of the estimator in detecting composition variation on a non-homogeneous reflecting surface.

14.

V. CONCLUSION

We have proposed a new approach to estimate electric
properties of a reflective surface based on GNSS-R using only
the reflected signals received by a dual-polarization antenna.

The results presented in this work show that a good per-
formance of the proposed estimator is dependent on several
parameters, such as the SNR of the received reflected sig-
nals, the elevation angle (reflection angle), and the electrical
properties of the reflective surface. These properties, that are
related to the used parameterization of the received signal and
specifically of the reflection coefficients have not been dis-
cussed in the literature before, although such parameterizations
were applied in several works. Especially, the estimation of the
electrical conductivity of reflective surfaces with very low or
very high conductivity was assessed in this work.

We conclude that considering the proposed signal model,
it is possible to achieve good estimates of the electrical
properties of the reflective surface in case it is composed of
dielectric materials. For the estimation of electrical properties
considering a reflective surface composed of metals or metallic
objects, further studies need to be carried out. Despite this,
our results show that the detection of metals and metallic
objects located on a dielectric media could be achieved well
based on the results of the proposed estimator. In addition, our
estimator is also capable of providing results that can be used
for detecting rather small variations of the composition of the
reflective surface.

REFERENCES

[1] K. Yu, C. Rizos, D. Burrage, A. G. Dempster, K. Zhang, and M. Mark-
graf, “An overview of gnss remote sensing,” EURASIP Journal on
Advances in Signal Processing, vol. 2014, no. 1, pp. 1–14, 2014.

[2] J. F. Euriques, C. P. Krueger, W. C. Machado, L. F. Sapucci, and
F. Geremia-Nievinski, “Soil moisture estimation with gnss reflectometry:
a conceptual review,” Revista brasileira de cartografia, Rio de Janeiro.
Vol. 73, n. 2 (2021), p. 413-434, 2021.

[3] ITU-R, Electrical characteristics of the surface of the earth. Recom-
mendation Rec. 527-6, 2021.

[4] W. H. Hayt Jr and J. A. Buck, Eletromagnetismo. Bookman Editora,
2013.

[5] V. U. Zavorotny and A. G. Voronovich, “Bistatic gps signal reflections at
various polarizations from rough land surface with moisture content,” in
IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing
Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing
in Managing the Environment. Proceedings (Cat. No. 00CH37120),
vol. 7. IEEE, 2000, pp. 2852–2854.

[6] V. de Paul Obade and R. Lal, “Towards a standard technique for soil
quality assessment,” Geoderma, vol. 265, pp. 96–102, 2016.

[7] A. E. Egido, “Gnss reflectometry for land remote sensing applications,”
Ph.D. dissertation, Universitat Politècnica de Catalunya, 2014.

[8] E. Motte, M. Zribi, P. Fanise, A. Egido, J. Darrozes, A. Al-Yaari,
N. Baghdadi, F. Baup, S. Dayau, R. Fieuzal et al., “Glori: A gnss-r dual
polarization airborne instrument for land surface monitoring,” sensors,
vol. 16, no. 5, p. 732, 2016.

[9] N. Rodriguez-Alvarez, A. Camps, M. Vall-Llossera, X. Bosch-Lluis,
A. Monerris, I. Ramos-Perez, E. Valencia, J. F. Marchan-Hernandez,
J. Martinez-Fernandez, G. Baroncini-Turricchia et al., “Land geophysi-
cal parameters retrieval using the interference pattern gnss-r technique,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 1,
pp. 71–84, 2010.

[10] A. Alonso-Arroyo, A. Camps, A. Aguasca, G. Forte, A. Monerris,
C. Ruediger, J. P. Walker, H. Park, D. Pascual, and R. Onrubia,
“Improving the accuracy of soil moisture retrievals using the phase
difference of the dual-polarization gnss-r interference patterns,” IEEE
Geoscience and Remote Sensing Letters, vol. 11, no. 12, pp. 2090–2094,
2014.

[11] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I.
Pedersen, “Channel Parameter Estimation in Mobile Radio Environ-
ments Using the SAGE Algorithm,” IEEE Journal on Selected Areas
in Communications, vol. 17, no. 3, March 1999.

[12] J. A. Fessler and A. O. Hero, “Space-Alternating Generalized
Expectation-Maximization Algorithm,” IEEE Transactions on Signal
Processing, vol. 42, no. 10, October 1994.

[13] B. M. Hannah, “Modelling and simulation of gps multipath propaga-
tion,” Ph.D. dissertation, Queensland University of Technology, 2001.


