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Abstract— The O-RAN Alliance conceived an open architecture
model that aims at driving new levels of openness in
the radio access network (RAN). Allied to the trend of
softwarized networks, the open-access network covers most of
the telecommunications system when combined with the Software
Defined Radio (SDR) paradigm. O-RAN defines the RAN
Intelligent Controller (RIC) as a platform based on microservices
for implementing RAN monitoring and control techniques, called
xApps. This work uses the O-RAN open-source platform to
exemplify its accessibility and versatility to implement xApps
with control strategies of a simplified RAN based on GNU Radio.
A frequency scanning algorithm is proposed as a use case to
demonstrate how SDR platforms allied to the O-RAN paradigm
can be easily used in teaching and research initiatives.

Keywords— xApps, O-RAN, RIC, GNU Radio, SDR.

I. INTRODUCTION

Aiming at breaking the proprietary network paradigm,
the Open RAN Alliance (O-RAN Alliance) [1], a global
organization formed by several institutions that work in
the scope of RANs [2], proposes an architecture based on
virtualized network elements, white-box, and standardized
interfaces. O-RAN is pursuing a vision of openness
and intelligence for the next-generation wireless networks,
yielding an open-source communication network with lower
implementation costs, higher implementation flexibility, and
support for native Machine Learning (ML) techniques [2], [3].

The O-RAN proposed architecture introduces a new
software-defined RAN model through virtualization. By
virtualizing and allocating radio, computer, and storage
resources to virtual access elements, the network controller
can dynamically create and optimize virtual access elements
based on service requirements. This is important for
modern communication systems, which require spectrum
efficiency, traffic capacity, increased flow, low end-to-end
latency, reliability, and an increased number of connected
devices. While researchers, companies, and professionals are
getting familiar with the O-RAN vision, many challenges
of implementing virtualized, open, programmable, and
data-driven networks still need to be addressed. Openness,
programmability, and disaggregation are just the primary
enablers of data-driven applications. However, these are
only the first steps toward seamless integration of Artificial
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Intelligence (AI) techniques and control loops into the
communication chain.

Traditionally, RAN improvements are associated with new
transmission and reception schemes of transceivers and more
efficient radio resource management (RRM) strategies [4]. The
time granularity of RRM strategies is the transmission time
interval (TTI), acting on a millisecond time scale, with control
algorithms running entirely on the base station. In accordance
with definitions from O-RAN Working Group 2 [5], a RAN
Intelligent Controller (RIC) is defined on top of a traditional
RAN to extend the RRM actions using Al-based techniques.
Depending on the RRM paradigm, RAN control strategies
can be performed in non-real time (RT), operating at a scale
greater than 1000 ms, and in near-real time (performing
operations between 10 ms and 1000 ms). O-RAN also defines
communication interfaces between the architecture entities.
The E2 interface, between the RIC and RAN, implements
the E2AP protocol, which materializes the bidirectional
communication between RIC and RAN through the E2SM
service model [6].

Trends of softwarized networks and open protocols cover
the entire telecommunications system when allied to the
Software-Defined Radio (SDR) paradigm [7]. With the
idea of scanning the signal as close to the antenna as
possible, these software-based radio units are responsible
for processing the system’s physical layer signal (whatever
technology, e.g., Wi-Fi, 4G LTE, or 5G NR), but under
a development platform completely governed by high-level
software. These new hardware and software components have
been radically changing how the scientific community and
the telecommunications industry design, plan, build, deploy,
and interact with telecommunications systems, including radio
infrastructure [7]. In this way, developing, prototyping, and
testing new RRM algorithms and protocols experience new
challenges, but with an unprecedented time to market, as the
prototype has never been closer to the product than now.

This article aims to present the implementation of four
xApps that run on the near-real time RIC O-RAN platform.
The O-RAN platform exchanges messages with an FM
receiver implemented in GNU Radio, acting as a RAN. By
implementing a frequency scan algorithm, we intend to show
the accessibility and versatility of implementing measurement
and control strategies of a RAN on the RIC platform. Finally,
the goal is to contribute to the dissemination and use of SDR
platforms, such as GNU Radio, and open platforms, such as
the O-RAN RIC. The set of xApps and GNU Radio Python
scripts presented herein can be used as an active-learning
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strategy, bringing practical experience and fulfilling new
requirements of engineering education [8].

A. Related Works

Regarding O-RAN based systems, a few works discuss
xApps implementation aspects and operation with different
Radio Access Technologies (RATs) [9]. A second aspect is
the implementation of the Traffic Steering Use Case [9], [10].
Other contributions explore the usage of Machine Learning
algorithms to manage connections [11] and to cope with
threats in O-RAN [12].

There is an abundance of works focusing on prototyping
communication systems via Software Defined Radio (SDR).
Full stack-system implementation of communication
systems are explored in solutions for 3G, 4G and
5G (OpenAirlnterface [13]-[15] and srsLTE [16], [17]
and Radisys [18]). As RF front-end, Remote Radio
Units (RRUs) are implemented on top of commodity
hardware. There are different RF front-end hardware like
Universal Software Radio Peripheral (USRP) [19], Iris [20],
limeSDR [21], and bladeRF [22]. Several recent works
have been produced using testbeds of research projects like
POWDER-RENEW [23], COSMOS [24], AERPAW [25],
Colosseum  [26], S5TONIC [27], FEDAFIRE+ [28],
CORNET [29], FIT [30], Drexel Grid [31].

This paper aims to contribute to O-RAN and GNU Radio
communities by providing a simple example of a frequency
scanning xApp using the O-RAN RIC platform and GNU
Radio, implemented on two separate computers. To the best
of the authors’ knowledge, a set of xApps to provide the
closed-loop communication between RIC and GNU Radio has
not been presented in literature before.

II. SYSTEM MODEL
A. O-RAN RIC

The architecture of O-RAN-based systems can be split into
three main components [5], [6]. The first component is the
non-real time RIC. It is responsible for the non-real time
control and optimization of RAN elements and resources.
It is also accountable for AI/ML workflow, including
model training and updates, and policy-based guidance of
applications/features in near-RT RIC. The second component
is the near-real time RIC. It is responsible for near-real
time control and optimization of O-RAN elements and
resources via fine-grained data collection and actions over E2
interface. Finally, the third component is the E2 Node which
encompasses all the elements in the front end of the RAN,
such as base stations and control nodes.

Although the O-RAN architecture is well defined and
established, the implementation, and development of its
components are still being heavily updated. The official
O-RAN repository [32] is constantly being changed and the
RIC architecture is provided as the main development branch.
Different versions of the main branch are named according to
words whose first letters follow the alphabetical order. Up until
now, there have been 5 (five) releases namely Amber, Bronze,
Cherry, Dawn, and E. Given that E has been released very

recently, for this work all tests and studies were conducted
using the Dawn release.

Fig. 1 shows the overall architecture of O-RAN’s RIC.
The three main components communicate with each other via
specific links divided into three main categories: Al, O1, and
E2 links. The Al links are responsible for sending policies
from the non-RT RIC present in the Service Management
and Orchestration (SMO) to the near-RT RIC. The Ol link
is used to transmit large volumes of data such as files and
ML models. Finally, the E2 link is used to transmit data from
the E2 nodes, such as KPIs (Key Performance Indicators) and
devices’ status. Each link is managed by a terminator module
responsible for abstracting outward communications between
RIC components.
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Fig. I: O-RAN RIC Components. Source: https://www.o-ran.org/.

1) Near-RT RIC: As mentioned before, the near-RT RIC is
the RIC module that operates in near-real time (timeframe
between 10ms and 1s) and is responsible for control and
optimization of the RAN. It consists of several modules
that provide infrastructure for the xApps that can perform
monitoring and control of the UE via cell-specific metrics.
The infrastructure present in the near-RT RIC has two
main general-purpose components: A database system and a
communications system. The database serves as a standard
key-value general-purpose storing facility where xApps and
other modules can store temporary or permanent key-value
pairs of data. The communications channel aims to provide
a subscription/broadcast-type communication between xApps
and other modules via named channels.

2) Non-RT RIC: As also mentioned before, the non-RT RIC
is the part of the RIC system that runs in non-real time with
time frames larger than 1 second. It is situated as part of the
SMO and it also has an infrastructure that aims to provide
functionalities to the applications that can be installed on its
cluster (known as rApps). One of the application types that
can be instantiated as modules (rApps) in the non-RT RIC are
the ML training apps. Since ML training is a time-consuming
task and, in general, takes longer to execute, its services can
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run in the non-RT RIC.

B. SDR and GNU Radio

Experimental tools to evaluate new designs are key to
support academic and industrial research. Hence, network
simulators, emulators, and new testbeds have received
increasing attention. For O-RAN RIC developing purposes,
one can have emulators and simulators for each type of
RIC interfaces, such as Al, E2, Ol [6]. Physical SDR
platforms, such as the USRP can also be considered. They
provide a design solution to rapidly prototyping wireless
communications systems as well as a complete wireless
communication solution by using open-source software
suites such as GNU Radio and OpenAirlnterface (OAI).
Furthermore, different platforms can work together and thus
increase the gains for the experiments. For example, SDR
platforms and emulators can bring more realism while
providing reasonable scalability.

GNU Radio is a free and open-source software development
toolkit that provides signal processing blocks to implement
software radios [33]. As an SDR toolkit, the idea is to perform
the required signal processing in software instead of using
dedicated integrated circuits in hardware. Thus, the same
hardware can be used to create many kinds of radios for
several different communications standards by using personal
computers or servers. With GNU Radio, one can rapidly test
RIC communication interfaces and have a fast way to provide
functional over-the-air demos. Thus, a GNU Radio instance
running at a USRP, or even cheaper RTL-SDR dongles, could
be an alternative external emulator for research.

III. USE CASE DESCRIPTION, INSTALLATION AND
DEPLOYMENT

The main idea of this use case is to provide a framework
that harnesses the GNU Radio to settle a connection capable
of generating signal-strength measurement to near-RT RIC
O-RAN’s xApp. Then, the near-RT RIC controls the tuned
GNU Radio’s frequency to get better signal strength.

We use two laptops to implement the use case, the first one
with a bare-metal installation of Ubuntu 18.04 LTS and GNU
Radio, and the second with a Virtual Box VM of the Ubuntu
18.04 LTS on top of Microsoft Windows 10 for O-RAN RIC.
We use Python 3.8.10 and GNU Radio 3.8 on the laptop 1,
and Kubernetes v1.16.0, Helm 3, Lens 4.3.5 for the O-RAN
RIC Dawn deployment and visualization on machine 2. Fig. 2
shows a block diagram of our deployment. We use a RTL-SDR
dongle as our RF front-end platform.

O-RAN Near-Real time RIC
Implemented xApps
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Fig. 2: Block Diagram describing the Use Case.

A. O-RAN RIC xApps

Our xApps aim at scanning the FM frequency range, select
the radio station with higher received power, and finally tune
the receiver at that frequency. Inspired by O-RAN Traffic
Steering Use Case, we implemented four xApps (see Fig.3):

o Interface xApp with the following goals:

— Read KPI from GNU Radio through a web-server;

— Send read KPI to Monitoring XxApp by means of the
RIC Message Router (RMR) interface;

— Send the frequency adjustment to GNU Radio by
means of a web-server whenever the Action xApp
sends a message through RMR interface.

o Monitoring xApp with the following goals:

— Receive KPI from Interface xApp;

— Feed SDL (O-RAN Shared Data Layer) with new
KPIL

o Consumer xApp with the following goals:

— Read KPI from SDL using wrappers;

— Test whether the current station is the strongest so
far.

— Send the frequency adjustment to the Action xApp
by means of RMR. If it did not scan the entire range
yet, it sends a 400kHz shift. If it already scanned the
entire range, it sends the frequency of the strongest
radio station.

o Action xApp with the following goals:

— Receive the frequency adjustment from Consumer
XApp;

— Close the loop by sending the frequency adjustment
to the Interface xApp.
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Fig. 3: Proposed architecture and signal flow for the Use Case.

B. GNU Radio Flowgraph and Python Scripts

Our approach on GNU radio is twofold. In the first
step (see Fig. 4), we created a flowgraph of a standard
wideband FM stereo receiver (found in gr-analog examples at
https://github.com/gnuradio/gnuradio/blob/
main/gr—analog/examples) with the inclusion of the
Crtlport Probe block to export the vector of received signal
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to flowgraph’s Python script (manually edited in the second
step). In the second step, we added the python server code to
(i) process the vector of the received signal (compute received
power); (ii) add a thread using the Python’s threading library to
host the web server; and (iii) implement the web-based socket
server using Python’s Flask library. Fig. 5 shows those codes.
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Fig. 4: Reference GNU Radio flowgraph.

IV. RESULTS

As shown in Fig. 3, the use case presented in this paper
consists basically in of the same Traffic Steering process, but
here, the E2 nodes are replaced by the GNU Radio as the
source of KPIs and the entity to be controlled.

Thus, as our main result, Fig. 6 shows the O-RAN/GNU
Radio interface working.

The process can be described as follows:

1) The measurement of the tuned FM radio station (named
here as KPIs) enters the RIC platform via the Interface
xApp coming from GNU Radio; The Interface xApp
periodically requests the power and center frequency
of the connected station. These KPIs are delivered as
notifications on the RMR bus;

2) That notification triggers the Monitoring xApp, which
receives these KPIs; Sequentially, it sends the KPI data
to be stored in the database via SDL; Finally, the SDL
stores the KPI in the database, which is available for
pooling and reading.

3) The Consumer xApp periodically performs the pooling
for KPIs via SDL. By comparing the KPIs, it stores
the frequency of the radio station with higher received
power. If the frequency range has not been entirely
scanned yet, the Consumer xApp sends a 400kHz shift
to any subscribed xApp via RMR. Otherwise, it sends
the frequency of the station with higher received power.

4) The Action xApp, which is subscribed to receive
the values from the Consumer xApp, sends the
corresponding actions to any subscribed xApps via
RMR. Each type of action is sent through a different
port.

5) The Interface xApp, which is subscribed to the messages
from the Action xApp, triggers the GNU Radio server
with a new frequency. This new frequency can be a
shift of 400kHz from the previously tuned station or
the frequency of the radio station with higher received
power.

6) The GNU Radio server receives the new frequency and
tunes its radio reception. That closes the loop, and the
frequency scanning restarts if the whole FM spectrum

5s T (gr.sync_block) :

def __init__ (self):
gr.sync_block.__init__ (
self,
name='Embedded Python Block’,

in_sig=[np.complex64],
out_sig=[np.complex64]
)
self.history = 0

def work(self, input_items, output_items):
output_items[0][:] = 0.0

datal = input_items[0].real

dataQ = input_items[0].imag

datal = np.convolve (datal, np.ones(20)/20.0)
dataQ = np.convolve (dataQ, np.ones(20)/20.0)
measurementsRef [0] = np.mean (np.sqrt (datal**2 +
dataQxx2))

return len (input_items[0])

(a) Code to process the vector of received signal (calculate received
power).

def thread_function (tb) :

app = Flask(__name_ )

app.debug = False

app.use_reloader = False

Qapp.route (' /measure’)

def measure() :
return ’%.4f’% (measurementsRef [0])

Qapp.route (’ /tune’)

def tune():
dFreq = float (request.args.get (’df’))
newFreq = tb.get_center_freq() + dFreq
tb.set_center_freq(newFreq)
return ’%.2f’% (newFreq)

@app.route (’ /tuneradio’

def tuneradio():
dFreq = float (request.args.get ('df’))
#newFreq = tb.get_center_freq() + dFreq
newFreq = dFreq
tb.set_center_freq(newFreq)

strout='\n ###### \n New tuned FM station: {} MHz
\n ###### \n’.format (newFreq/le6)
print (strOut)

return ’%.2f’% (newFreq)
Qapp.route (’ /getfreq’
def getfreq():
central_freq = tb.get_center_freq()
return ’%.2f’%(central_freq)
app.run (port=6660, host='0.0.0.0")
def startServer (tb):
x = threading.Thread (target=thread_function, args=(tb,))
x.start ()
return x

(b) Code to add a thread process using the Python’s threading library,
and to implement a web-based application (socket connection) using
Python’s Flask library.

Fig. 5: Additional codes of flowgraph’s Python script.

has not been scanned yet. Otherwise, the best radio is
finally tuned.

Fig. 7 illustrates the GNU Radio side of the experiment,
where one can see a log of messages from and to RIC as well
as the receiver frequency re-tuning.

V. CONCLUSIONS

This contribution presents four XApps to compose a use
case of O-RAN RIC and GNU Radio. We show an effective
way to connect those open-source platforms deployed in two
different machines by means of Python’s Flask library. We
demonstrate the accessibility and versatility of using O-RAN
open and GNU Radio open source codes to exercise modern
communication paradigms like SDR, openness, and virtualized
network using standardized interfaces. Such methodology can
be used to teaching and research initiatives by prototyping real
systems at very low cost.

Our further implementations include the usage of O-RAN
E2 interface as well as prototyping of more complex radio
access on GNU Radio.
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Fig. 6: Use case signaling flow execution.
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