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Abstract— Search and Rescue (SAR) operations can take
significant advantage through the use of Unmanned Aerial
Vehicles (UAVs) and communication systems. In this article, we
explored the functionalities of RAN Intelligent Controllers (RICs)
for managing and orchestrating network components aimed at
critical mission operations assisted by UAVs. For example, UAVs
are used to fly over an area where the victim is believed to be
located, collect high-resolution video information and transmit
it back to a ground base station. The proposed architecture
exploits the components of the Open Radio Access Network
(O-RAN) standard specification. Another contribution of this
article is an assessment of a highly complex use case that explores
new market trends, such as SAR operations assisted by UAV-
based computer vision. The experimental results indicate, for
instance, the proposed architecture can substantially improve
the performance of applications with sensible Key Performance
Indicators (KPIs), through a cognitive loop, able to act on the
elements of the communication infrastructure to improve support
for critical missions operations assisted by UAV.

Keywords— Communication networks, Artificial Intelligence
(AI), UAVs, RICs, Search and Rescue operations.

I. INTRODUCTION

SAR operations are considered special, and are character-
ized by a similar set of constraints: the operational environ-
ments are unfriendly, e.g., caves, underwater, mountains, or
disaster scenes — time is critical, and any delay can result
in severe consequences, e.g., lost human lives and impact on
wildlife [1]. UAVs can perform the SAR mission in these
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scenarios, reducing human intervention. UAVs are agile, fast,
have low operating costs, and can exhibit autonomous behavior
by organizing themselves to exchange information. UAVs can
be deployed, performing sensory operations to collect evidence
of a victim’s presence, and reporting the collected information
to a remote ground station, as illustrated in Fig. 1.
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Fig. 1. SARs assisted by UAVs: UAV fly over an area where the victim is
believed to be located, collect video information and transmit it back.

Other key elements in SARs operations is the communi-
cation systems. These systems provide the means for proper
coordination among the several teams involved and provide
the communication infrastructure so that UAVs can be inte-
grated to improve the operation. However, some technological
challenges need to be overcomed. Current communication net-
works do not support the demands of highly dynamic scenarios
of SARs operations integrated with UAVs. This situation
worsens in disaster scenarios, where the network infrastructure
is affected and often does not allow continuous communication
between several teams involved, including UAVs. In this way,
the adaptability of the network has been constantly inves-
tigated, considering 5th Generation (5G)/Beyond 5G (B5G)
scenarios, especially through the use of AI as a managing and
orchestrating tool built into the elements that make up the
communication infrastructure [2]. Moreover, standardization
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efforts toward AI-powered communication networks are be-
ing disseminated by the 3rd Generation Partnership Project
(3GPP), European Telecommunications Standards Institute
(ETSI) Experiential Networked Intelligence (ENI) and O-RAN
[3], [4], [5].

This article explores the features of the Artificial Intelli-
gence/Machine Learning (AI/ML) pipeline, which integrates
the RICs [6], specified in the O-RAN reference architec-
ture [7]. Considering a scenario involving User Equipment
(UE)/UAV, connected to an O-RAN ground vehicle Base Sta-
tion (BS), and whereas this UE/UAV collects high-resolution
video in real-time and transmits it to a Deep Neural Network
(DNN) object detection model. In this context, we propose
an approach aimed at improved support for critical missions
operations assisted by UAV. The main contributions of this
work are: (i) demonstrates the feasibility of using O-RAN
AI/ML pipeline, aimed to improved support for critical mis-
sion operations assisted by UAV; (ii) explores, in the same use
case, AI applied to the enhancement of O-RAN components,
and O-RAN components providing enhanced support to an AI
application, in the context of SAR operation.

The remaining of this article is organized as follows. Sec-
tion II, presents 5G/B5G related works, considering the main
initiatives towards AI/ML solutions, UAV, and SARs opera-
tions. In Section III, we present O-RAN reference architecture
and describe how our AI/ML pipeline version can act to the
enhancement of O-RAN components, and, in Section IV, we
show the experiments with AI for UAV-based SARs. Finally,
conclusions and open issues are discussed in Section V.

II. RELATED WORKS

Over generations of wireless cellular networks, telecom-
munication standardization bodies, e.g., 3GPP, ETSI, and
O-RAN, have been working on specifications to make the 5G
ecosystem more efficient and optimized. Much of the effort
is towards AI/ML usage to deal with the complexity of new
applications and use cases presented by recent market trends.

Critical mission applications have been constantly investi-
gated in the scientific literature [8] and must be supported
by telecommunication infrastructures [3], [1]. However, many
applications have requirements beyond the capabilities of the
elements that make up the infrastructure [9]. Considering
computer vision based on UAVs, recent research proposes the
inclusion of DNN models, generating, as a consequence, a
high throughput between edge and cloud networks [10]. In
work [11], the authors present a set of use cases, providing
an overview of deployable 5G network concepts, including
architecture options, system performance analysis, and co-
existence aspects. Focused on the context of mission-critical
operations, the authors in [12] provide an overview of service
requirements for public safety mission-critical communica-
tions, identifying key technical challenges and explaining how
5G New Radio (NR) features are being evolved to meet
the emerging safety-critical requirements. Prospects of using
AI/ML at the edge of the network have become stronger with
the O-RAN Alliance, which arises with the general objective
of standardizing an architecture and a set of interfaces to

perform an open Radio Access Network (RAN). The aim is
to produce an open RAN based on disaggregated, virtualized
software components, which exchange information through
open, standardized interfaces being interoperable among dif-
ferent vendors, following prerogatives similar to those spec-
ified in the 5G Core (5GC) [13]. Section III presents more
details of the O-RAN architecture, as well as the possibility
of integration with AI elements, focused on the context of
improved support for critical mission operations assisted by
UAVs.

III. O-RAN AND AI FOR UAV CRITICAL MISSIONS

We adopted the following considerations to emulate a
concrete scenario: (i) SAR operation as a critical mission;
(ii) application requirements associated with KPIs of a DNN
object detection model based on high resolution real-time
video; (iii) UAVs-based high-resolution video stream; and (iv)
5G mobile networks, specifically O-RAN, due to its flexibility
and characteristics of components’ dissociation.
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Fig. 2. O-RAN reference architecture, providing improved support for critical
mission operations assisted by UAV.

The O-RAN reference architecture was structured based on
four guidelines:

• Virtualization. Introduction of new components to man-
age and optimize the network infrastructure and its oper-
ations.

• Disaggregation. Divides the BS into Central Unit (CU),
Distributed Unit (DU), and Radio Unit (RU), following
the proposal by 3GPP for the RANs segmentation.

• Open interfaces. The inclusion of open interfaces con-
necting different O-RAN architecture components allows
interoperability between the CU, DU, and RU.

• Intelligent data-driven control through RICs. RICs are
programmable components that can execute optimization
routines that orchestrate the RAN.

Fig. 2 shows O-RAN reference architecture [7] (O-RAN
Layer boundary box), acting in a critical mission scenario,
providing improved support for SAR operation assisted by
UAVs. In the illustration, UE Layer shows a UAV carrying
a high-resolution camera, collecting information and transmit-
ting it back to the UAV control vehicle (ground BS illustrated
in Fig. 1), to be used to identify possible victims through DNN
object detection model [14].

The Fig. 2 also illustrates our view of the interaction
between the elements: (i) the sync node labeled with red color
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is responsible to update UAV control with insights produced
by third-party applications, i.e., xApps and rApps designed to
provide value-added services to support the RAN optimization
process, (ii) the sync node labeled with blue color acts in the
near-real-time RAN Intelligent Controller (near-RT RIC) with
insights produced by non-real-time RAN Intelligent Controller
(non-RT RIC), (iii) the sync node labeled with green color
performs Next Generation Node Base (gNB) optimization
with insights produced by near-RT RIC, and (iv) the sync
node labeled with orange color reports information about
application performance to rApps.

We consider all network equipment deployed in vehicular
ground BS. Moreover, we consider the transmission of control
data and application data. Control data has KPIs that indicate
low latency and low bandwidth demand. e.g., configuration
changes, UAV flight status, UAV data reporting, and UAV
navigation commands. However, application data includes
4K high-definition video data, demanding significant uplink
network bandwidth requirements.

Knowing the network requirements associated with com-
puter vision application and aiming to guarantee the com-
munication during the SARs operation, we consider that the
data produced by the network elements is collected and
used by RICs components. An O-RAN internal Machine
Learning (ML) pipeline processes the data, outputting insights
used as input to four control loops, involving near-RT RIC,
non-RT RIC, O-RAN disaggregation components, and Edge
computing Service Platform, as illustrated in Fig. 2. The
exchange of information between O-RAN internal compo-
nents occurs through open interfaces A1, O1, and E2. In
addition, we propose the X1 and C1 interfaces to reporting
pertinent information about application performance to rApps
and maintain connectivity between UEs and the edge comput-
ing service platform, respectively. The following paragraphs
discuss details of RICs, rApps, xApps, Service Management
and Orchestration (SMO), O-RAN open interfaces, and how
AI can contribute to improving enhanced support for critical
mission operations assisted by UAVs.

A. Service Management and Orchestration Framework

SMO handles all management, orchestration, and automa-
tion procedures to control RAN components. As illustrated
in Fig. 2, non-RT RIC is part of SMO. Through the A1 and
O1 interfaces, the SMO components interact with the other
components, enabling the data collection to serve as input to
AI/ML models. The outputs of the AI/ML models are intended
to facilitate network monitoring and control [5].

B. E2, O1 and A1 Interfaces

One of the O-RAN structuring guidelines was the inclu-
sion of the A1, E2, and O1 interfaces, connecting different
architecture components and enabling interoperability among
CU, DU, and RU. The E2 interface interconnects the CU
and DU elements to the near-RT RIC. Through this interface,
the near-RT RIC can collect RAN metrics and act in control
procedures of the CU and DU elements [15]. The O1 interface
enables SMO to manage the lifecycle of O-RAN components.

It is an interface focused on operation and maintenance ac-
tivities, allowing perform initialization/configuration activities
of components and performance assurance control. The A1
interface connects non-RT RIC and near-RT RIC. Through
this interface, non-RT RIC can forward high-level optimiza-
tion goals and act in the management of ML models (e.g.,
deploy, update or undeploy ML trained models used in xApps)
[5].

C. non-real-time RAN Intelligent Controller (non-RT RIC)

non-RT RIC is contained inside SMO and is one of the
core components of the O-RAN reference architecture. It
was designed to complement near-RT RIC, to support the
execution of third-party applications, acting on control actions
over RAN, with timescales larger than 1 second. Further-
more, because it is located inside SMO, non-RT RIC can
influence the SMO operations and indirectly control all RAN
components connected to SMO through the A1 and O1 open
interfaces. non-RT RIC is composed of three main elements:
(i) Data management and exposure, which are responsible for
managing data and exposing services in the context of SMO;
(ii) rApps, designed to provide value-added services to support
the RAN optimization process; and (iii) AI/ML workflow,
responsible for data collection/processing; training; valida-
tion/publishing; deployment; AI/ML execution/inference, and
continuous operations of AI/ML models.

Considering improved support for critical mission oper-
ations assisted by UAV, we distributed the elements that
make up the AI/ML workflow between non-RT RIC and
near-RT RIC. On non-real time scale, data is collected and
processed, and AI/ML models are trained and validated by the
training host located in non-RT RIC. Training host is used for
near-RT RIC continuous online learning. Inside non-RT RIC,
there is the ML model repository that is used to save backup
ML training models.

D. near-real-time RAN Intelligent Controller (near-RT RIC)

near-RT RIC connects the O1, A1, and E2 interfaces, host-
ing the xApps and the components required to operate and
manage the xApps. Considering improved support for critical
mission operations assisted by UAV and control KPIs that have
low latency demand and uplink/downlink service asymmetry,
we placed the ML inference host as part of near-RT RIC. After
training and validation steps in non-RT RIC, the ML models
are deployed to the near-RT RIC inference host.

We consider the existence of a Data Analytics component
inside near-RT RIC, which can contain several ML data
analytics models. Each of them is trained and acting in a
specific context, such as working in a UAV context decisions,
e.g., navigation commands or flight status data reporting,
or acting in context decisions associated with RAN control
action and guidance, e.g., configuration changes. The outputs
produced by ML Data Analytics components may correlate
with actions: (i) Load Balancing; (ii) Anomaly Detection; (iii)
Mobility Prediction; (iv) Resource Forecast; and (v) Quality
of Service (QoS) Assurance. Considering improved support
for SARs operations, these correlations are explored by the
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decision engine to generate actions aimed at RAN resource
scaling, QoS targeted at SARs operation, and UAV mobil-
ity management. Finally, through a constant synchronization
process, the insights generated by the near-RT RIC inference
host stimulate xApps to act on the RAN elements, generating
a cognitive control loop, able to act on the elements of the
communication infrastructure to improve support for critical
mission operations assisted by UAV.

We describe the sets of experiments and their results acting
on the communication infrastructure elements in the follow-
ing.

IV. RESULTS

We demonstrated the flexibility and usefulness of the
O-RAN elements, considering a SAR operation, in which
an UAV flies over an area where the victim is believed to
be located, collects high-resolution video information, and
transmits it back to a vehicular ground BS. Edge computing
services are deployed at the ground BS, processing local
video and providing control information. In addition, real-
time data services collect video server and application health
information. We use a DNN YOLOv3 [14] to perform object
detection.

Fig. 3 illustrates the network topology, we used to represent
the scenario, in which O-RAN components improve connectiv-
ity between UAV/UE and Edge computing services, to provide
better performance in YOLOv3 object detection. This topology
comprises a Cloud node, O-RAN node, vehicular ground BS,
and UE1.

UE BS O-RAN
Cloud

YOLOv3 Object Detection

Fig. 3. Network topology representing UAV/UE, vehicular ground BS,
O-RAN and YOLOv3 Object Detection.

UE represents UAV, emulated in a containerized Hypertext
Transfer Protocol (HTTP) server that streams a high-resolution
video through the network. Our vehicular ground BS node
provides the network, representing RAN. The BS node is
emulated by a virtual switch created by Open vSwitch (OVS)
and connects UE to the O-RAN infrastructure. Finally, the
cloud node represents a location where all the services and
applications external to O-RAN are stored. In our case, the
cloud node is a Darknet algorithm with YOLOv3 [14] pre-
trained model, running on a Compute Node of Open-Access
Research Testbed for Next-Generation Wireless Networks
(ORBIT) testbed outfitted with NVIDIA Compute Unified
Device Architecture (CUDA) capable Graphics Processing
Units (GPUs).

Considering high-resolution images are more suitable for
the smaller object detection [16], and considering the avail-
ability in the market of models of UAVs properly designed

1https://github.com/LABORA-INF-UFG/paper-CEJGACK-2022

to capture 4K images, we stream a 4K video filmed by a
UAV, showing a group of people on the highway. We limited
the video stream time to have a more controlled experiment
and used a 30 Frames per Second (fps) evaluation rate on
YOLOv3. Table I summarizes all the parameters used and their
respective values.

TABLE I
PARAMETERS AND THEIR RESPECTIVE VALUES, USED IN THE

EXPERIMENTS.

Param Description Value
Object Detection Algorithm YOLOv3 [14]
Object Detection Dataset Pascal VOC
Video Strem Duration 3 seconds
Video Stream Frame Rate 30 fps
Video Strem Resolution 4K (3840 x 2160 pixels)

We used a Real Time Streaming Protocol (RTSP) server
containerized together with FFmpeg, positioned at the UE and
cloud nodes as illustrated in the topology of Fig 3 to simulate
a UAV-based high-resolution video stream. The FFMpeg UE
node stream the video to the cloud node that contains FFmpeg
Tools container. The cloud node receives the streaming and
extracts the frames used in the object detection process.
Moreover, we label each of the frames using a Computer
Vision Annotation Tool to check the precision, marking the
position of the objects to be detected in each frame.

In experiments, we employed a Traffic Control Tool in the
Linux kernel to emulate the following situations: (i) dropping
bandwidth and (ii) increasing packet loss. First, as shown in
Fig 4, we started the process of streaming with the normal
network infrastructure conditions. Therefore, the infrastructure
starts to behave abnormally, affecting application performance.
At this time, RICs detects this abnormal behavior, acts in
the network infrastructure, return to normal conditions and
improving the application performance.
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Fig. 4. AI application behavior in a scenario of bandwidth decrease.

Fig 4 shows the behavior of the object detection application
in a scenario of decreased bandwidth. The x-axis represents
a video stream timeline (fps). At a given moment, we note a
disturbance in the average of the recall, caused by a decrease
in the bandwidth, and then the values returned to the previous
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Fig. 5. AI application behavior in a scenario of packet loss.

averages. Fig 5 illustrates the object detection application’s
behavior in a packet loss scenario. In this case, we note a
disturbance in the recall average caused by increasing packet
loss.

In both scenarios, SMO has access to the data that indicate
this momentary disturbance through the X1 interface, shown in
Fig 2. By correlating the application data with the other data
produced by the elements that make up the communication
infrastructure, the ML pipeline can act to reestablish the
communication infrastructure.

The results demonstrate the importance of a communication
infrastructure to remain stable and functional in critical mis-
sion scenarios, in which time is relevant and any delay can
result in serious consequences. When considering these oper-
ations assisted by UAV, the scenario becomes more complex.
Therefore, it is necessary to make networks more intelligent
and integrated with AI/ML elements to act in communication
infrastructures’ management and control process, such as
RICs.

V. OPEN ISSUES AND CONCLUSION

This work discussed, the benefits and challenges of AI
in critical mission operations assisted by UAVs integrated
with RAN intelligent controllers. As shown above, UAVs
significantly contribute as an auxiliary tool to improving
critical mission operations. However, the inherent features of
UAVs summed up with the complexity of new applications
and use cases presented by new market trends, demand stan-
dards, and efficient AI/ML for the optimized performance
of communication infrastructure. Standardization and wide
adoption of AI/ML built into the elements that make up the
communication infrastructure are key strategies to reduce cost
and achieve SAR operations efficiency that heavily depends
on communication and computing systems. We explored the
functionalities of RAN intelligent controllers, described in the
O-RAN standard specification [6], presenting an architecture
proposal for providing full AI/ML capabilities for standardized
systems aimed at critical mission operations assisted by UAVs.
In addition, we also presented experiments that illustrate
the benefits for describing the whole architecture elements
and their interaction. The initial results show the challenges

imposed in some SAR operations, especially when assisted
by UAVs, and at the same time, show the potential gains
obtained with the use of intelligent strategies closer to the
edge, according to the proposal of O-RAN architecture.

While the experiments in this work explored some of the
essential concepts of RAN intelligent controllers, the imple-
mentation of non-RT RIC and near-RT RIC that covers all
components presented in Fig 2 is still lacking. Therefore, in
future work, we intend to develop and make publicly avail-
able a minimally functional implementation of non-RT RIC
and near-RT RIC that illustrates all components described in
Section III. Moreover, we are interested in investigating the in-
teraction between the different intelligent elements, which act
at different points of the new communication infrastructures,
for example, RICs positioned closer to Edge, and Network
Data Analytics Function (NWDAF) placed at the core of the
network.
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